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Abstract
There has been immense progress in our understanding of the factors driving
cell migration in both two-dimensional and three-dimensional
microenvironments over the years. However, it is becoming increasingly
evident that even though most cells share many of the same signaling
molecules, they rarely respond in the same way to migration cues. To add to
the complexity, cells are generally exposed to multiple cues simultaneously, in
the form of growth factors and/or physical cues from the matrix. Understanding
the mechanisms that modulate the intracellular signals triggered by multiple
cues remains a challenge. Here, we will focus on the molecular mechanism
involved in modulating cell migration, with a specific focus on how cell
contractility can mediate the crosstalk between signaling initiated at cell-matrix
adhesions and growth factor receptors.
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Introduction
Cell migration is critical to numerous physiological and pathologi-
cal conditions, including development, wound healing, and tumor 
cell metastasis. Cell migration within an organism is seldom solely 
random but rather is in response to a directed set of signaling cues. 
Even during diseases such as cancer, migrating cells appear to 
follow guiding signals1,2. The cell microenvironment can provide 
and support a multitude of different kinds of cues that trigger and 
direct cell migration2–5. In turn, cell migration requires complex, 
regulating intracellular machinery to accurately respond to the cues 
and properly interact with the extracellular matrix (ECM). This is 
highlighted by the fact that not all cells possess the same migrating 
potential nor do they respond to a given cue in the same way6–9.

The ability of adherent cells to migrate is dependent primarily 
on their ability to dynamically regulate integrin-mediated 
cell-ECM linkages at specialized focal adhesions (FAs) and  
hemidesmosome membrane domains10–12. The mechanisms and 
dynamics behind FA formation and maturation are increasingly  
well documented in both two-dimensional (2D) and three- 
dimensional (3D) matrices12–18. Given our present knowledge, these 
mechanisms appear to be shared by most adherent cells.

Directed cell migration requires proper inputs. These migra-
tion cues include biochemical cues present in the form of soluble 
growth factors and hormones, direct physical stimulation such as 
shear flow or electrical fields, and the cues arising from the physi-
cal and architectural organization of the ECM19. However, a current 
limitation in our understanding of the true impact of these cues lies 
in the fact that they are largely studied independently from each 
other, and most findings are generally cell type specific. There have 
been some efforts to combine at least two different migration cues  
(20–22, and reviewed here19). Additionally, it is not clear why, in a 
given cell population, cells can exhibit different migration behav-
iors despite using the same machinery and being subjected to the 
same pro-migration cues.

Here, in an attempt to explain the migration differences that exist 
between cells exposed to the same cues, we will explore the major 
molecular features that finely regulate cell migration. We will first 
present an overview of the major factors and cues, both extracellu-
lar and intracellular, involved in controlling cell migration. We will 
then focus on mechanisms that can finely tune cell migration for a 
given set of migration cues and discuss how cell contractility may 
play a central role in the integration of intracellular signals.

Determinants of cell migration
Given a specific set of extracellular cues, cell migration is typically 
a function of the nature (quantity, presentation, and so on) of those 
cues. Notably, growth factor stimulation can trigger cell migration, 
and the presence of concentration gradients can enable directed 
migration through chemotaxis19,23. Chemotaxis is a major driver of 
cell movement and is instrumental during development and for ang-
iogenesis in tumors4,23, for example. Since not all cell types respond 
to the same set of given cues, genetic differences between different 
cell types may readily explain why some cells have increased affin-
ity for specific chemical cues. For instance, differential expression 
of growth factor receptor families, including their various isoforms, 

can prime cells to respond to a specific subset of growth factors. 
An example is the vascular endothelial growth factor receptor 
(VEGFR) family, which is normally expressed in cells of vascular 
origin and where both VEGFR1 and VEGFR2 are potent inducers 
of endothelial cell migration24. Importantly, however, differential 
expression of growth factor receptors does not always correlate with 
cell migration during experimental observation7,8. A striking exam-
ple is when comparing the migration induced by different growth 
factors of highly invasive MDA-MB-231 and the weakly meta-
static MCF7 cell lines. For instance, stimulation with the insulin- 
like growth factor 1 (IGF-1) triggers more potent migration in 
MDA-MB-231 cells compared with MCF7 cells, and the effects are 
reversed when epidermal growth factor is used instead7. Estrogen 
receptor-positive tumor cells, such as MCF7 cells, are characterized 
by overexpression of the IGF-1 receptor25, whereas MDA-MB-231 
cells are known to overexpress EGFR26. Moreover, although the 
average response of a cell population to growth factor stimula-
tion provides critical information when comparing different cues 
or cell types, it does not explain the variability between individual 
cells within a cell population. In fact, not all cells within a popula-
tion will move efficiently toward the source of a gradient; some 
cells will not move at all or will go in the opposite direction27,28.  
Therefore, differences in the expression patterns of growth factor 
receptors are not necessarily sufficient to explain the differences in 
cell migration observed experimentally.

