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Abstract
The nature of gene flow in parasites with complex life cycles is poorly understood, particu-

larly when intermediate and definitive hosts have contrasting movement potential. We ex-

amined whether the fine-scale population genetic structure of the diphyllobothriidean

cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback

hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand

complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-

central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the

Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation

across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for

1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at

8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite

genotype variation recovered evidence of significant population genetic structure within S.
solidus. Host, location, and year were factors in structuring observed genetic variation. Pair-

wise measures revealed significant differentiation among lakes, including a pattern of isola-

tion-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study

region, little admixture within hosts and lakes, and a shift in genotype frequencies over time.

Evidence of fine-scale population structure in S. solidus indicates that movement of its vag-

ile, definitive avian hosts has less influence on gene flow than expected based solely on

movement potential. Observed patterns of genetic variation may reflect genetic drift, behav-

iors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adap-

tive specificity of S. solidusto intermediate host genotype.

Introduction
Gene flow can be a key determinant of evolutionary potential, particularly for organisms en-
gaging in interactions shaped by adaptation (i.e., Red Queen dynamics; [1–7]. Evolutionary
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potential can be influenced, for example, by dispersal promoting the influx of new alleles affect-
ing interactions between a highly specialized parasite and its host [5]. Similarly, barriers to
gene flow can influence the nature of host-parasite interactions by impeding the influx of adap-
tive or maladaptive alleles. Adaptive interactions may reciprocally affect gene flow, which in
turn can give rise to dynamic changes in evolutionary potential. Accordingly, characterizing
gene flow in parasites, which is often understudied relative to their hosts, can help identify fac-
tors shaping adaptive interactions.

The genetic structure and connectivity of parasite populations can be strongly influenced by
host dispersal, particularly when parasites lack free-living stages or exhibit strong host specifici-
ty [8–11]. Pocket gopher chewing lice (Geomydooecus actuosi) and pocket gopher hosts
(Thomomys bottae) show similarly high levels of genetic differentiation, as gene flow and dis-
persal of G. actuosi is constrained by infrequent host-host contact [10,12]. Although gene flow
inHeligmosmoides polygyrus, a nematode infecting field mice (Apodemus sylvaticusi), reflects
the genetic structure of its host, the nematode exhibits higher levels of genetic diversity and dif-
ferentiation [13]. In contrast, evidence of little to no population genetic structure in
Amblyomma americanum, a widespread tick, has been attributed to low host specificity and
high capacity for dispersal in its mammalian host [14,15].

It is less clear how connectivity among parasite populations corresponds to host dispersal po-
tential when parasites have complex life cycles involving multiple hosts that differ in movement
potential [6,16–19]. Few studies have examined how host movement shapes the population ge-
netic structure of parasites with complex life cycles [4,11,20–22]. The most mobile host is thought
to have the greatest influence over parasite population genetic structure, but attributing connec-
tivity among parasite populations to the movement potential of one host or another can be diffi-
cult because asymmetries can arise due to a number of factors that are not necessarily related to
dispersal, such as life history variation, that may also influence infection and transmission [10].

Here we evaluate spatial and temporal patterns of mitochondrial and multilocus nuclear ge-
netic variation among populations of the parasitic tapeworm Schistocephalus solidus in the three-
spine stickleback (Gasterosteus aculeatus). The Schistocephalus-stickleback model system affords
opportunities for examining relationships between host dispersal and population connectivity in
parasites with complex life cycles because the threespine stickleback—which serves as the second
intermediate host of S. solidus—has lower dispersal potential than the piscivorous birds that
serve as definitive hosts [16,23,24]. We tested the hypothesis that S. solidus populations exhibit
little to no genetic structure, as prior studies suggest that parasites cycling through both freshwa-
ter and more vagile terrestrial hosts tend to have less structured populations with higher gene
flow than parasites with life cycles restricted to freshwater hosts [vagile host hypothesis;
10,11,20]. Prior work has shown, however, that S. solidus exhibits signatures of intraspecific ge-
netic structure and host specificity in intermediate stickleback hosts, suggesting that the move-
ment potential of definitive hosts may not define the genetic structure of S. solidus or that the
movement potential of definitive hosts is not fully realized [16,25,26]. Accordingly, we tested the
alternative hypothesis that S. solidus exhibits pronounced population genetic structure, reflecting
the habits of threespine stickleback. Understanding the fine-scale genetic structure of S. solidus
populations will help clarify how host movement can influence the evolutionary potential of par-
asites, and further illustrate how gene flow can shape the geography of host-parasite interactions.

