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ABSTRACT
No proven remedy is identified for COVID-19 yet. SARS-CoV-2, the viral agent, is recognized by some 
endosomal and cytosolic receptors following cell entry, entailing innate and adaptive immunity stimula-
tion, notably through interferon induction. Impairment in immunity activation in some patients, mostly 
elderlies, leads to high mortalities; thus, promoting immune responses may help. BCG vaccine is under 
investigation to prevent COVID-19 due to its non-specific effects on the immune system. However, other 
complementary immune-induction methods at early stages of the disease may be needed. Here, the 
potentially preventive immunologic effects of BCG and influenza vaccination are compared with the 
immune response defects caused by aging and COVID-19. BCG co-administration with interferon-α/-β, or 
influenza vaccine is suggested to overcome its shortcomings in interferon signaling against COVID-19. 
However, further studies are highly recommended to assess the outcomes of such interventions con-
sidering their probable adverse effects especially augmented innate immune responses and overproduc-
tion of proinflammatory mediators.
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1. Introduction

The novel coronavirus disease 2019 (COVID-19) was 
announced as a pandemic by the World Health Organization 
(WHO) shortly after its first report in Dec. 2019 in Wuhan city, 
China.1 While worldwide enormous efforts are ongoing to find 
preventive and/or therapeutic approaches for COVID-19, its 
huge burden on countries and societies2 has prompted politi-
cians to look for solutions as well. Donald Trump asked a while 
ago whether the flu vaccine combats the novel coronavirus, 
which was answered with a direct NO! Although this naïve 
question was raised because of a lack of knowledge about 
vaccination basics, it seems that the answer to his question 
could probably be yes!

Recently, it was suggested that the booster BCG (Bacillus 
Calmette–Guérin) vaccine, could have beneficial effects on 
preventing COVID-19 infection3 and reducing the incidence 
and severity of COVID-19 in previously BCG-vaccinated 
groups through its non-specific effects (NSEs). It was also 
proposed that the differences in COVID-19 severity amongst 
countries could be, to some extent, explained by various 
national policies on BCG children vaccination.4,5 However, 
this claim was questioned by some other studies.6,7

In this context, an open-label two-group phase III rando-
mized controlled trial was first begun in up to 4170 healthcare 
workers in Australia. It is currently ongoing and aims to reveal 
the possible preventive effects of BCG vaccination against 

COVID-19.8 Presently, one observational and seven interven-
tional clinical trials are also being conducted on this subject, 
which are briefed in Table 1.9

The observed more efficient and improved immune 
responses against reinfections in the plants and invertebrate 
that lack adaptive immunity, and surprisingly in some mam-
mals, encouraged researchers to investigate whether this pro-
cess could also occur in humans.10 Thus, several 
epidemiological studies and clinical trials were performed to 
explore the post-effects of vaccination with live-attenuated 
vaccines (LAVs), which mimic a natural infection. Though, 
the capability of LAVs in generating a sort of cross- 
protection against some other non-related pathogens was 
established in several studies.11 In this regard, the NSEs of 
several vaccines (BCG, DTP, and measles vaccines) have been 
investigated.12 One primary mechanism behind this phenom-
enon was found to be the induction of long-lasting epigenetic 
changes in the innate immune cells, a process called “trained 
immunity”.11 Besides, heterologous lymphocyte responses may 
partly account for some NSEs of vaccines.13 On this point, 
antigen cross-reactivity and bystander activation of unrelated 
T and B cells are considered as possible mechanisms. The 
bystander lymphocytes could exert protective roles against 
unrelated heterologous pathogens through antigen-specific 
bystander responses or antigen-non-specific innate mechan-
isms, such as interferon (IFN)-γ production, which activates 
macrophages.11,13
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The higher mortality rates in elderlies is a main concern in 
the COVID-19 pandemic, which is probably related to immu-
nosenescence, or age-associated deterioration of immune 
functionality,14 leading to suboptimal immune responses. In 
view of this, boosting the immune responses against SARS- 
CoV-2 could potentially reduce the disease incidence and 
severity in this population as well.

