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ABSTRACT: Ensuring data quality and proper instrument functionality is a
prerequisite for scientific investigation. Manual quality assurance is time-consuming
and subjective. Metrics for describing liquid chromatography mass spectrometry
(LC−MS) data have been developed; however, the wide variety of LC−MS
instruments and configurations precludes applying a simple cutoff. Using 1150
manually classified quality control (QC) data sets, we trained logistic regression
classification models to predict whether a data set is in or out of control. Model
parameters were optimized by minimizing a loss function that accounts for the trade-
off between false positive and false negative errors. The classifier models detected bad
data sets with high sensitivity while maintaining high specificity. Moreover, the
composite classifier was dramatically more specific than single metrics. Finally, we
evaluated the performance of the classifier on a separate validation set where it
performed comparably to the results for the testing/training data sets. By presenting
the methods and software used to create the classifier, other groups can create a
classifier for their specific QC regimen, which is highly variable lab-to-lab. In total, this manuscript presents 3400 LC−MS data
sets for the same QC sample (whole cell lysate of Shewanella oneidensis), deposited to the ProteomeXchange with identifiers
PXD000320−PXD000324.
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■ INTRODUCTION

Determining whether an instrument is operating within
acceptable performance metrics is an essential step during
scientific investigation.1,2 A variety of methods are commonly
used in liquid chromatography mass spectrometry (LC−MS),3

with many groups routinely utilizing a common sample which is
regularly analyzed, for example, weekly. Samples range from
simple proteins and mixtures to whole cell-lysates.4 In addition
to regularly running a quality control (QC) sample, recent
research has investigated analysis methods and metrics for
assessing data quality. Rudnick et al. defined 46 “NIST metrics”
to quantify the performance of various LC−MS aspects, such as
chromatography, ion source, dynamic sampling, and peptide
identifications.2,5 These metrics are largely dependent on MS/
MS data and their subsequent peptide identifications. The
Quameter software package proposed an additional set of
metrics, which are not dependent on MS/MS identifications.6

The NIST and Quameter efforts focused on generating a
comprehensive set of metrics for monitoring the various aspects
of system performance. When employing the metrics to
monitor the day-to-day operation of an LC−MS system, it is
important to note that some metrics are heavily dependent on
the specific instrument and configuration. What is an acceptable
value for one setup may be wholly unacceptable for another.
Thus, a critical shortcoming of current metric sets is that they
produce an array of values and leave interpretation to the user.
Specifically, there is no guidance as to when the performance of

the LC−MS system drops below acceptable limits. Given the
large number of metrics available, routine interpretation of the
metrics and quality assurance is typically determined via a
subjective weighting of a subset of the metrics. The specific
subset of metrics, and associated acceptable values, varies from
lab to lab and among individual operators.
As pointed out by Tabb, there remains a need for “decision

support tools for the interpretation of metrics derived from
data”.1 A variety of statistical methods may be used to explore
and model how the multivariate metrics predict data quality,
including principal component analysis,7 classification8 and
regression and model selection techniques.9,10 Leveraging a
large corpus of manually curated QC data, we developed a
Lasso logistic regression classifier (LLRC) that predicts, with
high sensitivity and specificity, whether a QC data set is in or
out of control. This signature, which is a composite of LC−MS
performance metrics, is more robust than any single metric
itself. As performance can be viewed as a continuum, the LLRC
model natively computes a quality score within the range 0−1.
The trained model then identifies a cutoff for the dichotomous
classification that achieves the highest sensitivity and specificity.
An important feature of the LLRC is that it differentiates
between false positive and false negative errors. These errors
have distinct real-life implications on data generation and use.
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Therefore, the penalties associated with these errors are
separately defined, which allows the classifier to be more
responsive in the balance between sensitivity and specificity.11

Finally, we present the software used to create the classifier, so
that other laboratories can create a classifier specific to their QC
regimen, instrumentation, and needs.