Materials and Methods

Study system
Schistocephalus solidus is a diphyllobothriidean cestode that exhibits a complex lifecycle involv-
ing cyclopoid copepods and threespine stickleback fish as first and second intermediate hosts,
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respectively, and piscivorous birds from any one of over 40 species as definitive hosts
[16,24,27]. The parasite is transmitted to sticklebacks through consumption of infected cope-
pods containing procercoid larvae [16]. Once established in host fish, the parasite transforms
into a plerocercoid larvae in the coelom of the stickleback, wherein almost all of the parasite’s
growth occurs [24,27]. Multiple infections are common, and the total mass of the parasites can
equal or exceed the mass of the host fish [28,29]. Infected threespine sticklebacks are consumed
by definitive hosts, in whose gut the parasites undergo sexual maturation and reproduction
[16,24,30]. Reproduction is accomplished by either selfing or cross-fertilization, depending on
the number of parasites infecting a definitive host [16,24]. Bird feces transmit eggs into water
where they hatch into free-living coracidia larvae that are consumed by cyclopoid copepods
[16,24,31].

Threespine sticklebacks likely have more constrained movement potential than definitive
bird hosts. The stickleback hosts sampled in this study were all residents of freshwater lakes,
which typically remain in the lake of origin throughout life, unless connecting freshwater
drainages allow movement among proximate lakes [32]. Threespine sticklebacks exhibit terri-
toriality and localized homing behaviors up to 200 m; significant genetic divergence also has
been found between populations in neighboring lakes [32–35]. Though comparably little is
known about landscape-level movement of definitive hosts, many (e.g., loons and grebes) mi-
grate from Alaska to the Gulf of Mexico during the winter and exhibit little to no population
genetic divergence [36–39]. Breeding territories of Common Loons (Gavia immer), which are
dominant predators of threespine stickleback in southern Alaska, average around 70 ha and
are frequently held by the same mating pair over several years [37,40–42]. Adult loons without
territories and loons that are unsuccessful in breeding may move to establish new territories in
nearby lakes [37,40,41].

Specimen collection
Infected threespine sticklebacks were sampled in late May to early June in 2009–2012 from 17
lakes in south-central and south-west Alaska. Collections were specifically approved by annual
Fish Resource Permits from the Alaska Department of Fish and Game and animal care proto-
cols from Tulane University Institutional Animal Care and Use Committee (protocols
0304R-UT-C and 0304R2) and the University of Washington Institutional Animal Care and
Use Committee (protocol 3142–01). Fish were captured from ten lakes in the Matanuska-Sus-
itna Valley (MatSu) north of Cook Inlet, five lakes on the Kenai Peninsula (Kenai) east of Cook
Inlet, and two lakes west of Cook Inlet in Bristol Bay drainages (BB; Table 1; Fig 1). All of the
sampled fish exhibited a benthic phenotype. Samples were taken with 3 mm and 6 mm wire-
mesh minnow traps set near shore or with beach seines and tow nets. After euthanization with
MS222, a ventral incision was made in each specimen prior to preservation in 95% ethanol.
During necropsies all parasites were removed and preserved in 95% ethanol. Parasites were se-
lected for analysis to maximize the number of hosts with large parasite loads (� 7 parasites) for
within host and between lake comparisons (Table 1).

Mitochondrial DNA sequence data collection and analysis
Genomic DNA from S. solidus specimens was extracted using the DNeasy Blood & Tissue ex-
traction kit following the manufacturer’s standard protocol (Qiagen, Inc., Valencia, CA, USA).
Polymerase chain reactions (PCRs) were performed to amplify 759 base pairs (bp) of the
mitochondrial cytochrome oxidase 1 gene (CO1) region for 1,026 individuals (Table 1) using
primers CYTW3F2 (CTAATTGGTGTGTGATCTGG TTTTG) and CYTW3R5 (GGAGTGGGAG
CCCAACACAAG) [26]. PCRs were carried out using Mastercycler Pro thermocyclers
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(Eppendorf AG, Hamburg) with conditions following Nishimura et al. [26]. PCR products
were purified using ExoSAP-It (USB, Affymetrix, Cleveland, OH). Cycle-sequencing reactions
were then carried out using BigDye (Applied Biosystems, Foster City, CA), 3.2 mM primers,
4 μL ddH2O, and purified PCR product. Sequencing reactions were purified using Sephadex
(GE Healthcare Biosciences, Pittsburgh, PA) according to manufacturer protocols. An ABI
3730xl DNA sequencer (Applied Biosystems, Foster City, CA) was used to electrophorese
cycle-sequencing products. Sequencher v4.9 and Genalex v6.5 [43] software (Gene Codes
Corp., Ann Arbor, MI) were used to align and edit the resulting DNA sequence data.