Herein, a model on the immune responses against COVID- 
19 is proposed first. Then, the Yin and Yang of the NSEs of 
LAVs are described with a focus on BCG and influenza vac-
cines. Finally, the probable supportive roles of these vaccines 
on the protection against COVID-19 would be discussed.

2. Interaction of SARS-CoV-2 with the immune 
system

A brief overview of immune responses to SARS-CoV-2 is 
represented in Figure 1. SARS-CoV-2, similar to SARS-CoV, 
enters the cells through angiotensin-converting enzyme II 
(ACE2) receptor. It also uses transmembrane protease serine 
2 (TMPRSS2) receptor to prime its spike (S) protein in target 
cells.15,16 TMPRSS2 plays a role in influenza virus pathogeni-
city as well by cleaving hemagglutinin.17 Other yet-unknown 
cellular entry modes might also be involved in SARS-CoV-2 
infection, especially considering that only minimal percentages 
of leukocytes express ACE2.18–20

Host cells possibly recognize SARS-CoV-2, same as other 
RNA viruses, first by endosomal pattern recognition receptors, 
such as Toll-like receptor (TLR)3 and TLR7, as well as cytosolic 

RNA receptors, such as retinoic acid-inducible gene I (RIG-I) 
and melanoma differentiation-associated protein (MDA) 5. 
IFN-α or IFN-β (hereafter referred as IFN-I) and other proin-
flammatory mediators are induced following recognition of the 
virus,21 playing a crucial role in controlling CoV infections. 
Type-I IFNs could enhance the function of immune cells, 
including antigen-presenting cells (APCs), natural killer (NK) 
cells, T cells, and B cells.22,23

Lung resident respiratory dendritic cells (DCs) seem to 
process the acquired viral particles or antigens from the SARS- 
CoV-2-infected cells, then present it to the naïve circulating 
T cells in draining lymph nodes.21,24 The activated T cells, 
migrate to the infection site and secrete effector cytokines 
such as IFN-γ, which directly inhibits viral infection. Th1 
type immune response seems to play a crucial role in the 
effective control of SARS-CoV infection. Higher rates of mor-
tality was detected in patients with more serum Th2 
cytokines.21 The exposure of naïve T cells to IFN-I, IFN-γ, 
and IL-12 is vital for Th1 cell polarization.25 Since neutralizing 
antibodies (NAbs) limit the viral infections, delayed and weak 
antibody production was also associated with poor clinical 
outcome in SARS.20 Moreover, the timing of IFN-I induction 
also seems crucial for the fine-tuning of B cell activation and 
consequent NAb production.22

3. Dysregulation of immune responses in COVID-19

Coronaviruses can circumvent the immune responses, particu-
larly IFN-mediated antiviral responses, and replicate to reach 
a high peak load.26 Similar to SARS and MERS, substantial 
dysregulations of immunological responses occur in SARS- 
CoV-2 infection.20 Significant T cell lymphopenia, in particular 
CD4 + T cells, an elevated exhaustion level of T cells with 
reduced functionality, lower percentages of monocytes, eosi-
nophils, and basophils, as well as higher neutrophil- 
lymphocyte-ratio (NLR), were observed in COVID-19 patients 
in different studies.27–29 The elevated levels of IL-1B, IFN-γ, 
IFN-γ-inducible protein 10 kDa (CXCL10; IP10), monocyte 
chemoattractant protein (MCP)1, as well as IL-4 and IL-10, 
which are related to Th1 and Th2 responses, respectively, were 
also identified.

The enhanced proinflammatory cytokines, to some extent, 
could contribute to the increased infiltration and activation of 
leukocytes in the lungs and subsequent lethal pneumonia.30,31 

Additionally, the elevated levels of IL-6 is considered as an 
early biomarker of the aggravation of COVID-19 clinical 
course, which is associated with cytokine storm.32

Fu et al.20 categorized SARS-CoV-2-mediated inflammatory 
responses into two different stages. The primary response, 
which occurs due to viral replication and consequently mounts 
the host antiviral responses and viral-induced ACE2 down-
regulation and shedding. The primary inflammatory response 
is almost tolerated by patients and has a protective role against 
the infection through viral load reduction or viral clearance.

