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Abstract Mitochondrial membrane dynamics is a cellular rheostat that relates metabolic function

and organelle morphology. Using an in vitro reconstitution system, we describe a mechanism for

how mitochondrial inner-membrane fusion is regulated by the ratio of two forms of Opa1. We

found that the long-form of Opa1 (l-Opa1) is sufficient for membrane docking, hemifusion and low

levels of content release. However, stoichiometric levels of the processed, short form of Opa1 (s-

Opa1) work together with l-Opa1 to mediate efficient and fast membrane pore opening.

Additionally, we found that excess levels of s-Opa1 inhibit fusion activity, as seen under conditions

of altered proteostasis. These observations describe a mechanism for gating membrane fusion.

Introduction
Mitochondrial membrane fission and fusion is essential for generating a dynamic mitochondrial net-

work and regenerative partitioning of damaged components via mitophagy (Hoppins et al., 2007).

Membrane rearrangement is essential for organelle function (Cipolat et al., 2006; Cogliati et al.,

2013) and contributes to diversity in mitochondrial membrane shape that can reflect metabolic and

physiological specialization (Nunnari and Suomalainen, 2012; Westermann, 2010; Anand et al.,

2014).

Mitochondrial membrane fusion in metazoans is catalyzed by the mitofusins (Mfn1/2) and Opa1

(the outer and inner membrane fusogens, respectively), which are members of the dynamin family of

large GTPases (Chen et al., 2003; Alexander et al., 2000) (Figure 1A). An important series of in

vitro studies with purified mitochondria showed that outer- and inner membrane fusion can be func-

tionally decoupled (Meeusen et al., 2006; Meeusen et al., 2004). Outer membrane fusion requires

Mfn1/2, while inner-membrane fusion requires Opa1. Loss of Opa1 function results in a fragmented

mitochondrial network, loss of mitochondrial DNA, and loss of respiratory function (MacVicar and

Langer, 2016; Olichon et al., 2003). Opa1 is the most commonly mutated gene in Dominant Optic

Atrophy, a devastating pediatric condition resulting in degeneration of retinal ganglion cells. Muta-

tions in Opa1 account for over a third of the identified cases of this form of childhood blindness

(Pesch et al., 2001).

Like dynamin, Opa1 comprises a GTPase domain, helical bundle signaling element (BSE), and

stalk region (with a membrane-interaction insertion) (Figure 1B) (Schmid and Frolov, 2011;

Ramachandran and Schmid, 2018; Faelber et al., 2019). A recent crystal structure of the yeast

orthologue of Opa1, Mgm1, revealed this membrane-interaction insertion is a ‘paddle’, which con-

tains a series of hydrophobic residues that can dip into one leaflet of a membrane bilayer

(Faelber et al., 2011).
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Opa1 is unique for a dynamin family GTPase, because it is processed to generate two forms. The

unprocessed, N-terminal transmembrane anchored, long form is called l-Opa1. The proteolytically

processed short form, which lacks the transmembrane anchor, is called s-Opa1 (Mishra et al., 2014).

Opa1 is processed by two proteases in a region N-terminal to the GTPase domain. Oma1 activity is

stimulated by membrane depolarization (Ehses et al., 2009). Yme1L activity is coupled to respiratory

state. Both forms of the protein (s-Opa1 and l-Opa1) can interact with cardiolipin, a negatively

charged lipid enriched in the mitochondrial inner membrane. Opa1 GTPase activity is stimulated by

association with cardiolipin (Ban et al., 2010).

Recent structural studies of Mgm1 focused on a short form, s-Mgm1 construct (Faelber et al.,

2019). This analysis revealed a series of self-assembly interfaces in Mgm1’s stalk region. One set of

interactions mediates a crystallographic dimer, and a second set, observed in both the crystal and

cryo-electron tomographic (cryo-ET) reconstructions, bridge dimers in helical arrays on membrane

tubes with both positive and negative curvature. The s-Mgm1 membrane tubes that formed with

negative curvature are especially intriguing, because of Opa1’s recognized role in cristae regulation,

Figure 1. An in vitro assay for mitochondrial inner-membrane fusion. (A) Mitochondrial membrane fusion involves sequential outer and inner membrane

fusion. The mitofusins (Mfn1/2) catalyze outer membrane fusion. In metazoans, mitochondrial inner-membrane fusion is mediated by Opa1. (B) Linear

domain arrangement of l-Opa1. (C) Schema of the experimental setup. (D) Fusion assay. Membrane tethering, docking, lipid mixing, and content

release can be distinguished using fluorescent reporters that specifically reflect each transition of the reaction.
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and the correspondence of the in vitro tube topology with cristae inner-membrane invaginations

(Meeusen et al., 2006; Frezza et al., 2006). These self-assembled states were not mediated by

GTPase-domain dimers.

Integrative biophysical and structural insights have revealed how dynamin nucleotide-state is cou-

pled to GTPase-domain dimerization, stalk-mediated self-assembly and membrane rearrangement

(Faelber et al., 2011; Ford et al., 2011; Antonny et al., 2016; Chappie et al., 2010). For Opa1,

the opposite reaction (fusion) is also likely to result from nucleotide-dependent conformational

changes, coupled domain rearrangement, and self-assembly necessary to overcome the kinetic bar-

riers of membrane merger. Recent crystal structure and electron cryo-tomography reconstructions

reveal self-assembly interfaces, and conformational changes that rearrange cristae membranes

(Faelber et al., 2019). The specific fusogenic nucleotide hydrolysis-driven conformational changes

remain to be distinguished.

Classic studies of Mgm1, the yeast orthologue of Opa1, show that both long and short forms are

required for inner-membrane fusion (DeVay et al., 2009; Herlan et al., 2003). Studies by David

Chan’s group, using mammalian cells, also showed that both long and short forms of Opa1 are

required (Song et al., 2007), and that knock-down of the Opa1 processing protease Yme1L results

in a more fragmented mitochondrial network (Mishra et al., 2014). Since Yme1L activity is tied to

respiratory state, supplying cells with substrates for oxidative phosphorylation shifts the mitochon-

drial network to a more tubular state. Importantly, Chan and colleagues cleanly demonstrate, with

an in vitro purified mitochondria system using protease inhibitors and an engineered cleavage site

that mitochondrial fusion is dependent on proteolytic processing (Mishra et al., 2014). In contrast,

work from the Langer group showed l-Opa1 alone was sufficient for fusion when expressed in a

YME1L -/-, OMA1 - /- background (Anand et al., 2014), indicating that Opa1 processing is dispens-

able for fusion. Over-expression of s-Opa1 in this background resulted in mitochondrial fragmenta-

tion, which was interpreted as a result of s-Opa1 mediated fission. Is proteolytic processing of Opa1

required for regulating fusion? Is s-Opa1 required for fusion?

In this study, we applied a TIRF-based supported bilayer/liposome assay (Figure 1C), to distin-

guish the sequential steps in membrane fusion that convert two apposed membranes into one con-

tinuous bilayer: tethering, membrane docking, lipid mixing (hemifusion) and content release

(Figure 1D). This format allows control of protein levels for all components introduced into the sys-

tem. Previous in vitro reconstitution studies from Ishihara and colleagues (Ban et al., 2017) were

performed in bulk. The analysis we present here resolves individual fusion events in the TIRF field

and is more sensitive than bulk measurements. In addition, our assay records kinetic data lost in

ensemble averaging. Finally, the assay as applied here, can distinguish stages of fusion for individual

liposomes. Tethering is observed when liposomes attach to the supported bilayer. Lipid mixing

(hemifusion) is reported when a liposome dye (TexasRed) diffuses into the supported bilayer.