Fig 1. Map of Lakes.Overview of Alaska study site, including detail of the Matanuska-Sustina Valley, Kenai Peninsula, and Bristol Bay regions. Pie charts
indicate the proportion of individuals of each genotype cluster by lake.

doi:10.1371/journal.pone.0122307.g001
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DNAsp v5.10.1 and Arlequin v3.5 were used to estimate the total number of haplotypes,
haplotype diversity, pairwise differences among haplotypes, nucleotide diversity among haplo-
types, and effective number of haplotypes for each lake, region, and year [44,45]. Effective
number of haplotypes was calculated as the reciprocal of the sum of squared frequencies. The
distribution of haplotype diversity and relationships among haplotypes were evaluated with
Network by creating minimum spanning haplotype networks labeled according to lake, collec-
tion year, region, and genotype cluster assignment [46,47]. Using Arlequin v3.5 software [44],
Analysis of Molecular Variance (AMOVA) was carried out to estimate the proportion of vari-
ance attributable to different hierarchical scales. AMOVAs based on 10,000 permutations were
performed to assess patterns according to host and year, lake and year, lake and region, and ge-
notype cluster. For AMOVAs examining variation among hosts, tests were limited to individu-
als from fish hosts with� 7 parasites (totaling 565 individuals) to reduce possible bias from
small sample sizes. Arlequin v3.5 [44] was also used to estimate global FST values and pairwise
FST values between each lake and region.

To determine whether patterns of genetic differentiation reflect the movement potential or
habits of hosts, pairwise routes of potential movement between all lakes were calculated using
Google Earth. The most parsimonious pathways for travel were measured as straight line dis-
tances between lakes, as compared to river distances between lakes within and among water-
sheds. Pairwise FST values were compared to the between-lake linear and riverine distance
matrices with Mantel’s tests to evaluate the strength of relationships and to detect signatures
of isolation-by-distance. Mantel’s tests were performed in Genalex v6.5 with 10,000 permuta-
tions [43].

Microsatellite data collection and analysis
A total of 1,243 individuals (Table 1) were genotyped at eight nuclear microsatellite loci—
Scso33, Scso18, SsCAB6, Scso22, Scso29, Scso24, Scso35, and Scso9—following locus-specific
amplification conditions described in Binz et al. [48]. Forward primers were labeled with HEX,
FAM, or TAMRA fluorescent dyes to size amplicons against a 600 bp LIZ standard on an ABI
3730xl DNA sequencer. Electropherograms were scored and binned with GeneMarker v9.0
(Softgenetics, State College, PA).

Genetic diversity statistics, including expected (He) and observed (HO) heterozygosity, aver-
age number of alleles (N alleles), and average rarefied allelic richness (R) were calculated for
each lake, region, and year using Arlequin v3.5; Shannon’s Index (I) also was calculated using
MSA software [44,49]. Hardy-Weinberg Equilibrium (HWE), linkage disequilibrium (LD),
and FIS values were calculated to test for equilibrium and to detect signatures of the Wahlund
effect. HWE and FIS values were calculated in Arlequin v3.5. Tests for LD were performed in
Genepop v4.3, and p-values were compared following a Bonferroni correction (p< 0.0018)
[50]. To examine the hierarchical distribution of microsatellite variation, Arlequin v3.5 was
used to conduct AMOVAs with 10,000 permutations run per analysis [44]. Samples were
grouped by host and year, host and lake, lake and region, and genotype cluster. For AMOVAs
examining variation among hosts, tests were limited to individuals from fish with�7 parasites
(totaling 565 individuals) to reduce possible bias from small sample sizes. Pairwise FST values
were also calculated using Arlequin v3.5.

Structure v2.1 was used to assess patterns of genetic differentiation without a priori hypoth-
eses of population structure [51]. We used a burn-in period of 10,000 iterations and 5 indepen-
dent runs with 100,000 iterations where K (number of populations) was set iteratively from 1
to 17. Runs intended to evaluate the likelihood of structure corresponding to fish host were
conducted with a data subset including parasites from hosts with� 7 parasites where K was set
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from 1 and 6 iteratively. Analyses of structure among years and within clusters revealed in pre-
vious runs also were conducted where K was set from 1 to 4.