■ EXPERIMENTAL PROCEDURES

Sample Preparation

A Shewanella oneidensis MR-1 lysate digest is used as a quality
control sample in our laboratory to provide sufficient proteomic
complexity to assess both LC and MS performance. The
cultures (7 L) were grown in fed-batch mode using a Bioflow
3000 model fermentor (New Brunswick, Inc.) and allowed to
achieve steady state before sampling and harvesting. The
medium was HBa MR-1 with 0.5 mL/L of 100 mM ferric NTA,
1 mL/L of 1 mM Na2SeO4, and 1 mL/L of 3 M MgCl2·6H2O
as well as vitamins, minerals, and amino acids. The cultures
used O2 as the terminal electron acceptor from a house air
source (5 L/min flow rate) and were maintained at 20%
dissolved oxygen (DO). Other monitored parameters included
maintaining a pH of 7.00 (±0.03), a constant agitation of the
culture at 5000 rpm, and temperature of 30 °C. These samples
were pelleted (11900g for 8 min at 4 °C) and frozen at −80 °C
until processing for proteomic analysis. Enough material was
prepared in this manner to provide QC samples for the last four
years. The majority of the culture is still waiting to be used.
Cells were then lysed by homogenizing the cells with 0.1 mm

zirconia/silica beads in the Bullet Blender (Next Advance,
Averill Park NY) speed 8 for 3 min. Samples were then
immediately placed on ice to inhibit proteolysis and then
transferred, and the beads were rinsed with 100 μL of 100 mM
Na4HCO3 and 1 mL of 100 mM ammonium bicarbonate. A
BCA protein assay (Thermo Scientific, San Jose CA) was
performed to determine concentration. Samples were dena-
tured by adding urea to 7 M and reduced by dithiothreitol
(DTT) to a concentration of 5 mM. The samples were then
incubated for 30 min at 60 °C, and then diluted 10-fold with
100 mM Na4HCO3. CaCl2 was added to a concentration of 1
mM. Next, trypsin (Affymetrix, Santa Clara CA) was added in a
ratio 1:50 trypsin/protein and incubated at 37 °C for 3 h.
Samples were desalted by 100 mg DSC-18 columns (Sigma
Aldrich). Each column was conditioned with 3 mL of MeOH
and rinsed with 2 mL of 0.1% TFA in H2O. Peptides were then
loaded on the resin and washed with 4 mL of 95:5 H2O/ACN
with 0.1% TFA. Peptides were eluted with 1 mL 80:20 ACN/
H2O with 0.1% TFA. Collected sample was concentrated via
SpeedVac (Thermo Scientific, San Jose CA), and then the
samples were transferred to ultracentrifuge tubes and ultra-
centrifuged at 100 000 rpm for 10 min at 4 °C, and the
supernatant was drawn off and pooled. Final concentration was
determined by peptide BCA (Thermo Scientific, San Jose CA).
Samples were brought to a concentration of 0.5 μg/μL with
H2O (MilliPore, Billerica MA) and divided into aliquots for
injections on the HPLC.
The HPLCs used to run the samples were built in-house

utilizing various commercial pumps, valves, and auto samplers,
all of which were coordinated by a custom software packaged
called LCMSnet. The data sets analyzed for this paper were run
using LC columns that were 75 μm inner diameter, and either
30 or 65 cm in length. These LC columns were packed in house
with Phenomenex Jupiter C18 3 μm porous beads. The flow

rate was 300 nL/min. Both 60 and 100 min acquisitions were
used. Mobile phase A is 0.1% formic acid in H2O and mobile
phase B is 0.1% formic acid in acetonitrile. The 100 min
gradient was delivered by starting at 5% mobile phase B and
advancing to 8%, 12%, 35%, 60%, and 75% at times (in
minutes) 2, 20, 75, 97, 100 respectively. The times were scaled
proportionally to deliver the same gradient in 60 min. Typically
2.5 μg of Shewanella digest was loaded to the head of the
column or to a trapping column. Although operating conditions
varied by capabilities of each instrument, typical conditions for
each are as follows. The LTQ was run in data-dependent MS-
MS mode, selecting the top 10 parent ions from each survey
scan. The Exactive runs were high resolution MS only with the
target resolution set to 100 000. The LTQ-Orbitrap and the
Velos-Orbitrap instruments were typically set to have a high
resolution survey scan of 60 000 resolution followed by the top
6 or 10 data-dependent MS−MS scans, respectively. Because of
the diversity of data sets used in this study, this is not a
comprehensive list of conditions. Data are presented from four
classes of instruments from Thermo Scientific: the LTQ linear
ion trap, Exactive, LTQ-Orbitrap, and Velos Orbitrap plat-
forms. There are 1150 testing and training data sets: 224 on
LTQ instruments, 85 on Exactive instruments, 380 on LTQ-
Orbitrap instruments, and 461 on Velos-Orbitrap instruments
(see Table 1).