Release of a soluble content dye (calcein) from within the liposome (loaded at quenched concentra-

tions) indicates full pore opening. Our assay includes a content reporter dye in all conditions, so we

can relate each intermediate with full fusion, for example, comparing instances where there may be

lipid mixing, but no content release.

Using this in vitro reconstitution approach, we describe key mechanistic requirements for mito-

chondrial inner-membrane fusion. We report efficiency and kinetics for each step in Opa1-mediated

fusion. These experiments describe the membrane activities of l-Opa1 alone, s-Opa1 alone, and

l-Opa1:s-Opa1 together. We find that s-Opa1 and l-Opa1 are both required for efficient and fast

pore opening, and present a mechanism for how the ratio of l-Opa1 and s-Opa1 levels regulate

inner-membrane fusion. These results are compatible and expand the original yeast observations

(DeVay et al., 2009), explain previous cellular studies (Anand et al., 2014; Mishra et al., 2014), and

contextualizes recent in vitro observations (Ban et al., 2017). The data presented here unambigu-

ously describe the activities of Opa1, contributing to a more complete model for how inner-mem-

brane fusion is regulated.
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Results

Assay validation
We purified long and short forms of human Opa1 expressed in Pichia pastoris. Briefly, Opa1 was

extracted from membranes using n-dodecyl-b-D-maltopyranoside (DDM) and purified by Ni-NTA

and Strep-tactin affinity chromatography, and size exclusion chromatography (Figure 2A). A series

of short isoforms are observed in vivo (MacVicar and Langer, 2016; Del Dotto et al., 2018). In this

study, we focused on a short form corresponding to the S1 isoform resulting from Oma1 cleavage

(Figure 2B). GTPase activity of purified Opa1 was confirmed by monitoring free phosphate release

(Figure 2C and D). Opa1 activity was enhanced by the presence of cardiolipin, consistent with previ-

ous reports (Figure 2C and D, Figure 2—figure supplement 1) (Ban et al., 2010).

We reconstituted l-Opa1 into 200 nm liposomes and supported bilayers generated by Langmuir-

Blodgett/Langmuir-Schaefer methods (Naumann et al., 2002). l-Opa1 was added to liposomes and

a supported bilayer at an estimated protein:lipid molar ratio of 1:5000 and 1:50000, respectively.

Figure 2. Reconstitution of l-Opa1. (A) Representative size-exclusion chromatograph and SDS-PAGE gel of human l-Opa1 purified from P. pastoris. (B)

SDS-PAGE gel of human s-Opa1 purified from P. pastoris. l-Opa1 activity, with velocity (C) and specific activity (D) of GTP hydrolysis in the presence

and absence of cardiolipin, while varying protein concentration of Opa1. Data are shown as mean ± SD, with error bars from three independent

experiments. Representative single-liposome photobleaching steps (E and F) and histogram of step sizes (distribution for 110 liposomes shown) (G).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Reconstitution of l-Opa1.

Figure supplement 1. GTP hydrolysis activity.

Figure supplement 1—source data 1. GTP hydrolysis activity.

Figure supplement 2. Liposome co-flotation.

Figure supplement 2—source data 1. Liposome co-flotation.

Figure supplement 3. Bilayer homogeneity and FCS.

Figure supplement 3—source data 1. Bilayer homogeneity and FCS.

Figure supplement 4. Blue native gels.

Figure supplement 5. FCS.

Figure supplement 5—source data 1. FCS.
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Membranes comprised DOPE (20%), Cardiolipin (20%), PI (7%), and DOPC (52.8%). Reporter dyes

(e.g. Cy5-PE, TexasRed-PE) were introduced into the supported bilayer and liposome membranes,

respectively, at ~0.2% (mol). A surfactant mixture stabilized the protein sample during incorporation.

Excess detergent was removed using Bio-Beads and dialysis. We confirmed successful reconstitution

by testing the stability of l-Opa1 incorporation under high salt and sodium carbonate conditions,

and contrasting these results with s-Opa1 peripheral membrane association (Figure 2—figure sup-

plement 2).

We evaluated reconstitution of l-Opa1 into both the polymer-tethered supported lipid bilayers

and proteoliposomes using two approaches. First, using Fluorescence Correlation Spectroscopy

(FCS), we measured the diffusion of dye-conjugated lipids and antibody-labeled protein. FCS inten-

sity measurements confirmed ~75% of l-Opa1 reconstituted into the bilayer in the accessible orienta-

tion. Bilayer lipid diffusion was measured as 1.46 ± 0.12 mm2/s, while the diffusion coefficient of

bilayer-reconstituted l-Opa1 was 0.88 ± 0.10 mm2/s (Figure 2—figure supplement 3), which is in

agreement with previous reports of lipid and reconstituted transmembrane protein diffusion

(Siegel et al., 2011). These measurements indicate the reconstituted l-Opa1 in the bilayer can freely

diffuse, and has the potential to self-associate and oligomerize. Blue native polyacrylamide gel elec-

trophoresis (BN-PAGE) analysis also show the potential for the purified material to self-assemble

(Figure 2—figure supplement 4). FCS experiments were also performed on liposomes. FCS inten-

sity measurements confirmed 86.7% of total introduced l-Opa1 successfully reconstituted into the

liposomes. The diffusion coefficient of free antibody was 163.87 ± 22.27 mm2/s. The diffusion coeffi-

cient for liposomes labeled with a lipid dye was 2.22 ± 0.33 mm2/s, and the diffusion coefficient for

l-Opa1 proteoliposomes bound to a TexasRed labeled anti-His antibody was 2.12 ± 0.36 mm2/s (Fig-

ure 2—figure supplement 5). Second, we measured the number of l-Opa1 incorporated into lipo-

somes by fluorescent step-bleaching of single proteoliposomes (Figure 2E and F). We found an

average step number of 2.7 for individual l-Opa1-containing proteoliposomes labeled with TexasRed

conjugated anti-His antibody, when tethered to cardiolipin containing lipid bilayers (Figure 2G).

Nucleotide-dependent bilayer tethering and docking
Using the supported bilayer/liposome assay sketched in Figure 1C, we found that l-Opa1 tethers lip-

osomes in a homotypic fashion (Figure 3A), as reported by the appearance of TexasRed puncta in

the TIRF field above a l-Opa1-containing bilayer. This interaction occurred in the absence of nucleo-

tide (apo, nucleotide-free) but was enhanced by GTP. We next investigated requirements for Opa1

tethering. In the absence of cardiolipin, addition of GTP did not change the number of tethered par-

ticles under otherwise identical conditions (Figure 3B). In contrast, with cardiolipin-containing lipo-

somes and bilayers, homotypic l-Opa1:l-Opa1 tethering is enhanced by GTP. Non-hydrolyzable

analogues (GMPPCP) disrupt tethering (Figure 3C), and a hydrolysis-dead mutant (G300E) l-Opa1

shows little tethering (Figure 3—figure supplement 1B), supporting a role for the hydrolysis transi-

tion-state in tethering, as observed for atlastin (Liu et al., 2015; O’Donnell et al., 2017). Bulk light

scattering measurements of liposome size distributions (by NTA Nanosight) show l-Opa1-mediated

liposome clustering requires the presence of GTP (Figure 3—figure supplement 2). These bulk

measurements show a GTP-dependent increase in observed particle size.