To determine whether patterns of genetic differentiation reflect the movement potential or
habits of hosts, pairwise linearized FST values were compared to between-lake distance matrices
(as described above) with Mantel’s tests to evaluate the strength of relationships and to detect
signatures of isolation-by-distance. Mantel’s tests were performed in Genalex 6.5 with 10,000
permutations [43].

Results

MtDNA haplotype diversity and differentiation
Analysis of a 759 bp region of the mitochondrial CO1 gene recovered 248 unique haplotypes in
1,026 individuals. Twelve polymorphisms separated the most divergent haplotypes from the
most common haplotype (H1), which was found in all lakes except Hall Lake, and in all re-
gions, years, and genotype clusters. Excluding Hall and Pollard lakes, which were not consid-
ered due to small sample sizes, the greatest haplotype diversity was detected in Big Beaver Lake
(Table 1), where 24 unique haplotypes were recovered in 30 individuals. Minimum pairwise
haplotype diversity occurred in Falk Lake, whereas maximum pairwise haplotype diversity oc-
curred in Cornelius Lake (Table 1). Nucleotide diversity ranged from 0.0012 in Falk Lake to
0.0064 in Cornelius Lake, and the effective number of haplotypes ranged from 2.7 in Falk Lake
to 20.32 in Loberg Lake. Haplotype diversity as well as pairwise and nucleotide diversity were
consistent across regions (Table 1). The minimum effective number of haplotypes occurred in
the Kenai region whereas the maximum was present in the MatSu region (Table 1). When par-
titioned by year, the highest haplotype diversity was recovered in 2009 and the lowest haplo-
type diversity was recovered in 2010. The effective number of haplotypes, and pairwise and
nucleotide diversity were all highest in 2009 and lowest in 2010 (Table 1).

The haplotype networks revealed a high degree of heterogeneity across lakes and years
(S1 Fig). There was a high degree of heterogeneity when haplotypes were identified by lake
(S1 Fig), and though there was some evidence of structure by year, with early years (2009 and
2010) clustering relative to later years (2011 and 2012), some heterogeneity was still evident
(S1 Fig).

Despite the absence of obvious structure in haplotype networks, mtDNA differentiation was
significant across multiple hierarchical levels (Table 2). Significant global FST values were re-
covered, ranging from 0.027 to 0.08. The lowest global FST value was recovered when individu-
als were grouped by lake and region, whereas the highest global FST values were recovered
when individuals were grouped by host and year (Table 2).

Significant pairwise FST values by lake ranged from 0.0138 (Walby Lake and Cheney Lake)
to 0.142 (Lower Ohmer Lake and Falk Lake; Table 3). Pairwise FST values by region were not
significant except between MatSu and Kenai (0.0087; S1 Table). Mantel’s tests for associations
between geographic distance and genetic distance (FST values) were not significant when dis-
tance was measured by stream length or straight line distances.

Microsatellite genetic diversity and differentiation
Microsatellite-based measures of genetic diversity were similar across lakes except for Hall
Lake and Pollard Lake, which were outliers likely due to small sample sizes. Observed heterozy-
gosity was consistent across all lakes (Table 1) with values ranging from 0.61 (Lower Ohmer
Lake) to 0.72 (Scout Lake). Only a few instances of departures from HWE were detected in a
subset of populations at select loci (S2 Table). Significant FIS values were present in ten lakes,
ranging from 0.04 (Falk Lake) to 0.167 (Lower Ohmer Lake; S2 Table). All loci were found to
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be in LD except in 4 of 476 comparisons between loci within lakes (Walby Lake, Scso18 &
SsCAB6; Walby Lake, Scso18 & Scso35; Rocky Lake, Scso18 & Scso24; Iliamna Lake, Scso35 &
Scso9). Specimens from Engineer Lake exhibited the highest average number of alleles, and
Scout Lake exhibited the lowest (Table 1). Shannon Index values ranged from 1.42 (Aleknagik
Lake) to 1.81 (Cornelius Lake). Rarefied allelic richness ranged from 6.38 (Rocky Lake) to 8.60
(Cornelius Lake). Individuals from the MatSu region exhibited the highest average number of
alleles, and individuals from the BB region exhibited the lowest average number of alleles.
Shannon Index by region ranged from 1.62 (BB) to 1.8 (MatSu). Rarefied allelic richness ran-
ged from 7.16 (BB) to 7.63 (Kenai). When partitioned by year, the greatest Shannon Index val-
ues and average number of alleles was present in 2012 and the smallest respective values
occurred in 2010 (Table 1).