For each QC data set, the NIST and Quameter metrics were
calculated exactly as described in the original publications.5,6

The Quameter metrics were calculated using the software from
the Tabb group (http://fenchurch.mc.vanderbilt.edu/software.
php); the NIST metrics were calculated using in-house
software, SMAQC, which is posted on our github repository
(https://github.com/PNNL-Comp-Mass-Spec). For data from
the Exactive instrument class, no MS-MS data were collected,
and therefore any metrics relating to MS/MS data were
omitted. Peptide identifications were performed with MSGF+
(version v9593, 05/06/2013). The protein sequence database
was the Shewanella oneidensis MR1 proteome supplemented
with trypsin and keratin sequences. Relevant search parameters
were tryptic specificity (semi tryptic allowed), no static
modifications, dynamic methionine oxidation. Precursor and
fragment mass tolerance were dependent upon instrument
type. High resolution instruments used a 20 ppm tolerance, low
resolution data used 2.5 Da. All of the data has been deposited
to the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository with
the data set identifiers PXD000320, PXD000321, PXD000322,
PXD000323, and PXD000324. This includes the instrument

Table 1. Number of Manually Curated and Noncurated Data
Sets for Each Instrument Platform

manually curated data sets

instrument

number of
good/OK
datasets

number of
poor data sets total

number of
noncurated data

sets

Exactive 66 19 85 225
LTQ
IonTrap

123 101 224 243

LTQ
Orbitrap

257 123 380 461

Velos
Orbitrap

339 122 461 1321

total 785 365 1150 2250
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.RAW files, the MS-GF+ peptide identifications in .mzIdentML
format,12 .mgf converted spectra files, and the spreadsheet
containing the metrics for every data set.

Expert Annotation

The data sets were manually reviewed by three expert
instrument operators (30+ years of combined LC−MS
experience) using an in-house graphical user interface viewer.
This viewer contained the base peak chromatogram, total ion
current chromatogram, plots of both the top 50 000 and top
500 000 LC−MS detected features, and the number of peptides
identified. In the first round, 1150 data sets were manually
curated as “good”, “okay”, or “poor” and used to develop the
classifier. In cases where the assessors disagreed (∼5−10%), the
majority opinion was taken for the curated value. Moreover, the
“okay” value was used to denote the wide range of performance,
which, although not optimal, was still acceptable. For the
validation, an additional 1321 data sets classified with the
statistical model from which a subset of 100 data sets were
chosen for manual curation (Supplemental Files 1 and 2,
Supporting Information).
Data quality assessment requires knowledge of the

conditions under which the QC was run to properly account
for the variety of run parameters, for example, high resolution
MS only, high resolution MS low resolution MS/MS, high
resolution MS high resolution MS/MS, and low resolution MS
low resolution MS/MS. Data-dependent acquisition regimes
varied from MS/MS of top 3, top 6, and top 10 most intense
peaks from the survey MS scan. Fragmentation methods
included high energy collisional dissociation (HCD) and
collision induced dissociation (CID). Resolution ranged from
1000 to 100 000 based on instrument capabilities and settings
to meet the needs of ongoing experiments. Run times were
either 60 or 100 min, and LC column lengths varied
accordingly. Each of these criteria is considered to determine
what constitutes an acceptable (in control) data set. For
example, under identical mass spectrometer conditions, an
acceptable 60 min HPLC run would provide results that would
be unacceptable (out of control) for a 100 min run.