Ban, Ishihara and colleagues have observed a heterotypic, fusogenic interaction between l-Opa1

on one bilayer and cardiolipin in the opposing bilayer (Ban et al., 2017). Inspired by this work and

our own observations, we considered if a heterotypic interaction between l-Opa1 and cardiolipin on

the opposing membrane could contribute to l-Opa1-mediated tethering (Figure 3D). Indeed, we

find that proteoliposomes containing l-Opa1 will tether to a cardiolipin-containing bilayer lacking

any protein binding partner, presumably mediated by the lipid-binding ‘paddle’ insertion in the heli-

cal stalk region (Faelber et al., 2019). This tethering is cardiolipin-dependent, as l-Opa1 containing

bilayers do not tether DOPC liposomes (Figure 4—figure supplement 1B).

We next measured whether s-Opa1, lacking the transmembrane anchor, could tether membranes

via membrane binding interactions that bridge the two bilayers. We observe that s-Opa1 (added at

a protein:lipid molar ratio of 1:5000) can tether cardiolipin liposomes to a cardiolipin-containing pla-

nar bilayer, as observed previously for Mgm1 (Abutbul-Ionita et al., 2012). Further, this s-Opa1

tethering is enhanced by the presence of GTP (Figure 3E). Previous reports observed membrane

tubulation at higher concentrations of s-Opa1 (0.2 mg/ml, 1.67 nmol) (Ban et al., 2010). Under the

lower s-Opa1 concentrations in our experiments (0.16 mg/ml, 2 � 10�3 nmol), the supported bilayer
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Figure 3. The number of liposomes tethered on the planar bilayers in a homotypic format (l-Opa1 on both bilayers) increases in the presence of GTP,

when both bilayers contain cardiolipin. (A) Representative images of liposomes tethered on lipid bilayer (both containing cardiolipin) before (apo, or

nucleotide free) and after GTP addition. Scale bar: 5 mm. (B) Bar graph: In the presence of cardiolipin, addition of GTP doubles the number of

liposomes. (***p<0.001, two way ANOVA). (C) Addition of GMPPCP decreases amount of tethered l-Opa1 liposomes (apo, indicating nucleotide free)

Figure 3 continued on next page
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remains intact (before and after GTP addition), and we do not observe any evidence of tubular struc-

tures forming in the liposomes or bilayers.

Our experiments indicate that s-Opa1 alone can induce tethering. Is s-Opa1 competent for close

docking of membranes? To answer this, we evaluated close bilayer approach using a reporter for

when membranes are brought within FRET distances (~40–60 Å). This FRET signal reports on close

membrane docking when a TexasRed conjugated PE is within FRET distance of a Cy5-conjugated

PE. We observed a low FRET signal for tethered membranes, when the FRET pair is between two

supported bilayers tethered via PEG spacer (average distance between the bilayer centers of ~7

nm) (Minner et al., 2013), compared to a single bilayer containing both of the FRET pair (Figure 4—

figure supplement 1A). When l-Opa1 is present on both bilayers (homotypic arrangement), or on

only one bilayer (heterotypic arrangement), efficient docking occurs in the presence of cardiolipin, as

reported by a FRET signal with efficiencies of ~40% (Figure 4B and C and Figure 4—figure supple-

ment 1A). Efficient homotypic docking requires GTP hydrolysis. GMPPCP prevents homotypic dock-

ing of l-Opa1, and abolishes the heterotypic l-Opa1 signal) (Figure 4A). In contrast, s-Opa1 alone

does not bring the two bilayers within FRET distance, consistent with observations for s-Mgm1 teth-

ered bilayers (Figure 4A) (Abutbul-Ionita et al., 2012). The distances between two paddles in the

s-Mgm1 dimer is ~120 Å. Tethering mediated by two paddle interactions would be compatible with

our observed low FRET signal when s-Opa1 engages two bilayers (Faelber et al., 2011).

Hemifusion and pore opening
We find that l-Opa1, when present on only one bilayer, in a heterotypic format, can mediate close

membrane docking (Figure 4A). To quantify hemifusion (lipid exchange), we measured the fluores-

cence intensity decay times for the liposome dye (TexasRed) as it diffuses into the bilayer during

lipid mixing. Analysis of particle dye diffusion kinetics shows that in this heterotypic format, l-Opa1

can induce hemifusion (Figure 5A). The hemifusion efficiency (percentage of total particles where

the proteoliposome dye diffuses into the supported bilayer) for heterotypic l-Opa1 was <5%

(Figure 6A). Previously published in vitro bulk liposome-based observations for heterotypic l-Opa1

lipid mixing observed hemifusion efficiencies of 5–10%, despite higher protein copy number per

liposome (Ban et al., 2017). We next compared homotypic l-Opa1 catalyzed hemifusion and

observed shorter mean dwell times than heterotypic l-Opa1 (Figure 5B and C, Figure 5—figure

supplement 1). In our assay, we observe homotypic l-Opa1 induces hemifusion more efficiently than

heterotypic l-Opa1. We measured a homotypic l-Opa1 hemifusion efficiency of ~15% (Figure 6A).

For comparison, in vitro measurements of viral membrane hemifusion, show efficiencies of ~25–80%

(Chao et al., 2014; Ivanovic et al., 2013). This comparison is imperfect, as viral particles have many

more copies of their fusion proteins on their membrane surface and viral fusogens do not undergo

multiple cycles of nucleotide hydrolysis, like Opa1.

Following hemifusion, pore opening is the key step where both leaflets merge and content from

the two compartments can mix. We observed pore opening by monitoring content dye (calcein)

release under these conditions (Rawle et al., 2011). Of all homotypic tethered particles,~18%

undergo hemifusion. Of these particles undergoing hemifusion, approximately half proceed to full

fusion (8% of all homotypic tethered particles). Both s-Opa1 alone (at 0.16 mg/ml, or 2 � 10�3 nmol

Figure 3 continued

(p<0.005, two-way ANOVA). (D) l-Opa1 in the liposome bilayer alone is sufficient to tether liposomes to a cardiolipin containing bilayer. Tethering is

enhanced in the presence of GTP (apo, indicating nucleotide free) (p<0.005, two-way ANOVA). (E) s-Opa1 tethers liposomes to a cardiolipin-containing

bilayer. Number of tethered liposomes when both bilayer and liposomes contain 20% (mol) cardiolipin. Before addition of GTP (apo, indicating

nucleotide-free), a moderate amount of liposome tethering was observed. The addition of GTP enhances this tethering effect (p<0.005, two-way

ANOVA). Data are shown as mean ± SD. Error bars are from five independent experiments (>10 images across one bilayer per for each experiment).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Tethering.

Figure supplement 1. Effect of s-Opa1 competition on membrane tethering.

Figure supplement 1—source data 1. Effect of s-Opa1 competition on membrane tethering.