These possible mechanisms, in turn, cause elevated levels of 
proinflammatory cytokines/chemokine and cellular damage 
due to apoptosis and pyroptosis,33 shaping the second stage 
of immune responses. This stage is initiated with the genera-
tion of adaptive immunity and NAb secretion.23 The produced 

Figure 1. The schematic representation of immune responses against SARS-CoV-2. 
a. Optimal innate and adaptive immunity responses: The virus binds to ACE2 to 
infect cells. The engagement of pattern recognition receptors (PRRs) results in the 
production of interferons I and other proinflammatory mediators, which induces 
dendritic cells (DCs) to process antigens and present them to naïve circulating 
T cells, leading to T cell activation. The activated T cells migrate to the site of 
infection and secrete effector cytokines, such as IFN-γ. The APCs also induce 
B cells leading to optimal NAb production. b. Early and sub-optimal NAb activity 
results in antibody-dependent enhancement, leading macrophages to be 
exploited for virus replication. This process also causes elevated cytokine produc-
tion and subsequent immunopathological overreactions. APC: Antigen Presenting 
Cell, NAb: Neutralizing Antibody
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NAbs could trigger Fc receptor-mediated antibody-dependent 
enhancement (ADE) (Figure 1b), which possibly occurs due to 
early and sub-optimal antibody activity. This process could 
cause persistent viral replication, skewing of the macrophage 
responses, and further exuberant inflammatory responses, and 
subsequent cellular damage and lung injury.31 Noteworthy, the 
possible role of ADE in COVID-19 severity was also suggested 
by other researchers recently.32

Besides, given the crucial role of T cells, in particular CD4 
+ and CD8 + T cells, in modulating the over-activated inflam-
matory responses, some studies suggested that suboptimal and 
decreased T cell numbers generated by SARS-CoV-2 infection 
may also result in weak cellular immunity and undesired 
inflammatory responses.27,34

3.1. The possible role of IFNs in dysregulated immune 
responses

The relative timing of the IFN-I response and maximal viral 
replication was shown to contribute to the disease severity in 
SARS and MERS.30,35 Notably, IFN therapy before the virus titer 
peak decreased inflammatory cytokines production and gener-
ated protective roles in MERS-CoV infected mice. In contrast, at 
the later stages of the disease (two or 4-days post-infection), 
enhanced proinflammatory cytokines, increased infiltration, 
and the higher total number of highly activated monocytes, 
macrophages, and neutrophils may result in fatal pneumonia.35

The key role of dysregulated IFN-mediated immune 
responses in SARS-CoV-2 infection was uncovered as well. 
Despite heavier virus replication than SARS-CoV, SARS-CoV 
-2 does not significantly induce type-I, -II, or -III IFNs.36 

Consistent with this finding, it was revealed that IFN-I defi-
ciency could be considered as a hallmark of severe COVID- 
19.37,38 Moreover, impaired IFN-mediated immune responses, 
with a reduced dynamic range, in response to direct pattern 
recognition receptor (PRR) stimulation and viral infection 
were uncovered in older individuals.39 The impaired IFN anti-
viral responses could, to some extent, explain the poor clinical 
outcomes in elderlies.32 In congruence with these studies, 
Hadjadj et.al suggested that IFN administration could be 
used to overcome the IFN-I deficiency issue. On the other 
hand, applying anti-inflammatory agents that target IL-6 or 
TNFα, could, to some extent, dampen the inflammation and 
subsequent immunopathogenic over-reactions.38

4. Taking advantage of available vaccines against 
COVID-19

As mentioned before, using LAVs might help in reducing the 
risks of other infections through NSEs.11 In the following, the 
possible heterologous effects of BCG and influenza vaccines will 
be discussed. The impact of BCG, influenza vaccine, and IFN-I 
on the immune system in comparison with the immunity dysre-
gulation caused by COVID-19 or aging are presented in Table 2.