Microsatellite-based estimates of genetic differentiation were highly significant (Table 2).
All global FST values, which ranged from 0.04 to 0.062, were highly significant (Table 2). The
lowest global FST value was recovered when individuals were grouped by host and lake, while
the highest global FST value was recovered when individuals were grouped by host and year
(Table 2). Pairwise FST values by lake ranged from 0.0018 to 0.142, with many comparisons
being highly significant (Table 3). The highest pairwise values were between Pollard and Ili-
amna (0.142), Pollard and Aleknagik (0.135), and Scout and Aleknagik (0.13; Table 3). Pairwise
FST values between regions were all significant (S1 Table). The highest pairwise value was be-
tween MatSu and Kenai (0.041), and the lowest was between BB and Kenai (0.022; S1 Table).

Table 2. Summary of AMOVAResults.

Fish host, Lake Mitochondrial Microsatellite

Percent variation among lakes 3.01 3.45

Percent variation among fish within lakes 4.62 2.80

Percent variation within fish 92.37 93.74

FST 0.08 0.06

FSC 0.05 0.02

FCT 0.03 0.03

Fish host, Year

Percent variation among years 2.63 2.61

Percent variation among fish within years 5.37 3.64

Percent variation within fish 92.00 93.75

FST 0.08 0.06

FSC 0.06 0.04

FCT 0.03 0.03

Lake, Region

Percent variation among regions 0.00 1.80

Percent variation among lakes within regions 3.45 2.29

Percent variation within lakes 96.83 95.91

FST 0.03 0.04

FSC 0.04 0.02

FCT 0 0.02

Cluster

Percent variation among clusters 1.75 10.31

Percent variation within clusters 98.25 89.69

FST 0.02 0.10

doi:10.1371/journal.pone.0122307.t002
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Mantel’s tests revealed evidence of isolation by distance. When all sites were considered,
slightly stronger non-significant trends were recovered when distance was measured via stream
length (Rxy = 0.35, R2 = 0.12, P = 0.072) than by straight line distances (Rxy = 0.32, R2 = 0.10,
P = 0.086). When Hall and Pollard lakes were removed from the calculation to control for
small sample sizes, highly significant relationships were detected, with distance based on
stream length (Rxy = 0.491, R2 = 0.24, P = 0.007) being a stronger predictor than straight line
distances (Rxy = 0.445, R2 = 0.198, P = 0.021; Fig 2).

The results of the Bayesian clustering analysis in STRUCTURE indicated a peak in posterior
probabilities (-ln P(D)) at K = 2, and ΔK values also detected the coarsest level of genetic struc-
ture at K = 2 (Fig 1, S2 Fig). Most individuals from Aleknagik, Engineer, Hall, Lower Ohmer,
Pollard, Seymour, and Wolf lakes were assigned to one cluster, and most individuals in Cheney,
Falk, Willow, and Scout lakes were assigned to a second cluster (Fig 1, S2 Fig). Individuals
from Big Beaver, Cornelius, Iliamna, Loberg, Rocky, and Walby lakes were assigned to both
clusters. Most individuals in a host were assigned completely to one cluster or the other; only
six fish hosted S. solidus from more than one cluster, and only a few hosts carried individuals
with admixed genotypes (S2 Fig). The frequency of the two clusters varied over time; the sec-
ond cluster became more frequent in the latter two years of the study (S2 Fig). At K = 5, indi-
viduals from Engineer Lake and some individuals fromWalby Lake were assigned to a third
cluster independent of most other samples (Fig 1, S2 Fig). When individuals from the two pri-
mary genetic clusters were run separately as subsets (i.e., cluster one and cluster two respective-
ly), individuals from cluster one were assigned to two genetic clusters, and individuals in
cluster two tended towards incomplete assignment when run as a subset, as was observed when
all individuals were run together (S2 Fig).