Figure supplement 2. Normalized relative and cumulative size distributions show cardiolipin containing proteoliposomes shift to larger sizes 1 hr

following GTP addition (green trace), as measured by Nanosight light scattering.

Figure supplement 2—source data 1. Proteoliposome size distributions.
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Figure 4. Docking. (A) Homotypic l-Opa1 docks liposomes in a GTP-hydrolysis dependent manner. s-Opa1, alone

is insufficient to closely dock liposomes. l-Opa1 in a heterotypic format (on the liposome alone) is competent to

closely dock to a bilayer, but this docking is not stimulated by nucleotide. Bar graphs shown as mean ± SD

(p<0.0001, one-way ANOVA). Error bars are from 3 to 5 independent experiments (each experiment with >150

particles in a given bilayer). (B) In the presence of cardiolipin on both bilayers, FRET signal reports on close

liposome docking mediated by l-Opa1. Left: Green = Cy5 emission signal upon excitation at 543 (TexasRed

excitation). Red = Cy5 emission signal in membrane upon excitation at 633 (Cy5 excitation). Right:

Green = TexasRed emission upon excitation at 543 nm (TexasRed excitation). Scale bar: 5 mm.

Figure 4 continued on next page
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concentration), or l-Opa1 in the heterotypic format did not release content (Figure 6A). In con-

trast,~8% of homotypic l-Opa1:l-Opa1 particles undergo pore opening and content release. These

observations indicate, l-Opa1 alone is sufficient for pore opening, while s-Opa1 alone or heterotypic

l-Opa1 are insufficient for full fusion.

Ratio of s-Opa1:l-Opa1 regulate pore opening efficiency and kinetics
Our observation that l-Opa1 is sufficient for pore opening leaves open the role of s-Opa1 for fusion.

Previous studies suggest an active role for s-Mgm1 (the yeast orthologue of s-Opa1) in fusion

(DeVay et al., 2009). In this work, l-Mgm1 GTPase activity was dispensable for fusion in the pres-

ence of wild-type s-Mgm1 (DeVay et al., 2009). Work in mammalian cells suggests different roles

for s-Opa1. Studies from the Chan group showed Opa1 processing helps promote a tubular mito-

chondrial network (Mishra et al., 2014). In contrast, other studies showed upregulated Opa1 proc-

essing in damaged or unhealthy mitochondria, resulting in accumulation of s-Opa1 and fragmented

mitochondria (Mishra et al., 2014; Ban et al., 2017; Griparic et al., 2007). The interpretation of the

latter experiments was that, in contrast to the yeast observations, s-Opa1 suppresses fusion activity.

Furthermore, studies using Opa1 mutations that abolish processing of l-Opa1 to s-Opa1 suggest the

short form is dispensable for fusion, and s-Opa1 may even mediate fission (Lee et al., 2017;

Baker et al., 2014). These different, and at times opposing, interpretations of experimental observa-

tions have been difficult to reconcile.

To address how s-Opa1 and l-Opa1 cooperate, we added s-Opa1 to the l-Opa1 homotypic sup-

ported bilayer/liposome fusion experiment. l-Opa1-only homotypic fusion has an average dwell time

of 20 s and an efficiency of ~10% (Figure 6B–E and Figure 6—figure supplement 1). Upon addition

of s-Opa1, we observe a marked increase in pore opening efficiency, reaching 80% at equimolar

l-Opa1 and s-Opa1 (Figure 6B). At equimolar levels of s-Opa1, we also observe a marked change in

pore opening kinetics, with a four-fold decrease in mean dwell time (Figure 6C). The efficiency

peaks at an equimolar ratio of s-Opa1 to l-Opa1, showing that s-Opa1 cooperates with l-Opa1 to

catalyze fast and efficient fusion. When s-Opa1 levels exceed l-Opa1 (at a 2:1 ratio or greater), par-

ticles begin to detach, effectively reducing fusion efficiency. This is consistent with a dominant nega-

tive effect, where s-Opa1 likely disrupts the homotypic l-Opa1:l-Opa1 interaction. We quantified

particle untethering, and observe a dose-dependent detachment of l-Opa1:l-Opa1 tethered par-

ticles with the addition of G300E s-Opa1 (Figure 3—figure supplement 1A).

Discussion
Our experiments suggest different assembled forms of Opa1 represent functional intermediates

along the membrane fusion reaction coordinate, each of which can be a checkpoint for membrane

fusion and remodeling. We show that s-Opa1 alone is sufficient to mediate membrane tethering but

is unable to dock and merge lipids in the two bilayers, and thus, insufficient for hemifusion

(Figure 7A). In contrast, l-Opa1, in a heterotypic format, can tether and hemifuse bilayers, but is

unable to transition through the final step of pore opening (Figure 7B). Homotypic l-Opa1 can hemi-

fuse membranes and mediate low levels of pore opening (Figure 7C i.). However, our results show

that s-Opa1 and l-Opa1 together, synergistically catalyze efficient and fast membrane pore opening

(Figure 7C ii.). Importantly, we find that excess levels of s-Opa1 are inhibitory for pore opening, pro-

viding a means to down-regulate fusion activity (Figure 7C iii.).

Our model proposes that l-Opa1:s-Opa1 stoichiometry gates the final step of fusion, pore open-

ing. Electron tomography studies of mitofusin show a unevenly distributed ring of proteins clustering

at an extensive site of close membrane docking, but only local regions of pore formation

(Brandt et al., 2016). Our study is consistent with local regions of contact and low protein copy

Figure 4 continued

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Docking.

Figure supplement 1. Docking.

Figure supplement 1—source data 1. Docking.
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Figure 5. Hemifusion. (A) Heterotypic hemifusion. Top panels: time trace of proteo-liposome lipid dye diffusion (TexasRed). Bottom panels: no content

release is observed for this particle (calcein signal remains quenched). Scale bar: 1 mm. (B) Homotypic hemifusion. Top panels: time trace of liposome

lipid dye diffusion (TexasRed). Bottom panels: no content release is observed for this particle (calcein signal remains quenched). Scale bar: 1 mm. (C)

Representative intensity traces of a control particle not undergoing fusion (black), with heterotypic hemifusion event (solid red), and homotypic

hemifusion event (dotted red).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Heterotypic and homotypic hemifusion.

Figure supplement 1. Additional kinetic traces for hemifusion curves under homotypic (A) and heterotypic (B) Opa1 hemifusion conditions.

Figure supplement 1—source data 1. Additional hemifusion kinetic traces.
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number mediating lipid mixing and pore formation (Zick et al., 2009). Our study would predict that

s-Opa1 enrichment in regions of the mitochondrial inner-membrane would suppress fusion. This

study did not explore the roles of s-Opa1 assemblies (helical or 2-dimensional) in fusion

(Faelber et al., 2019). Cellular validation of our proposed model, and other states, will require cor-

relating l-Opa1:s-Opa1 ratio and protein spatial distribution with fusion efficiency and kinetics. This

study focused on isoform 1 of l-Opa1 and the S1 form of s-Opa1. The behavior of other Opa1 splice

isoforms, which vary in the processing region, remains another important area for future investiga-

tion (Wai et al., 2016).