Training Statistical Models

Multivariate statistical techniques7 were applied to the data to
identify which metrics might be useful to understand the quality
of a given data set and to develop a model to predict the quality
of future data sets. Principal component analysis (PCA)7 was
applied on the NIST and Quameter metrics, 87 in all, using the
PCA package in the R statistical programming language. PCA
was used to motivate the design of statistical classification
models. There are a wide variety of classification algorithms.7,8

We applied a few of them, including classification and
regression tree algorithms (CART), linear discriminant analysis
(LDA), and logistic regression augmented by a classification
threshold. The most effective was logistic regression,9 an
approach for predicting a binary response using a linear
combination of continuous and/or categorical predictor
variables. The goal for the classifier is to identify data sets
that are out of control. To that end, the binary response was
coded as a “0” for a data set that was in control (annotated as
“good” or “OK”) and “1” for a data set that was out of control
(annotated as “poor”). The linear component of the logistic
regression model can be expressed as

ββ= +g x x( )i i0 1

where i, (i = 1, ..., N) indexes the data sets, β0 is the intercept,
β1 is a vector of coefficients (one for each of the NIST and
Quameter quality metrics included in the model), and xi is a
vector representing the quality metrics included in the model.
The probability of the binomial response is modeled by the
logistic function:

π =
+
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where π (xi) estimates the probability of data set i being out of
control.
An important step in any regression model is determining

the set of variables that best predict the response. We used the
Lasso approach,9,10,13−15 a model selection technique that
accounts for collinearity among the predictors while selecting a
subset of the predictor variables that results in the “best”
regression model. In this case, “best” is defined as the subset of
variables whose coefficients maximize a penalized log-likelihood
function (see Appendix).
The inputs to the Lasso logistic regression model include the

complete set of possible quality metrics, the binary expert
annotations (0 = “good” or “OK”, 1 = “poor”), and λ, a
regularization parameter that simultaneously restricts the size of
model coefficients and the number of quality metrics included
in the model. We developed a separate Lasso logistic regression
model for each of the four instruments types. We used a
threshold parameter, τ, to make a definitive prediction as to
whether a data set was good or poor. Specifically, we classify
data set i as out of control if π(xi) > τ and in control otherwise.
We will refer to the combination of the logistic regression and
the threshold, τ, as the Lasso logistic regression classifier
(LLRC).
When predicting the quality of a data set, the LLRC will

either predict a data set correctly, or will make either a false
positive or false negative error. A false positive error occurs
when the LLRC predicts the data set to be out of control, when
it was annotated as in control. The false negative error occurs
when the LLRC predicts the data set as being in control when
it was annotated as out of control. The rates of these errors
depend on the threshold criteria and are inversely related (as
one goes up, the other generally goes down). To this end, a loss
function is constructed that reflects the consequences we
attribute to the two types of errors. When the LLRC predicts a
data set correctly, zero loss occurs. When the LLRC produces a
false positive, a loss of 1 occurs, and a false negative receives a
loss of κ ≥ 1. Hence, the consequences (or cost) of a false
negative are κ times greater than those of a false positive.
Cross validation was employed to determine the optimal λ

and τ that minimize the expected loss. Cross validation was
performed on the 1150 testing/training data sets by randomly
dividing the data set into five equal parts. Four parts were then
combined to train the LLRC which was subsequently used to
predict the “held-out” part. This continues such that each part
was predicted from a model trained by the other four parts. The
entire process is discussed in detail in the Appendix. An LLRC
was fit separately for each instrument platform.
The R package used in the creation of the LLRC, and a

tutorial for its use is available for download at http://omics.pnl.
gov/software/MSDataQualitySignatures.php.
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■ RESULTS
One critical setting where subjective or time-consuming manual
data analysis can lead to systemic problems is in the evaluation
of quality control (QC) data sets. In an effort to automate the
assessment of QC data sets, we selected a testing/training
sample of 1150 data sets (see Table 1) and manually annotated
them as being “good,” “OK”, or “poor.” These data sets
originated from four types of mass spectrometers and are all
replicate analyses of the same whole-cell lysate of S. oneidensis
(see Experimental Procedures). In addition to the manual
rating, all computational metrics from NIST and Quameter
were calculated for each data set.5,6 Initial analyses of the 1150
data sets using PCA showed a separation by quality rating and
also by instrument type (Figure 1). This finding confirmed the