In comparison with soluble growth factors, migration cues arising 
from the ECM have traditionally been more difficult to study given 
the inherent engineering challenge of properly recreating a physi-
ologically relevant ECM scaffold29,30. Nevertheless, several groups, 
including our own, have over the years made several breakthroughs 
in understanding how the physical properties of the ECM can influ-
ence cell migration and provide migration cues3,17,31,32. Some of the 
early seminal work in this area has been instrumental in showing 
that cell migration is guided along matrix stiffness heterogenei-
ties and gradients3,33. Importantly, recent advances in our ability to 
control the ECM architecture and its mechanical properties have 
enabled increased scrutiny of cell migration, especially in the 3D  
microenvironments34–36. Notably, work within the field has 
addressed how the 3D architecture of the ECM, including the pres-
ence of microtracks or steep ECM interfaces, can impede, facilitate, 
or provide contact guidance for cell migration17,37–40. The various 
kinds of physical features present in the ECM and their impact on 
cell migration have recently been reviewed5,41. Interestingly, the 
presence of local heterogeneities in the microarchitecture of the 
ECM could help explain in part the migration difference between 
individual cells within a cell population.

Working in concert with the physical ECM and microenviron-
ment, adhesion molecules are the central regulators of cell migra-
tion since they are the linkage between the cell and the supporting 
ECM12. Interestingly, similar observations have been made regard-
ing the expression of cell adhesion proteins, such as the integrin 
receptors, as with growth factor receptors. That is, integrin expres-
sion is not always correlated with migration response and exhib-
its cell-type-dependent variations42. Integrins are αβ heterodimers 
and their ligand binding specificity is determined by which integrin  
subtypes assemble to form a pair (for example, α5β1, αvβ3, and 
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α4β1 for fibronectin; α1β1 and α2β1 for collagen; and α2β1, 
α3β1, and α6β4 for laminins)12. Given their large diversity (18α 
and 8β in 24 different possible pairs)43, it is easy to assume that 
they may play a vital role in differentially regulating cells’ migra-
tion ability. Indeed, in some cases, differential expression of 
integrin subtypes, such as β3, correlates with altered cell migration  
potential44,45. However, this correlation does not hold universally 
true. For instance, different tumor cell lines can have similar lev-
els of integrin expression and different migration potential46–48. 
There are also examples where cell migration can be regulated by  
controlling the activation state of integrins or the integrin-mediated 
downstream signaling13,49–51. The signaling initiated by integrins 
controls several key processes required for migration, including FA 
turnover and control of actin dynamics52–55. Notably, the integrin 
β1 plays a central role in regulating FA dynamics through the  
activation of the Src/FA kinase (FAK) pair at FAs, which in turn  
regulates Rac1 and RhoA at the cell front55–57. Interestingly, the 
mechanical properties of the cellular environment regulate an 
integrin β1-mediated activation of specific FA proteins, including 
FAK13,15,58–60. Increasing the stiffness of either 2D or 3D matrices 
results in higher FAK phosphorylation levels as well as larger FAs 
in several cell types58,60. In addition, these signaling pathways are 
regulated by both feedback loops and crosstalk with other trans-
membrane receptors61–64.

Therefore, when these results are considered together, migration 
differences between cells cannot be explained solely by differential 
expression of the receptors associated with a given cue. In fact, one 
explanation for why cells display a wide range of migration behav-
iors may reside in their ability to integrate the different intracellular 
signals triggered by the available migration cues they experience.  
In this context, it becomes crucial to better examine the mecha-
nisms that can modulate the signaling triggered by migration cues.