Figure 6. Hemifusion and full fusion. (A) Hemifusion (lipid mixing) and full fusion (content release and pore opening) efficiency for homotypic l-Opa1,

heterotypic l-Opa1 and s-Opa1 (p<0.001, two-way ANOVA). Bar graphs shown as mean ± SD. Error bars are from five different experiments (50–200

particles were analyzed per bilayer in each experiment). B. Full fusion (pore opening) efficiency at different s-Opa1:l-Opa1 ratios. Data are shown as

mean ± SD. Error bars are from 4 to 6 experiments (80–150 particles per bilayer in each experiment). The significance of the data was confirmed using

one-way ANOVA (Prism 8.3) where p<0.0001. C. Mean pore opening time in the absence of s-Opa1 and at equimolar s-Opa1. Significance of the

difference was confirmed using t-test (Prism 8.3, p<0.0001). D. Representative hemifusion and pore opening fluorescence time series for homotypic

l-Opa1 experiment, in the absence of s-Opa1, top and bottom panels, respectively. Scale bar: 1 mm. E: representative traces of TexasRed (liposome

signal) and calcein (content signal) intensity for homotypic l-Opa1 experiment. F. Representative hemifusion and pore opening fluorescence traces for a

homotypic l-Opa1 experiment in the presence of equimolar s-Opa1. Scale bar: 1 mm. G: Representative trace of TexasRed (liposome signal) and calcein

(content signal) intensity for a homotypic l-Opa1 experiment in the presence of equimolar s-Opa1.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Hemifusion and pore opening.

Figure supplement 1. Additional kinetic traces for hemifusion and pore opening under homotypic l-Opa1 conditions (A), homotypic l-Opa1, and

l-Opa1 + s-Opa1 (1:1) (B) conditions.

Figure supplement 1—source data 1. Additional kinetic traces.
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The results and model presented here help resolve the apparent contradicting nature of the Chan

and Langer cellular observations. As observed by the Langer group, l-Opa1 alone in our system, is

indeed sufficient for full fusion, albeit at very low levels (Anand et al., 2014). The activity of unpro-

cessed Opa1 was not ruled out in previous studies of Chan and colleagues (Mishra et al., 2014). In

contrast to the Langer group’s conclusions, we find that s-Opa1 strongly stimulates l-Opa1-depen-

dent fusion activity, independent of the Yme1L processing reaction (Mishra et al., 2014). Under con-

ditions of s-Opa1 overexpression, Langer et al. observed, a fragmented mitochondrial network. We

do not see any evidence for fission or fusion, for s-Opa1 alone, under our reconstitution conditions.

Instead, our data and model suggest this is due to s-Opa1 disrupting l-Opa1 activity, swinging the

membrane dynamics equilibrium toward fission.

Mitochondrial dysfunction is often associated with Opa1 processing (Duvezin-Caubet et al.,

2006). The activity of the mitochondrial inner-membrane proteases, Yme1L and Oma1, is regulated

by mitochondrial matrix state, thereby coupling organelle health to fusion activity (Anand et al.,

2014; Baker et al., 2014; Duvezin-Caubet et al., 2006; Rainbolt et al., 2016; Ishihara et al.,

Figure 7. Summary model for modes of regulation in Opal-mediated membrane fusion. (A) s-Opa1 alone is capable of tethering bilayers, but

insufficient for close membrane docking and hemifusion. (B) l-Opa1, in a heterotypic arrangement, can tether bilayers, and upon GTP stimulation

promote low levels of lipid mixing, but no full fusion, pore opening or content release. (C) Homotypic l-Opa1-l-Opa1 tethered bilayers can mediate full

content release (i). This activity is greatly stimulated by the presence of s-Opa1, with peak activity at 1:1 s-Opa1:l-Opa1 (ii). Excess levels of s-Opa1

suppress fusion, likely through competing with the l-Opa1-l-Opa1 homotypic tethering interface (iii).
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2006). Basal levels of Opa1 cleavage are observed in healthy cells (Mishra et al., 2014). Upon respi-

ratory chain collapse and membrane depolarization increased protease activity elevates s-Opa1 lev-

els, downregulating fusion (Baker et al., 2011). Our results point to the importance of basal Opa1

processing, and are consistent with observations that both over-processing and under-processing of

l-Opa1 can result in a loss of function (Anand et al., 2014).

Key questions remain in understanding the function of different Opa1 conformational states, and

the nature of a fusogenic Opa1 complex. Recent structural studies show s-Mgm1 self-assembles via

interfaces in the stalk region (Faelber et al., 2019; Zhang et al., 2019). The nucleotide-independent

tethering we observe also implicate stalk region interactions, outside of a GTPase-domain dimer, in

membrane tethering. How does nucleotide hydrolysis influence these interactions during fusion?

Outstanding questions also remain in understanding the cooperative interplay between local mem-

brane environment, s-Opa1, and l-Opa1. Could the cooperative activity of l-Opa1 and s-Opa1 be

mediated by direct protein-protein interactions, local membrane change, or both? Could tethered

states (e.g. homotypic l-Opa1 or heterotypic l-Opa1) bridge bilayers to support membrane spacings

seen in cristae? Answers to these questions, and others, await further mechanistic dissection to

relate protein conformational state, in situ architecture and physiological regulation.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

18:1 (D9-Cis) PC (DOPC) Avanti Polar lipids Cat #: 850375P

Chemical
compound, drug

1’,3’-bis[1,2-dioleoyl-
sn-glycero-3-phospho]-
glycerol (sodium salt)

Avanti Polar lipids Cat #: 710335P

Chemical
compound, drug

1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine-N-
[methoxy(polyethylene
glycol)�2000]
(ammonium salt)

Avanti Polar lipids Cat #: 880130P

Chemical
compound, drug

L-a-lysophosphatidylinositol
(Liver, Bovine)
(sodium salt)

Avanti Polar lipids Cat #: 850091P

Chemical
compound, drug

1-palmitoyl-2-oleoyl-sn-
glycero-3-
phosphoethanolamine

Avanti Polar lipids Cat #: 850757P

Chemical
compound, drug

Texas Red 1,2-
Dihexadecanoyl-sn-Glycero-
3-Phosphoethanolamine,
Triethylammonium Salt
(Texas Red DHPE)

ThermoFisher
Scientific

Cat #: T1395MP

Chemical
compound, drug

1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-
(Cyanine 5)

Avanti polar lipid Cat #: 810335C1mg

Chemical
compound, drug

Calcein Sigma-Aldrich Cat #: C0875;
PubChem Substance
ID: 24892279

Strain Pichia pastoris
SMD1163
(his4,pep, prb1)

Rapoport lab;
Harvard Medical
School.

Recombinant
DNA reagent

pPICZ A-TwinStrep-
lOPA1-H10

GenScript plasmid to transform
and express human WT
l-Opa1 (isoform1).

Recombinant
DNA reagent

pPICZ A-TwinStrep-
sOPA1-H10

GenScript plasmid to transform and
express human
WT s-Opa1 (s1).

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Recombinant
DNA reagent

pPICZ A-TwinStrep-
lOPA1 (G300E)-H10

GenScript plasmid to transform
and express G300E mutant
of l-Opa1 (isoform 1).

Recombinant
DNA reagent

pPICZ A-TwinStrep-
sOPA1 (G300E)-H10

GenScript plasmid to transform and
express G300E mutant
of s-Opa1 (s1).