need to build classifiers for each instrument separately. The
separation by quality rating indicates that statistical classi-
fication approaches that rely on multiple variables are likely to
be successful, to some degree, in predicting data quality
(Supplemental Figure 1, Supporting Information).
The primary goal was to build a classifier that accurately

predicts the data set quality, specifically when a data set is out
of control (poor). We utilized a Lasso logistic regression
classifier (LLRC) which simultaneously restricts the size of
model coefficients and the number of quality metrics included
the model (see Experimental Procedures). Importantly, the
model does not treat false negatives and false positives as
equally deleterious events. The different impact of each error
type is reflected in the practical implication of day-to-day
instrument operation. While false positives incur extra work and
inconvenience for operators to review and overturn the
decision, the false-negative error is of much greater
consequence; if the classifier fails to predict an out of control

data set, a problem in the LC−MS system may not be
discovered and poor quality data will continue to be produced.
Optimal parameter values were obtained by using cross
validation to minimize a loss function that treated false
negatives as five times worse than false positives. The resulting
LLRCs for each of the four instrument types are shown in
Table 2. The classifier output is natively a value within the

range 0−1. This reflects the continuum of performance of real
LC−MS systems in day-to-day operation. Converting this value
into the binary classification is accomplished by applying a
threshold cutoff. Figure 2 shows the sensitivity and specificity as
the threshold value varies for each instrument platform. The
dashed gray line on each plot in Figure 2 indicates the optimal
threshold that minimizes the loss function. Mathematical and
algorithmic details for obtaining the LLRC are provided in the
Appendix.
The final step was to develop an LLRC for predicting the

quality of future data sets on each platform. These classifiers
were created by training on all the available data using the
optimal parameter values previously obtained. In developing
the LLRC, the Lasso method selected between 2 and 12 quality
metrics to be included in the LLRC for each of the four
instrument types. These metrics are listed in Table 3. The
LLRC utilized a different number of metrics to classify data
from each of the different instrument types. The number of
metrics used seems to correlate with how well separated the
data sets appeared in the PCA analysis (Supplemental Figure 1,
Supporting Information). Exactive data, which required only
two metrics, was the most distinctly separated by the first two
principle components. In contrast, Orbitrap data required 12
metrics and was visibly less clearly separated in the PCA
analysis. It is important to note that many of the NIST and
Quameter quality metrics are highly correlated with each other.
Although Lasso selected a certain subset of these metrics, it is
likely there are other subsets that would have performed
similarly had they been selected. Consequently, one cannot
directly compare the subset of metrics chosen for one
instrument class to another, and we do not claim that the
metrics in Table 3 constitute the best set.
Table 2 shows the sensitivity and specificity at the optimal

threshold for each instrument platform. The sensitivity for each
instrument category ranged from 100% for Exactive to 89.4%
for LTQ-Orbitrap. The specificity ranged from 97% for
Exactive to 84.6% for LTQ Ion trap (which had a very high
sensitivity of 97%). A value of τ that performs well with both
sensitivity and specificity is preferable. However, if one measure
is more important in a specific cost/benefit scenario, the
threshold will adjust to reflect the trade-offs captured in the loss
function. This is reflected in the LTQ Ion trap sensitivity and
specificity calculations. Sensitivity was more desirable, and,

Figure 1. Principal component analysis of curated data. Each data
point on the plot represents a single QC data set and is identified by
its instrument class (the symbol) and its manually curated quality (the
color). The first two principal components explain about 40% of the
variability in the original data. Only the Quameter data quality metrics
could be calculated for Exactive data, as it lacks MS2 fragmentation
scans.