4.1. BCG vaccine

BCG vaccine is a LAV used in many countries early after birth 
against tuberculosis (TB) disease. It has been injected to over 

four billion people so far.66 BCG vaccination is also recom-
mended to reduce the mortalities of pandemics.67

Numerous studies have indicated the non-specific protec-
tive effects of BCG vaccination against viral infections caused 
by both RNA and DNA viruses. For instance, BCG vaccination 
could reduce the risk of respiratory tract infections in elderlies 
and adolescents and substantially enhance the responsiveness 
to influenza A and hepatitis B vaccines.67

The heterologous effects of BCG vaccination against viral 
infections may be exerted through several mechanisms. One 
fundamental mechanism is trained immunity induction. BCG 
vaccination could stimulate immunological memory in NK 
cells, monocytes, and macrophages.46,68 It also led to enhanced 
IFN-γ and monocyte-derived cytokines ‘four- to seven-fold’ 
and ‘two-fold’, respectively, in healthy volunteers.69

The importance of rapid and robust innate immune 
responses, as the primary SARS-CoV-2-mediated inflamma-
tory response, in reducing viral load or even viral clearance is 
well-established.20 However, the raised production of proin-
flammatory cytokines after BCG vaccination and subsequent 
cellular damage due to apoptosis or proptosis should be 
considered.20,33

On the other hand, BCG vaccination could also induce non- 
specific lymphocyte responses through both cross-reactivity 
and bystander activation.11,13 For instance, BCG vaccination 
prior to pathogen insult or vaccination boosted the antibody- 
mediated responses.46 Moreover, it could enhance the respon-
siveness of Th1 to non-specific secondary infections as well as 
Th17 corresponding cytokine induction, such as IFN-γ, up to 
1 year.46

The beneficial impacts of BCG vaccine on adaptive immunity 
could reasonably dampen the secondary inflammatory responses 
to SARS-CoV-2 and the consequent multi-organ failure.13,70

While there are multiple publications on BCG-induced 
NSEs for viral infections, there is a concern for its use in 
COVID-19 prophylaxis; as it induces the suppressor of cyto-
kine signaling 1 (SOCS1), a crucial negative regulator in the 
JAK-STAT signaling pathway,54 which can lead to IFN signal-
ing suppression. To minimize this obstacle, Mizuno et al.54 

demonstrated that the administration of SOCS1 antagonist- 
expressing recombinant BCG enhanced the immune responses 
in a mouse model. Interestingly, BCG plus IFN-α, as a vaccine 
adjuvant,71 could promote Th1 type cytokines secretion and 
consequent effective immune responses.72 Moreover, it has 
been revealed that pretreatment of DCs with IFN-β results in 
the production of larger amount of IL-12p70 and IL-12, which 
could improve DC function and causes consequent enhance-
ment in Th1 responses. The authors conclude that IFN-β could 
be used as an adjuvant and enhance the BCG 
immunogenicity.73,74 Another study revealed that the treat-
ment of cells with IFN-β or IFN-γ created epigenetic memory 
resulting in faster and higher IFN-stimulated gene (ISG) 
induction after re-stimulation.75 Therefore, the administration 
of BCG plus IFN might rationally antagonize the adverse 
regulatory effects of SOCS1 and augment BCG-induced anti-
viral immune responses to some extent.

However, BCG vaccine-related pulmonary complications, 
such as hypersensitivity reactions and mycobacterial pneumo-
nia, have to be considered.76 Thus, cautious studies should be 

HUMAN VACCINES & IMMUNOTHERAPEUTICS 1655



Table 2. The impact of BCG, influenza vaccine, and interferon (IFN)-I on the immune system compared with the dysregulation of immunity as a result of COVID-19 or 
aging.

BCG vaccine Influenza vaccines IFN-I Aging COVID-19

PRRs Engaging TLR2, TLR4, TLR8, 
and C-type lectin 
receptors,40 NOD-like 
receptors, RIG-I41

Engaging TLR7,42 LAIV: 
increasing expression of 
RIG-I and TLR-343

Enhancing TLR 
responsiveness in 
macrophages44

Decline in TLR expression 
and function45

Proinflammatory 
mediators

*Inducing the production 
of pro-inflammatory 
cytokines such as TNFα, 
IL-1β, and IL-646