Antibody Rabbit Anti-Opa1
antibody

NOVUS BIOLOGICALS Cat #: NBP2-59770 Western Blot 2 ug/ml

Antibody Mouse 6x-His Tag
Monoclonal Antibody
(HIS.H8)

ThermoFisher
Scientific

Cat #: MA1-21315 Western Blot 1:2000

Antibody Mouse StrepMAB-Classic,
HRP conjugate
(2-1509-001)

IBA Lifesciences Cat #: 2-1509-001 Western Blot
1:2500/1:32000

Antibody Rabbit IgG HRP
Linked Whole Ab

SIGMA-ALDRICH INC Cat #: GENA934-1ML

Antibody Mouse IgG HRP
Linked Whole Ab

SIGMA-ALDRICH INC Cat #: GENA931-1ML

Chemical
compound, drug

GTP Disodium salt SIGMA-ALDRICH INC Cat #: 10106399001

Commercial
assay, kit

EnzChek Phosphate
Assay Kit

ThermoFisher
Scientific

Cat #: E6646

Chemical
compound, drug

GppCp (Gmppcp),
Guanosine-5’-[(b,g )-
methyleno]triphosphate,
Sodium salt

Jena Bioscience Cat #: NU-402–5

Chemical
compound, drug

n-Dodecyl-b-D-Maltopyranoside Anatrace Cat #: D310 25 GM

Chemical
compound, drug

n-Octyl-a-D-
Glucopyranoside

Anatrace Cat #: O311HA 25 GM

Chemical
compound, drug

Lauryl Maltose
Neopentyl Glycol
(LMNG)

Anatrace Cat #: NG310

Chemical
compound, drug

LMNG-CHS
Pre-made solution

Anatrace Cat #: NG310-CH210

Chemical
compound, drug

Zeocin Invivogen Cat #: ant-zn-1p

Chemical
compound, drug

Ni-NTA Biorad Cat #: 7800812

Chemical
compound, drug

StrepTactin XT IBA Lifesciences Cat #: 2-4026-001

Chemical
compound, drug

Biotin IBA Lifesciences Cat #: 2-1016-005

Chemical
compound, drug

Superose 6 Increase
10/300 GL

GE Cat #: 29091596

Chemical
compound, drug

TEV protease Prepared in lab,
purchased from
GenScript

Cat #: Z03030

Chemical
compound, drug

Benzonase Nuclease Sigma-Aldrich Cat #: E1014

Chemical
compound, drug

Protease
inhibitor cocktail

Roche Cat #: 05056489001

Chemical
compound, drug

Leupeptin Sigma-Aldrich Cat #: L2884

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

Pepstatin A Sigma-Aldrich Cat #: P5318

Chemical
compound, drug

Benzamidine
hydrochloride hydrate

Sigma-Aldrich Cat #: B6506

Chemical
compound, drug

Phenylmethylsulfonyl
fluoride (PMSF)

Sigma-Aldrich Cat #: 10837091001

Chemical
compound, drug

Aprotinin Sigma-Aldrich Cat #: A1153

Chemical
compound, drug

Trypsin inhibitor Sigma-Aldrich Cat #: T9128

Chemical
compound, drug

Bestatin GoldBio Cat #: B-915–100

Chemical
compound, drug

E-64 GoldBio Cat #: E-064–25

Chemical
compound, drug

Phosphoramidon
disodium salt

Sigma-Aldrich Cat #: R7385

Commercial
assay, kit

3–12% Bis-Tris
Protein Gels

ThermoFisher
Scientific

BN1003BOX

Commercial
assay, kit

NativePAGE Running
Buffer Kit

ThermoFisher
Scientific

BN2007

Commercial
assay, kit

NativePAGE 5% G-250
Sample Additive

ThermoFisher
Scientific

BN2004

Commercial
assay, kit

NativePAGE Sample
Buffer (4X)

ThermoFisher
Scientific

BN2003

Software, algorithm Slidebook Intelligent imaging RRID: SCR_014300

Software, algorithm Fiji/ImageJ Fiji SCR_002285

Software, algorithm FCS analysis tool Smith Lab,
University of Akron

Expression and purification
Genes encoding l- (residues 88–960) or s- (residues 195–960) OPA1 (UniProt O60313-1) were codon

optimized for expression in Pichia pastoris and synthesized by GenScript (NJ, USA). The sequences

encode Twin-Strep-tag, HRV 3C site, (G4S)3 linker at the N-terminus and (G4S)3 linker, TEV site,

deca-histidine tag at the C-terminus. The plasmids were transformed into the methanol inducible

SMD1163 strain (gift from Dr. Tom Rapoport, Harvard Medical School) and the clones exhibiting

high Opa1 expression were determined using established protocols. For purification, cells express-

ing l-Opa1 were resuspended in buffer A (50 mM sodium phosphate, 300 mM NaCl, 1 mM 2-mer-

captoethanol, pH 7.5) supplemented with benzonase nuclease and protease inhibitors and lysed

using an Avestin EmulsiFlex-C50 high-pressure homogenizer. The membrane fractions were col-

lected by ultracentrifugation at 235,000 x g for 45 min. at 4˚C. The pellet was resuspended in buffer

A containing 2% DDM, (Anatrace, OH, USA) 0.1 mg/ml 18:1 cardiolipin (Avanti Polar Lipids, AL,

USA) and protease inhibitors and stirred at 4˚C for 1 hr. The suspension was subjected to ultracentri-

fugation at 100,000 x g for 1 hr at 4˚C. The extract containing l-Opa1 was loaded onto a Ni-NTA col-

umn (Biorad, CA, USA), washed with 40 column volumes of buffer B (50 mM sodium phosphate, 350

mM NaCl, 1 mM 2-mercaptoethanol, 1 mM DDM, 0.025 mg/ml 18:1 cardiolipin, pH 7.5) containing

25 mM imidazole and 60 column volumes of buffer B containing 100 mM imidazole. The bound pro-

tein was eluted with buffer B containing 500 mM imidazole, buffer exchanged into buffer C (100 mM

Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM 2-mercaptoethanol, 0.15 mM DDM, 0.025 mg/ml 18:1

cardiolipin, pH 8.0). In all the functional assays, the C-terminal His tag was cleaved by treatment with

TEV protease and passed over the Ni-NTA and Strep-Tactin XT Superflow (IBA Life Sciences, Göttin-

gen, Germany) columns attached in tandem. The Strep-Tactin XT column was detached, washed

with buffer C and eluted with buffer C containing 50 mM biotin. The elution fractions were
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concentrated and subjected to size exclusion chromatography in buffer D (25 mM BIS-TRIS propane,

100 mM NaCl, 1 mM TCEP, 0.025 mg/ml 18:1 cardiolipin, pH 7.5, 0.01% LMNG, 0.001% CHS).

s-OPA1 was purified using a similar approach but with one difference: post lysis, the DDM was

added to the unclarified lysate at 0.5% concentration and stirred for 30 min. – 1 hr. at 4˚C prior to

ultracentrifugation. The supernatant was applied directly to the Ni-NTA column.