Discussion
The evolutionary potential of a parasite can depend on gene flow, which frequently reflects
host dispersal [52,53]. This study tested the hypotheses that the genetic structure of S. solidus
reflects the habits of its intermediate host or, alternatively, those of its definitive hosts. We eval-
uated spatial and temporal patterns of genetic variation and found evidence of significant pop-
ulation genetic structure in S. solidus infecting threespine sticklebacks in lakes throughout
south-central Alaska. The observed patterns of genetic differentiation and diversity showed
that gene flow is constrained, and that variability over space and time likely reflects factors
other than the movement of the most vagile host. We recovered significant mtDNA and micro-
satellite-based estimates of genetic differentiation, with genetic structure recovered in
frequency-based and Bayesian clustering analysis (Tables 1 and 2; Figs 1 and 2). Even though
levels of differentiation found in fish and parasites are frequently higher than in other systems,
FST and FST values in S. solidus are comparably higher than levels of genetic differentiation in
similar host-parasite systems [54–57]. For example, much lower levels of differentiation have
been found in Ligula intestinalis, another geographically widespread cestode parasite, which
has been attributed to transportation of eggs by vagile piscivorous birds [10,58].

Hierarchical signatures of genetic differentiation were attributable to differences among
stickleback hosts within years and among lakes, indicating that parasite populations may be de-
fined by intermediate host identity, host cohort, or lake of origin (Table 2). Though measures
of hierarchical genetic differentiation likely captured other sources of differentiation due to
samples being taken over time, pairwise measures of differentiation suggest that S. solidus is
significantly differentiated among lakes (Table 3). Clustering analysis also suggests the pres-
ence of two populations across south-central Alaska that differ in frequency among lakes (Fig
1, S2 Fig). Lakes generally were assigned completely to one cluster or the other, though some
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(e.g. Big Beaver, Cornelius, Iliamna, Loberg, Rocky, and Walby) harbored both clusters (Fig 1).
The highest numbers of effective mitochondrial haplotypes corresponded to lakes that har-
bored both clusters (Table 1). This indicates that the movement of its vagile, definitive hosts in-
fluences gene flow in S. solidus less than would be expected based on movement potential
[4,9,10,20,59]. The observed patterns of genetic variation in S. solidus could be attributed to
one or more possible mechanisms, including genetic drift, behaviors of definitive hosts con-
straining dispersal, feeding or movement of intermediate hosts, and adaptive specificity of S.
solidus to intermediate host genotype.

Genetic variation
The high levels of genetic diversity observed in S. solidus (Tables 1, 2, and 3; Figs 1 and 2) likely
reflects transmission across a complex life cycle. High levels of genetic diversity in S. solidus
may arise because a single stickleback host can contain multiple parasite genotypes, as cope-
pods containing cestodes are consumed individually and in great numbers by fish. Definitive
avian host individuals may in turn consume many stickleback hosts [60]. Similar levels of ge-
netic diversity have been observed in other host-parasite systems where intermediate hosts har-
bor multiple parasite genotypes and definitive hosts consume several intermediate hosts
[11,61].

The observed hierarchical population structure in S. solidus also is likely an outcome of a
complex life cycle. Observed patterns of genetic differentiation suggest that parasites within a
stickleback intermediate host can be considered a subpopulation comprised of discrete or over-
lapping generational cohorts, and lakes a collection of multiple subpopulations [10]. Though
subpopulations are well defined within intermediate hosts, subsequent mixing can occur within
a lake because multiple infected fish may be consumed by a single definitive host. Further geo-
graphic nesting could reflect definitive hosts feeding and shedding parasites within a particular

Fig 2. Mantel Tests.Microsatellite based estimates of genetic differentiation (linearized FST) compared to (a) Euclidian distance between lakes, (b) Euclidian
distance between lakes distance by streams without Hall and Pollard lakes to account for sample size variation, and (c) distance by streams, and (d) distance
by streams without Hall and Pollard lakes.

doi:10.1371/journal.pone.0122307.g002
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lake or region [10]; if definitive hosts feed on intermediate hosts in a single lake, the subsequent
generation of parasites may be returned to the same or nearby lake if shedding occurs soon
after consumption of infected stickleback.