Integration of intracellular signals through cell 
contractility
The ability of cells to integrate cues from multiple cues has been 
studied for many years, often with an emphasis on transmem-
brane receptor interactions and crosstalk in specific cell membrane 
domains61,62,65,66. Among the best known examples of this are the 
interactions and crosstalk between integrins and various growth 
factor receptors61–64. EGFR and VEGFR, for example, point to 
an integrin-mediated role in efficient activation of these recep-
tors61,63,67–69. However, an emerging concept is that integrin-growth 
factor receptor crosstalk is facilitated by cell contractility68,70,71. 
The consequences of this contractility-mediated crosstalk have 
important ramifications for the ability of cells to integrate migra-
tion cues like soluble growth factors and ECM stiffness. It is estab-
lished that cell contractility is modulated by ECM stiffness68,72. For 
example, increasing ECM stiffness leads to both enhanced smooth 
muscle cell response to platelet-derived growth factor70,71 (see 
example in Figure 1A) and epithelial cell response to EGF68. Inter-
estingly, the interplay between ECM mechanical cues and growth 
factor signaling appears to be mediated in part by cell contractility. 
When cell contractility is inhibited through inhibition of the Rho-
ROCK-MLC axis, cell response to growth factors is suppressed. 
Moreover, cells within a population tend to display a wide range of 
measureable contractility for a given ECM stiffness73,74, which in 
turn could influence how sensitive each individual cell is to growth 
factor stimulation. A similar explanation could apply to various cell 
types that show different contractility levels68,74,75.

In addition to being found in the soluble microenvironment, 
growth factors can be found bound to the matrix and are in fact 
not always readily accessible65,76,77. Transforming growth fac-
tor-beta (TGF-β) is an interesting example. It is normally found 
encapsulated within a latent TGF-β1 complex bound to the 

Figure 1. Matrix stiffness-mediated regulation of growth factor activation as a modulator of cell migration. (A) Matrix stiffness regulates 
the formation of actin and cortactin-rich circular dorsal ruffle structures downstream of platelet-derived growth factor (PDGF) receptor 
activation in response to PDGF stimulation in smooth muscle cells (low stiffness: 1 kPa; high stiffness: 30 kPa; see 70 for details). Scale bar 
is 20 μm. (B) Schematics of proposed signaling crosstalk between focal adhesion (FA) and growth factor receptors depicting how increased 
matrix stiffness could potentiate growth factor-induced signaling, resulting in increased cell migration.
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ECM78. This complex contains an RGD sequence that ena-
bles integrin binding, and cells capable of generating sufficient 
force will ultimately be more able to access active TGF-β179.  
Moreover, the underlying ECM needs to be sufficiently stiff to 
support the force required to unwind the latent TGF-β1 complex, 
which would otherwise deform, dissipating the force without 
releasing the stored TGF-β79. Overall, these results suggest that cell 
migratory response to growth factor cues may in fact be ultimately 
linked to the interplay between ECM stiffness and the contractile 
state of the cell (Figure 1B).

An interesting prediction arising from the studies described above 
is that cells on stiffer substrates could exhibit increased migratory 
response in the presence of a growth factor gradient in a process 
that could be cell type specific. There has been some work using 
numerical modeling of the integration of migration cues to predict 
migration response; however, these models contain the assump-
tion that the cues are purely additive from the perspective of 
the cell80. However, they do not address how each of these cues 
could synergize or interfere with one another since their work is 
based on experimental data where each of these cues is studied in 
isolation81,82.

Indeed, one of the challenges in this work is to assess whether cues 
are additive or whether the signaling triggered by one cue alters 
the response to the other cues. Notably, different migration cues 
can either directly compete or cooperate with each other20–22,83. 
Work done to elucidate the link between the ECM and growth 
factor stimulation can provide some mechanistic insight into how  
different cues may lead to completely different biological out-
comes. For example, there is a critical ECM stiffness at which  
TGF-β1 stimulation switches from being pro-apoptotic to pro- 
epithelial to mesenchymal transition84. ECM stiffness can also pro-
mote an EGF-dependent change toward a “malignant” phenotype 
in mammary epithelial cells58,68. Interestingly, the phenotypical 
changes observed in mammary cells in response to ECM stiffness 
and EGF were dependent on FAK and ERK co-activation, whereas 
altering cell contractility state overrides the system58,68. In this con-
text, there are likely regulating signaling components, particularly 
those modulating both the cell contractile state and cell interac-
tions with the ECM, that ultimately play a central role to integrate  
various extracellular cues.