GTPase activity assay
The GTPase activity of purified Opa1 was analyzed using EnzCheck Phosphate Assay Kit (Thermo

Fisher, USA) according to the vendor’s protocol. Each condition was performed in triplicate. The

GTPase assay buffers contained 25 mM HEPES, 60 mM NaCl, 100 mM KCl, 0.5 mM MgCl2 with 0.15

mM DDM. 60 mM GTP was added immediately before data collection. To compare the effect of car-

diolipin on GTPase activity, additional 0.5 mg/ml Cardiolipin was dissolved in the reaction buffer and

added to the reaction to a final concentration of 0.02 mg/ml. The absorbance at 340 nm of each

reaction mixture was recorded using SpectraMax i3 plate reader (Molecular Devices) every 30 s.

Experiments were performed in triplicate. Resulting Pi concentration was fitted to a single-phase

exponential-decay, specific activity data were fitted to a Michaelis-Menten equation (GraphPad

Prism 8.1).

Preparation of polymer-tethered lipid bilayers
Lipid reagents, including 1,2-dioleoyl-sn-glycero-3-phosphocholine, (DOPC); 1,2-dioleoyl-sn-glycero-

3-phosphoethanolamine-N-[methoxy(polyethylene glycol)�2000] (DOPE-PEG2000), L-a-phosphati-

dylinositol (Liver PI) and 1’,3’-bis[1,2-dioleoyl-sn-glycero-3-phospho]-glycerol (cardiolipin) were pur-

chased from Avanti Polar Lipids (AL, USA). To fabricate the polymer-tethered lipid bilayers, we

combined Langmuir-Blodgett and Langmuir-Schaefer techniques, using a Langmuir-Blodgett Trough

(KSV-NIMA, NY, USA) (Siegel et al., 2011; Ge et al., 2014). For cardiolipin-free lipid bilayers, a lipid

mixture with DOPC with 5% (mol) DOPE-PEG2000% and 0.2% (mol) Cy5-DSPE at the total concen-

tration of 1 mg/ml was spread on the air water interface in a Langmuir trough. The surface pressure

was kept at 30 mN/m for 30 min before dipping. The first lipid monolayer was transferred to the

glass substrate (25 mm diameter glass cover slide, Fisher Scientific, USA) through Langmuir-Blodgett

dipping, where the dipper was moved up at a speed of 22.5 mm/min. The second leaflet of the

bilayer was assembled through Langmuir-Schaefer transfer after 1 mg/ml of DOPC with 0.2% (mol)

Cy5-PE (Avanti Polar Lipids, AL, USA) was applied to an air-water interface and kept at a surface

pressure of 30 mN/m.

Lipid bilayer with cardiolipin was fabricated in a similar manner, where the bottom leaflet included

7% (mol) Liver PI, 20% (mol) cardiolipin, 20% (mol) DOPE, 5% (mol) DOPE-PEG2000, 0.2% (mol)

Cy5-PE and 47.8% DOPC. The composition of the top leaflet of the bilayer was identical except for

the absence of DOPE-PEG2000. To match the area/molecule at the air-water interface between CL-

free and CL-containing bilayer, the film pressure was kept at 37 mN/m. The final average area per

lipid, which is the key factor affecting lipid lateral mobility, was kept constant at a Alipid = 65 Å2

(Lewis and McElhaney, 2009).

Double bilayers were fabricated according to previous reports (Minner et al., 2013). The first

bilayer containing DOPC with 5% (mol) DSPE-PEG2000-Maleimide (Avanti Polar Lipids, AL, USA)

and 0.2% (mol) Cy5-DOPE in both inner and outer leaflets was made using Langmuir-Blodgett/Lang-

muir-Schaefer methods. The second planar lipid bilayer was formed by fusion of lipid vesicles and

removal of non-fused vesicles. Lipid vesicles were formed by hydrating dried lipid films with DOPC,

0.2% (mol) TexasRed-DHPE and 5% (mol) of linker lipid (DPTE, AL, USA) in a 0.1 mM sucrose/1 mM

CaCl2 solution. The lipid suspension was heated for 1.5 hr at 75˚C, and added to the first bilayer in a

0.1 mM glucose/1 mM CaCl2 solution. After 2 hr of incubation, additional vesicles were removed by

extensive rinsing. The bilayer was then imaged by TIRF microscope.

Reconstitution of l-Opa1 into lipid bilayers
Purified l-Opa1 was first desalted into 25 mM Bis-Tris buffer with 150 mM NaCl containing 1.2 nM

DDM and 0.4 mg/L of cardiolipin to remove extra surfactant during purification. The resulting protein

was added to each bilayer to the total amount of 1.3 � 10�12 mol (protein:lipid 1:10000) together

with a surfactant mixture of 1.2 nM of DDM and 1.1 nM n-Octyl-b-D-Glucopyranoside (OG,
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Anatrace, OH, USA). The protein was incubated for 2 hr before removal of the surfactant. To remove

the surfactant, Bio-Beads SM2 (Bio-Rad, CA, USA) was added to the solution at a final concentration

of 10 mg beads per mL of solution and incubated for 10 min. Buffer with 25 mM Bis-Tris and 150 mM

NaCl was applied to remove the Bio-beads with extensive washing. Successful reconstitution was

determined using fluorescent correlation spectroscopy assay as described in the supplemental

materials.

Preparation of liposomes and proteoliposomes
To prepare calcein (MilliporeSigma, MA, USA) encapsulated liposomes, lipid mixtures (7% (mol) PI,

20% cardiolipin, 20% PE, 0.2% TexasRed-PE, DOPC (52.8%)), were dissolved in chloroform and dried

under argon flow for 25 min. The resulting lipid membrane was mixed in 25 mM Bis-Tris with 150

mM NaCl and 50 mM calcein through vigorous vortexing. Lipid membranes were further hydrated

by incubating the mixtures under 70˚C for 30 min. Large unilamellar vesicles (LUVs) were prepared

by extrusion (15 to 20 times) using a mini-extruder with 200 nm polycarbonate membrane.

Proteoliposomes were prepared by adding purified l-Opa1 in 0.1 mM DDM to prepared lipo-

somes at a protein: lipid of 1:5000 (2.5 mg l-Opa1 for 0.2 mg liposome) and incubated for 2 hr. Sur-

factant was removed by dialysis overnight under 4˚C using a 3.5 KDa dialysis cassette. Excess calcein

was removed using a PD-10 desalting column. The final concentration of liposome was determined

by TexasRed absorbance, measured in a SpectraMax i3 plate reader (Molecular Devices).

To evaluate l-Opa1 reconstitution into proteoliposomes, dye free liposome was prepared with

TexasRed conjugated anti-His tag Antibody (ThermoFisher) by mixing lipids with antibody containing

buffer. TexasRed Labeling efficiency of the antibody was calculated to be 1.05 according to the ven-

dor’s protocol. Antibodies were added at a concentration of 2.6 mg/ml to 0.2 mg/ml liposome. Fol-

lowing hydration through vortexing at room temperature for 15 min, Large unilamellar vesicles were

formed following 20 times extrusion procedure described above. Liposomes labeled with 0.02%

(mol) TexasRed-PE were also prepared as a standard for quantifying reconstitution rate.