Population connectivity
The observed patterns of genetic differentiation in S. solidus indicate that population connec-
tivity is lower than what would be expected from the high dispersal potential of its definitive
hosts. Semi-aquatic birds like Common Loons can readily carry S. solidus among lakes. Yet,
2.96% of mtDNA haplotype variation is attributable to differences among lakes (Table 2). Pair-
wise FST values based on microsatellite allelic variation also indicate that S. solidus in nearby
lakes exhibit significant levels of genetic differentiation (e.g. Engineer and Lower Ohmer, FST =
0.11; Table 3). Additionally, we found that S. solidus exhibits signatures of isolation-by-dis-
tance, suggesting that there are stronger geographical barriers to gene flow in S. solidus than
has been previously thought (Fig 2). The signature of isolation-by-distance was more pro-
nounced when distance corresponded to riverine movement corridors, suggesting that water-
shed boundaries could be important in mediating gene flow among lakes. The movement of
definitive avian hosts might be constrained if, for example, flight patterns correspond to drain-
age topography rather than straight-line pathways or if avian hosts exhibit site fidelity. It is also
possible, however, that dispersal of definitive hosts does not coincide with periods of infection,
which can be relatively brief (i.e., days to weeks). Reproduction and shedding of S. solidus also
might occur prior to dispersal of definitive hosts. If so, then the observed pattern of IBD
among lakes could be a reflection of small effective population sizes and genetic drift arising
from stochastic synchronicity between infection, reproduction and dispersal of definitive hosts.

The strong signatures of temporal variation observed across the four-year study period ap-
pear to be tied to the habits of stickleback hosts. Among year differences in mtDNA haplotype
frequencies (Table 2) and evidence of replacement of one by another microsatellite genotypic
cluster over the study period (S2 Fig) are consistent with the feeding ecology of stickleback
hosts [53,62]. Sticklebacks typically cease accumulating parasites when their diet shifts away
from copepods late in their first year after hatching, which could result in a two year turnover
cycle of genotypic clusters (i.e., generational cohorts) in lakes corresponding to the lifespan of
stickleback hosts [16,23,32,63]. It is also possible, however, that transmission cycles could be
acting in conjunction with genetic drift and constrained or variable definitive host movement
to promote spatial and temporal genetic differentiation in S. solidus.

The observed patterns of restricted gene flow may also be an outcome of intermediate host
specificity within S. solidus. Nishimura et al. (2011) recovered phylogenetic evidence indicating
that continental patterns of genetic differentiation in Schistocephalus parasites reflect specificity
between threespine and ninespine stickleback intermediate hosts [26,64]. Evidence of fine-
scale geographical differences in parasite responses to host immune function suggests that S.
solidusmay also exhibit adaptive specificity to evolutionary lineages of threespine stickleback
[65,66]. If so, then the observed patterns of genetic variation might reflect differential infection
of the two genetically distinct but morphologically identical clades of threespine stickleback
that occur in south-central Alaska [62,65,67,68]. Though the low percentage of hosts (~2.5%)
infected by parasites assigned to two genotypic clusters and evidence of high genetic diversity
and genetic differentiation in S. solidus are consistent with this scenario, further study is war-
ranted to determine the likelihood of adaptive host specificity in mediating gene flow in S. soli-
dus [3,55,65,69]. Comparisons of host haplotype to parasite genotype could, for example,
reveal whether patterns of genetic relatedness are correlated. Additional comparisons focusing
on functional genes associated with immune response could also prove informative, especially
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with reference to further information on life history and demographic factors that may influ-
ence host-parasite interactions.

Supporting Information
S1 Fig. Haplotype Networks.Minimum spanning networks were constructed in Network and
colored by (a) lake, (b) year collected, and (c) genotypic cluster assignment (K = 3). Lines rep-
resent one base pair difference between haplotypes, and black nodes represent
transitional mutations.
(TIFF)

S2 Fig. Bayesian Cluster Analysis. Grouped by lake, with (a) K = 2, (b) K = 5, by (c) year col-
lected K = 2, (d) fish host, with only hosts with greater than seven parasites, K = 2, (e) cluster
one K = 2, (f) cluster two K = 2, and (g) mean ln P(D) plot.
(TIFF)

S1 Table. Pairwise FST and FST Values by Region. FST values are above the diagonal and FST
values are below the diagonal. Significant values are bold (p>0.05). MatSu = Matanuska-Sus-
itna Valley; Kenai = Kenai Peninsula; BB = Bristol Bay region.
(DOCX)

S2 Table. Estimates of Hardy-Weinberg Equilibrium. N: number of individuals per lake; HE:
expected heterozygosity; HO: observed heterozygosity; FIS: inbreeding coefficient. Bolded HO

values indicate significant departures from Hardy-Weinberg Equilibrium (p<0.05).
(DOCX)
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