*Increasing the production 
of TNF-α and IL-6 and 
downregulation of IL-1b, 
IFN-γ, and IL-10 after 
stimulation of PBMCs 
with LPS, M. tuberculosis, 
C. albicans, and 
S. aureus.47 TIV/MF59: 
significant increase in IL- 
5 and IL-6, IFN-γ, IL-2, 
Th2 responses,48 AS03: 
STAT1 and MX1 
upregulation49

Cytokines/chemokine 
regulation such as IL-15 
and IFN-γ50

Increase in 
proinflammatory 
cytokines such as TNF, 
IL-1, and IL-651,52

Elevated levels of IL1β, IFN- 
γ, IP10, MCP1, IL4, and 
IL10 at disease late 
stages, higher 
concentrations of GCSF, 
IP10, MCP1, MIP1A, and 
TNFα in ICU patients 
versus non-ICU 
patients,27 elevated 
levels of IL-6, which is 
associated with cytokine 
storm32

IFNs [production 
and duration]

*Increasing IFN-γ 
production,53 inducing 
a negative regulator of 
JAK/STAT signaling 
pathway, SOCS154

TIV: early induction of type- 
I and -III IFNs,55 LAIV: 
increased expression of 
IFN-related genes 
[mostly IFN-I] in three 
days, including STAT1, 
STAT2, TLR7, IRF3, and 
IRF7, slighter changes by 
unadjuvanted TIV,56 TIV 
and LAIV induce 
overexpression of IFN- 
related genes55

Significant impairment of 
antiviral IFN responses, 
reduction in the 
magnitude of the 
inducible responses, 
lowering IFN-I 
production in DCs39

Antagonizing the IFN- 
mediated immune 
responses by several 
strategies21,27

Neutrophils *Increasing TNF-α, IL-6, and 
IL-12 production in 
lymph nodes41

MF59: inducing CCL3 and 
CXCL8 
chemoattractants,49 

AS03: inducing 
neutrophil 
chemoattractants49

Effect on recruitment by 
suppression of CXCL1 
and CXCL2 production57

Impairment of phagocytic 
and chemotactic 
abilities45

Elevated levels of 
neutrophils58

NK cells *Inducing the production 
of IFN-γ,59 *inducing 
trained immunity in NK 
cells46

*TIV: increased NK cell 
activity until 30 days, 
with a peak at day six,60 

possibly due to 
increased IFN-α 
production,61 

*enhancing the 
functionality of NK 
cells62

Enhanced function and 
survival of NK cells,23 

effects on NK cell 
recruitment by induction 
of CCL3, CCL4, and 
CCL557

Decline in the functional 
capacity of NK cells45

Reduced total number of 
NK cells58

DCs BCG sensing leads to DC 
maturation and 
migration, consequent 
co-stimulatory 
molecules expression, 
and pro-inflammatory 
mediators production41

MF59: activation of DCs49 Potent induction of DC 
maturation and 
migration,24 enhanced 
expression of MHC and 
co-stimulatory 
molecules resulting in 
increasing their ability to 
induce T cells57

Reduction of phagocytosis, 
pinocytosis, migratory 
capacity, and Ag 
presentation,45 

dysregulation of 
inflammatory cytokine 
production, such as 
lower IFN-I production39

Macrophages *Inducing GM-CSF 
production,40 *inducing 
trained immunity in 
macrophages, and 
shifting to an M1-like 
phenotype46

MF59: activation of 
macrophages49

Effects on cytokine 
production and 
antibody-dependent 
cytotoxicity,50 

upregulation of IL-10 
and PDL1 and down- 
regulation of IFN-γ 
receptor expression57

Reduction of TLR 
expression and pro- 
inflammatory cytokines 
production, 
accumulation of 
alternatively activated 
[M2-like] macrophages45

Macrophage infection, 
which subsequently 
leads to viral spread and 
excessive 
inflammation19

T cells *Inducing nonspecific 
lymphocyte responses 
through both cross- 
reactivity and bystander 
activation,11,13 

*enhancing the 
responsiveness of Th1 
and Th17 corresponding 
cytokine induction46

*Mounting heterologous 
cellular immune 
responses against 2009 
A[H1N1] pandemic 
influenza virus by 2007/ 
2008 TIV/MF59,63 AS03: 
Inducing the 
upregulation of CD4 
T cell responses,64 MF59: 
shifting toward Th2 
responses49