For the co-flotation analysis, 200 ml of 20 mg/ml TexasRed-DHPE (0.2% (mol)) labeled proteolipo-

some (reconstitution ratio, protein:lipid 1:5000) was loaded to sucrose gradient (with steps of 0%,

15%, 30%, 60%). The volume of each fraction was 800 ml. Sucrose solutions were prepared in Bis-Tris

buffer (25 mM Bis-Tris, 150 mM NaCl, pH 7.4). Samples were then centrifuged using a high-speed

centrifuge equipped with SW 55i rotor (Beckmann Coulter, CA, USA) for 2.5 hr at a speed of 30000

xg. For high salt and carbonate treatment, the same amount of proteoliposome was redistributed in

Bis-Tris buffer with 500 mM NaCl (pH 7.4) and buffer containing 50 mM Na2CO3 and 50 mM NaCl

(pH 8.2), respectively. The resulting suspension was loaded in gradient for separation. After centrifu-

gation, all fractions were collected and concentrated to 40 ml. Fractions were detected by western

blot and then analyzed by ImageJ. The presence of liposomes was detected by absorbance at 590

nm using a DeNovix FX photometer (DeNovix, Inc).

Fluorescent correlation spectroscopy
Fluorescence correlation spectroscopy (FCS) was performed using a home-built PIE-FCCS system

(Huang et al., 2016; Comar et al., 2014). Two pulsed laser beams with wavelengths of 488 nm (9.7

MHz, five ps) and 561 nm (9.7 MHz, five ps) were filtered out from a supercontinuum white light fiber

laser (SuperK NKT Photonics, Birkerod, Denmark) and used as excitation beams. The laser beams

were sent through a 100X TIRF objective (NA 1.47, oil, Nikon Corp., Tokyo, Japan) to excite the

samples in solution or on bilayer. The emission photons were guided through a common 50 mm

diameter pinhole. The light was spectrally separated by a 560 nm high-pass filter (AC254-100-A-ML,

Thorlabs), further filtered by respective bandpass filters (green, 520/44 nm [FF01-520/44-25]; red,

612/69 nm [FF01-621/69-25], Semrock), and finally reach two single photon avalanche diode (SPAD)

detectors (Micro Photon Devices). The synchronized photon data were collected using a time corre-

lated single photon counting (TCSPC) module (PicoHarp 300, PicoQuant, Berlin, Germany).

The collected photon data were transformed into correlation functions with a home written MAT-

LAB code. The correlation functions were fitted using two-dimensional (Hoppins et al., 2007) or

three-dimensional (Cipolat et al., 2006) Brownian diffusion model for bilayer or solution samples

respectively.
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Where N is the average number of particles in the system, ! is the waist of the excitation beam,

and tD is the dwell time that can be used to calculate the diffusion coefficient (D) of the particles

(Huang et al., 2016).

tD ¼
!
2

4D

Measurements were made on buffers with evenly distributed liposomes, proteoliposomes and

antibodies in a glass-bottom 96 well plate at room temperature. The plates were pre-coated with

lipid bilayer fabricated from 100 nm DOPC liposomes. For each solution, data were collected in five

successive 15 s increments.

For characterization of l-Opa1 reconstitution into planar bilayers, an anti-Opa1 C-terminal anti-

body (Novus Biologicals, CO, USA) was used. The antibody was labeled by TexasRed (Texas Red-X

Protein Labeling Kit, ThermoFisher, CA, USA). Labeling efficiency of the antibody was determined as

1.52 TexasRed/antibody, as determined by NanoDrop (ThermoFisher, CA, USA). The labeled anti-

body was added to l-Opa1 in the supported bilayer at twice the total introduced Opa1 concentra-

tion. Excess antibody was removed by extensive rinsing.

To estimate reconstitution efficiency, 0.002% (mol) l-Opa1 was added to the bilayer. In a separate

experiment 0.002% (mol) TexasRed-PE was introduced to the bilayer. The reconstitution efficiency

was calculated from the anti-l-Opa1 antibody TexasRed fluorophore density divided by the Tex-

asRed-PE fluorphore density, normalized by the antibody labeling efficiency (1.5 dye molecules/

antibody).

Total Internal Reflection Fluorescent Microscopy (TIRF)
Liposome docking and lipid exchange events were imaged using a Vector TIRF system (Intelligent

Imaging Innovations, Inc, Denver, CO, USA) equipped with a W-view Gemini system (Hamamatsu

photonics, Bridgewater, NJ). TIRF images were acquired using a 100X oil immersion objective (Ziess,

N.A 1.4). A 543 nm laser was used for the analysis of TexasRed-PE embedded liposomes and pro-

teoliposomes, while a 633 nm laser was applied for the analysis of Cy5-PE embedded in the planar

lipid bilayer. Fluorescent emission was simultaneously observed through a 609-emission filter with a

band width of 40 nm and a 698-emission filter with a band width of 70 nm. The microscope system

was equipped with a Prime 95B scientific CMOS camera (Photometrics), maintained at �10˚C.

Images were taken at room temperature, before adding any liposome or proteoliposome, after 15

mins of addition, and after 30 mins of adding GTP (1 mM) and MgCl2 (1 mM). Each data point was

acquired from five different bilayers, each bilayer data contains 5–10 particles on average.

Dwell times for hemifused particles were recorded from the moment of GTP addition for pre-

tethered particles, until the time of half-maximal TexasRed signal decay. Full fusion events were

recorded by monitoring the calcein channel at particle locations identified through the TexasRed sig-

nal. Particle identification and localization used both uTrack (Jaqaman et al., 2008) and Slidebook

(Intelligent Imaging Innovations, Inc, Denver, CO) built-in algorithms. To calibrate the point spread

function 100 nm and 50 nm fluorescent particles (ThermoFisher Scientific) were used. 2D Gaussian

detection was applied in both cases. 2-way ANOVA tests were done using GraphPad Prism. Intensity

and distribution of the particles were analyzed using ImageJ.

For analysis of protein reconstitution in proteoliposome (stoichiometry), a TIRF microscope modi-

fied from an inverted microscope (Nikon Eclipse Ti, Nikon Instruments) was used. A 561 nm diode

laser (OBIS, Coherent Inc, Santa Clara, USA) was applied at TIRF angle through a 100X TIRF objec-

tive (NA 1.47, oil, Nikon) and the fluorescence signals were collected by an EMCCD camera (Evolve

512, Photometrics).
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Nanosight NTA analysis
A NTA300 Nanosight instrument was used to evaluate size distribution of liposome and proteolipo-

some under different conditions. The equipment was equipped with a 405 nm laser and a CMOS

camera. 1 ml of 0.1 mg/ml sample was measured, to reach the recommended particle number of

1 � 108 particles/mL (corresponding to the dilution factor of 1:100,000). Image acquisition was con-

ducted for 40 s for each acquisition and repeated for 10 times for every injection. Three parallel sam-

ples were examined for the determination of size distribution. Under each run, the camera level was

set to 12 and the detection threshold was set at 3.

Blue native polyacrylamide gel electrophoresis (BN-PAGE)
Bis-Tris gradient gels (3–12%) were purchased from ThermoFisher Scientific (Cat. No. BN1003BOX)

and BN-PAGE was performed according to manufacturer’s instructions. Gel samples (10 ml) were

prepared by mixing indicated quantity of Opa1 with sample buffer containing 0.25% Coomassie

G-250 and 1 mM DDM. For experiments involving l-Opa1 and s-Opa1 mixtures, the samples were

incubated on ice for 10 min before loading. The cathode buffer contained 1 mM DDM and electro-

phoresis was performed at 4˚C with an ice jacket surrounding the apparatus.
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