Tuning cell migration by modulating focal adhesion 
signaling nodes
With regard to the signaling that controls cell migration and con-
tractility, most of the work that has been performed has focused on 
key components that are ubiquitously expressed in almost all cells. 
These key components are usually master regulators that act as an 
on/off switch such as the Rho GTPases as well as FAK, PI3K, and 
Src family kinases57,85–90. Importantly, though, both proper activa-
tion and localization of these proteins are instrumental in modulat-
ing cell migration13,85,91–93. One way to regulate the FAK/Src sig-
naling initiated at FAs is through feedback loops64. For example, 
members of the protein kinase C (PKC) family can be activated 
upon cell adhesion to fibronectin along with FAK; in turn, increased 
PKC activity leads to increased activation of α5β1 integrins and  

cross-activation of the α4β1 integrins, essentially leading to more 
FAK activation in a feed-forward loop64. It is interesting to note 
that such PKC-mediated integrin regulation exists in several other 
cell types. Notably, PKCε positively regulates integrin-dependent 
cell migration in gliomas cells, whereas PKCα plays an opposite 
role94. Study of renal carcinoma cell migration suggests instead a 
PKCδ-dependent mediation95. In addition, PKCs are often found 
downstream of growth factor receptor activation96–99. Notably, these 
studies also suggest that PKC isoform-mediated cell migration regu-
lation is cell type dependent, even though PKC isoforms are roughly 
expressed at comparable levels in most tissues (GeneAtlas U133A, 
gcrma100,101). Therefore, there must exist cellular mechanisms to 
enable fine-tuning of cell migration by the various PKC isoforms.

Indeed, the ability of PKCs to modulate cell adhesion and migra-
tion depends on their association with intermediary proteins. For 
example, the receptor for activated C-kinase (RACK1) enables the 
interaction of PKCε with β1 integrin to promote glioma cell adhe-
sion and migration94, and PKCs can also modulate Src activity via 
RACK1102. In addition, PKC-mediated modulation of cell migra-
tion can be further tuned by the intermediate filament (IF) cytoskel-
eton expression profile of cells13,103. Notably, PKCε mediates 
integrin recycling and is required for efficient migration when cells 
express vimentin103, an IF found in cells of mesenchymal origin and 
highly aggressive carcinomas104. Alternatively, the expression of 
the keratin 8/18 IF pair, which is a hallmark of all simple epithe-
lia, enables more efficient PKCδ activation of FAK, which in turn  
promotes more directed cell migration13. Of note, the absence of the 
keratin 8/18 IF appears to alter the formation of the PKC/RACK1 
complex, where PKCδ is replaced by PKCα13. Most interestingly, 
recent work has shown that Rac1-mediated phosphorylation of the 
myosin heavy chain IIa at the front of the cell and in FAs is PKC  
dependent105. It also appears that this specific myosin heavy 
chain phosphorylation mechanism helps to regulate both cell 
migration and mechanosensing105. Moreover, we and others 
have recently shown that IFs are important modulators of cell  
contractility73,106–108. Therefore, small differences in FA signaling 
node organization might be sufficient to alter the crosstalk between 
integrins and growth factor receptors and explain the diversity of 
cell-type-specific response to migration cues (Figure 2). Overall, 
understanding how these scaffolding components can modulate 
major signaling pathways may provide key insights into cell- 
type-specific response differences to migration cues.

A role for epigenetics and microRNA regulation in 
fine-tuning cell migration
An emerging and exciting area in cell migration research is how 
epigenetics may tie into the regulation of cell migration and the 
integration of different migration cues. Protein expression control 
through alternative splicing appears to be one such mechanism. 
Alternative splicing is a primary source of protein diversity, where 
one gene can generate multiple different versions of a protein109,110. 
Several proteins that possess alternatively spliced variants are linked 
to cell migration, including signaling proteins (such as β1 integrin, 
Rho GTPase, FAK, and PKCs)111–113, scaffolding and structural 
proteins (plectin, cortactin, and p130CAS)114–116, growth factors 
(TGF-β and VEGF)117,118, and ECM components (fibronectin)119. 
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The alternate versions of these proteins can have distinct functions 
compared with their canonical counterpart, resulting in altered cell 
behaviors, including migration115,117. Therefore, alternative splic-
ing could play an important role in modulating migration cues and  
signal integration by altering signaling nodes and migration effec-
tors. Interestingly, our recent work indicates that the interplay 
between matrix stiffness and cell contractility regulates alterna-
tive splicing of proteins produced by the cell120. The implications 
of these findings with regard to signal integration of multiple cues 
are potentially significant since they suggest that cells have a self- 
tuning mechanism. Another highly relevant epigenetic mechanism  
worth exploring is the involvement of microRNA (miRNA). 
Indeed, recent work has linked the expression of several miRNAs 
to the ability of cells to integrate ECM mechanical cues as well as 
regulate cell migration121,122. Both of these aspects remain largely 
understudied and underappreciated.