Direct activation of CD4 
+ and CD8 + T cells, 
enhancing ability of 
CD4 + T cells to help 
B cells,23 Th1 induction 
dependent on exposure 
to IL-12, IFN-I, and IFN- 
γ25

Reduction in the number of 
naïve T cells and 
elevation in senescent or 
exhausted T cells, shift 
toward a Th2-like 
phenotype45

Significant T cell 
lymphopenia,28,65 

elevated exhaustion of 
T cells and reduced 
functionality,29 

increased in the 
mortality rate of patients 
with more serum Th2 
cytokines [17]

(Continued)
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performed to investigate the potential synergistic effects and 
safety profile of the proposed approach.

4.2. Influenza vaccines

Different types of influenza vaccines, including live-attenuated 
influenza vaccine (LAIVs) and inactivated influenza vaccines 
(IIVs), are marketed containing the antigens from certain viral 
strains. Some formulations also include adjuvants.77 Such 
diverse constituents cause variety in cytokine induction cap-
abilities of influenza vaccines.78 For instance, TIV (trivalent 
subunit inactivated influenza vaccine) showed a stronger early 
induction of type-I and -III IFNs and higher amounts of 
activated DCs and proinflammatory cytokines, such as TNF, 
IL-6, −10, and −1β, than LAIV in an in vitro research on 
unadjuvanted influenza vaccines. Moreover, TIVs have 
shown some adverse events in children.79

On the other hand, LAIVs were found to protect against 
respiratory infections80 and induce innate immunity through 
various methods,56 while also triggering a broader spectrum of 
immunity against different serotypes of influenza virus than 
TIVs.81

Both TIV and LAIV induced the expression of IFN genes, 
which was observed on day one and seven after vaccination for 
TIV and LAIV, respectively.55 It was suggested that the trained 
immunity induced by influenza vaccine is, to some extent, 
related to induction of the pro-inflammatory mediators and 
IFN production.62,80

It is hypothesized that a respiratory virus infection con-
fers immunity against the same and other respiratory viruses 
for a short time, perhaps a few weeks. Such protection is 
because of activation of the innate immune response 
mediated by the release of IFN-I and other cytokines that 
have broad protective effects against a range of viruses. This 
phenomenon is called viral interference.82 To inspect this 
concept, the short-term non-specific protection of cold- 
adapted, live attenuated influenza vaccine (CAIV) against 
subsequent RSV infection was investigated in a mouse infec-
tion model80 The author hypothesized that since influenza 
vaccine and RSV share common features in term of patho-
genesis, influenza vaccine could attenuate the severity of 
RSV infection. Noteworthy, the protective effects of influ-
enza vaccine were significantly diminished in TLR3-/-TLR7 
-/-mice, which suggests the importance of TLR3/7 signaling 
pathways in the beneficial protective effects of influenza 
vaccine. The author proposed that the heterologous effects 
of influenza vaccine against MERS infection need further 
investigations.80 An epidemiological article also validated 
this effect on RSV infection.82

The immune responses to CoV and influenza infections 
seem comparable as they share some common features, includ-
ing stimulation of TLRs and RIG-I as well as subsequent anti-
viral-mediated immune responses.21 Therefore, the potential 
role of influenza vaccine in generating a non-specific, short 
term antiviral effect against SARS-CoV-2 has been suggested.80 

In this regard, a few recent reports have displayed 
a hypothetical beneficial role of influenza vaccines against 
COVID-19 infection in high-risk groups.81,83 While Salem 
et al. described a flu-induced bystander effect of the generated 
immune responses as a probable protective mechanism, 
Kiseleva et al. opined that the LAIV might be more suitable 
than IIV because of its broad-spectrum potency.