Designing experimental approaches to resolve signal 
integration to multiple cues
Our ability to move forward in the study of systems that combine 
multiple cues relies on our ability to engineer devices that can 
dynamically combine these cues in a controlled manner so that the 
cell response to these cues can be analyzed. A number of groups 
have designed such devices, where they recapitulate some of the  
characteristics of the ECM or the cellular microenvironment, the 
presence of chemical cues, or even cell-cell interactions27,83,123. 
These engineered approaches range from simple tuning of ECM 
mechanical features70,84 to microfluidic devices that allow for the 
integration of multiple cues27,83. However, the numerous crosstalk 
and compensatory mechanisms that are likely triggered by multi-
ple simultaneous input cues make it difficult to dissect the relevant 
signal transduction pathways, especially for signaling proteins 
that are involved in multiple pathways. Even stimulation from a 

Figure 2. Focal adhesion (FA) signaling nodes and their potential role in modulating response to growth factors and subsequent 
cell migration. Schematics showing how the expression of different forms of mechanoregulating and scaffolding proteins in three cell types 
can influence intracellular signal integration by altering signaling nodes. Differential expression of these factors can alter the contractile state 
of the cell or directly enhance the feedback between growth factor receptors and FAs, resulting in a modulated response to growth factor 
stimulation that could regulate migration. These mechanoregulators can be structural and scaffolding proteins, such as different intermediate 
filaments (IFs), or signaling kinases, such as protein kinase C, or both. ECM, extracellular matrix.
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single input can activate numerous different signaling pathways 
that are dependent on protein expression levels or the presence of 
point mutations13,96,124. Therefore, a more integrative approach to 
study cellular systems in the presence of multiples migration cues 
should include temporal and spatial analysis of the multiple sig-
naling nodes in cells as well as cell contractility and downstream 
migratory events. Importantly, determining how and when different 
compensation mechanisms get activated when cells are subjected 
to multiple cues is critical to understanding intervention points for 
drug therapies.

Interestingly, it is possible to dissect dynamic cellular responses to 
different perturbations by using a time series modeling approach125. 
This particular modeling approach yields information on how and 
when cells can switch between different phenotypic states. Such 
an approach permits multiple inputs and output states, allowing a 
more holistic characterization of how cells integrate signals from 
multiple cues. A clustering approach can also be used to analyze 
signaling networks in cells subjected to different stimuli to help 
distinguish between shared pathways between receptors and reveal 
the response of specific classes of receptors to soluble factors126. In 
addition, modeling approaches of signaling networks in the form 
of regulatory circuits can account for coupling and compensatory 
mechanisms127. For example, modeling of regulatory circuits can 
describe the contribution of miRNAs and transcription factors in the 
coupling of signaling networks and can predict the migration mode 
adopted by tumor cells128. Therefore, these modeling approaches 
are powerful tools to help identify compensatory mechanisms 
occurring in experimental systems and adequately describe the 
different possible states within a cell population.

Summary
Although observations described in the literature can help explain 
how cell migration can be more finely tuned depending on the 
cellular and microenvironmental context, they do not yet offer a  
complete picture of how cells integrate various migration cues. 
What we do know about the mechanisms that govern cell migra-
tion only serves to underscore the complexity of the system,  
particularly in cases where there is more than one input signal. 
By increasing our comprehension of how cells can differentially 
integrate multiple signals to finely tune cell behavior, we may be 
able to gain greater control over complex cellular systems and 
address the discrepancies between what we know of cell migra-
tion and the actual experimental observations across differ-
ent cell populations. Ultimately, this knowledge will facilitate 
the design and improvement of bioengineered scaffolds and aid 
in the development of more personalized and disease-specific  
treatments.
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