On the other hand, there are concerns about the dampening 
effect of influenza vaccines on the immune responses to SARS- 
CoV-2, as well. Because influenza infection can result in TLR 
desensitization for several months, suppressing one of the main 
defense mechanisms of the innate immunity against COVID- 
19.84 Furthermore, influenza disease has shown some bizarre 
phenomena such as “vaccine-associated viral interference”, 
which implies that a viral infection would generate a non- 
specific short-time protection against other viruses 
normally,85 which could be impeded when a vaccine is 
administered.86 Another concern is “original antigenic sin” 
phenomenon, which denotes that in encountering with 
a similar or close pathogen, the immune system may fail to 
develop an effective immune response against the newer patho-
gen and would depend on the memory of the previous 
pathogen.87 Therefore, a successful vaccination should include 
all the subtypes of a pathogen.88 This phenomenon is highly 
important in vaccine design, expressing the importance of 
extensive clinical trials to validate the safety and side effects 
of vaccines.89 However, original antigenic sin has been rarely 
reported in a cross-disease manner and is mostly important for 
expected mutations in the same pathogen family. A similar 
phenomenon is “heterosubtypic non-specific temporary 
immunity”, in which the previous infection with a pathogen 
temporarily reduces the risk of future infections with another 
subtype. The phenomenon has been observed for influenza in 
the unvaccinated populations who had previous seasonal influ-
enza infections and were less susceptible to get infected with 
pandemic influenza A (H1N1) 2009.90,91 It is also rarely 
observed among different families of pathogens.92,93 

However, a substantial negative association between influenza 
vaccination and higher COVID-19 incidence or other infec-
tions has not been reported.94,95

All in all, the positive and negative sides of the influenza 
vaccines should be further investigated to evaluate their impact 
on COVID-19. On the other hand, BCG vaccination has been 
suggested as an adjuvant for influenza vaccination to increase 

Table 2. (Continued).

BCG vaccine Influenza vaccines IFN-I Aging COVID-19

B cells *Enhancing the Ab- 
mediated responses to 
nonspecific pathogen or 
vaccine11,13

*Mounting heterologous 
humoral immune 
responses against 
nonspecific influenza 
strains.63

Promoting B cells 
activation and antibody 
responses in the early 
stages of infection23

Decrease in the ability of 
B cells to mount an 
optimal Ab response45

* represents relatedness to nonspecific effects.
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its efficacy, especially in elderlies.96 It could be conferred from 
Table 2 that influenza vaccine could effectively induce IFN 
mediated immune responses. Hence, the co-administration of 
BCG and influenza vaccine might harness the beneficial het-
erologous effects of these vaccines and be a potentially effective 
approach to combat COVID-19. However, it needs to be vali-
dated through experiments.

5. Conclusion and future directions

Given the role of immune system overreactions in COVID-19- 
induced cytokine storm and the resultant serious harm to body 
organs and even death, the interventions that could reverse 
such hyperactivated immunological responses could be of high 
value. In this regard, LAVs, especially BCG vaccine, could 
hinder viral replication and the subsequent pathological 
inflammatory responses in COVID-19 via the arousal of innate 
and adaptive immunity, especially in the aged and immuno-
compromised groups. However, the probable adverse effects of 
BCG vaccination should be considered, including the induc-
tion of SOCS1 expression, which may cause the suppression of 
IFN signaling. In view of the importance of IFN signaling 
pathway in reducing viral replication early after the infection, 
the use of a SOCSI-antagonist expressing recombinant BCG or 
a combination of BCG vaccine with IFN-I might help to partly 
reverse this detrimental effect and boost the immune system 
successfully against SARS-CoV-2. These approaches deserve 
more investigation and experience to be validated in respect 
to protocol efficacy and safety.

The co-administration of BCG and influenza vaccine might 
also be potentially a candidate approach to combat COVID-19 
and could probably exploit the positive impacts of these vac-
cines. However, the probability of undesired immunopathologi-
cal overreactions and cumulative immune aberrations generated 
by the two vaccines should be taken seriously. In this respect, the 
risk of augmented innate immune responses, in particular, over-
production of proinflammatory mediators and overstimulation 
of immune responses, should also be regarded.

In a nutshell, if any vaccine is to be used to support against 
COVID-19, while compensation for the virus-induced attenu-
ated immune response is the objective, maintaining a balance 
during both innate and adaptive immune responses should be 
considered as well. Further studies are highly recommended to 
assess the outcomes of such interventions.
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