Table 2. Classification Measures from the LLRC Models

instrument

loss function
parameter

(κ)

optimal
lambda
(λ)

optimal
threshold

(τ)
sensitivity

(%)
specificity

(%)

Exactive 5 0.05 0.12 100 97.0
LTQ
IonTrap

5 0.13 0.14 97.0 84.6

LTQ-
Orbitrap

5 0.05 0.25 89.4 91.4

Velos-
Orbitrap

5 0.09 0.17 93.4 92.9
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therefore, resulted in a threshold with a larger discrepancy
between sensitivity and specificity. Moreover, the expected rates
of false positives and false negative are implicitly considered as
part of the optimization.

Comparison to Single Metric Classifiers

The LLRC is a composite classifier, in that it relies on multiple
metrics to determine the quality of each data set. Some
instrument operators may rely only on a single metric to assess
data quality. Commonly used single metrics include: total
tryptic peptide count (P_2A), distinct tryptic peptide count
(P_2C), and the absolute intensities of peaks in the TIC
(MS1_2B). In Table 4, we present a comparison of the LLRC
to these single measures of quality for Velos-Orbitrap data sets.
The table illustrates the proportion of false positives and false

negatives that would occur when using the LLRC, as well as the
four aforementioned metrics, each applied individually with
their own threshold. As before, the loss function used to
optimize the LLRC parameters assumed that false negatives are
5 times worse than false positives, resulting in only 7.1% (24)
false positives and 6.6% (8) false negatives (see Table 4). To
create an equitable comparison, the threshold for each
individual metric was selected to achieve a false negative rate
of 0.066 (equal to that of the LLRC). The LLRC had a false
positive rate of 7.1%, while the single metrics resulted in
considerably worse false positive rates ranging between 32.3%
and 73.5% (see Table 4). The LLRC kept the false negative rate
low (i.e., high sensitivity to detecting out-of-control data sets)
while also controlling the false positive rate. To frame this

Figure 2. Sensitivity and specificity trade-off. The 1150 curated data sets are shown according to their classification from the cross-validation results.
Data are separated by instrument class and run through their separate classifier models. We define sensitivity as the probability of correctly classifying
an out of control (or poor) data set, equal to 1 minus the false negative rate. Specificity is the proportion of good data sets that are correctly classified
and is equal to 1 minus the false positive rate (see Experimental Procedures). The dotted vertical line indicates the optimal threshold, τ, which
balances the cost of a false positive or false negative classification error.

Table 3. Quality Metrics Selected by Lasso for Inclusion in the Logistic Regression Models

Exactive LTQ IonTrap LTQ-Orbitrap Velos-Orbitrap

MS1_TIC_Q2 XIC_WideFrac XIC_WideFrac XIC_WideFrac
MS1_Density_Q1 MS2_4B XIC_Height_Q4 MS2_4A

P_2C MS1_TIC_Change_Q2 MS2_4B
MS1_Density_Q2 P_2B
DS_1A
DS_2A
IS_1A
IS_3A
MS2_1
MS2_4A
MS2_4B
P_2B
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comparison in real-world terms, let us compare LLRC to the
P_2C single metric classifier in terms of the total number of
data sets that would require validation. Our comparison
depends on two assumptions: both classifiers have the same
sensitivity (0.934), and if a classifier predicts a data set is poor it
will be curated. Consequently, if we use the P_2C classifier
instead of the LLRC, we would expect to have to validate an
additional (0.323−0.071) × π × 100% of the data sets. Here, π
is the unknown fraction of data sets that truly are out of
control. So, in a group of 1000 data sets, if π were 0.15, we
would expect to have to curate 38 additional data sets.
Although the time spent in curating a single data set is typically
small (1−2 min), there is a distinct advantage for automating
curation and avoiding manual revalidation. Individually, the 38
additional manual analyses may not take much time, but the
repetitive monotony increases the propensity for operator error
and drifting subjectivity.

Validation of Classifier

To further validate the LLRC, we predicted the data quality of
an additional 1321 noncurated Velos-Orbitrap data sets using
the optimal LLRC trained on all the data (denoted f* in the
Appendix). We randomly (but systematically) selected 100 of
these classified data sets such that the probabilities estimated by
the logistic regression were evenly spaced across the range of
predicted probabilities. These data sets were manually curated
and compared to the LLRC predictions. The LLRC achieved a
sensitivity of 91.9% and a specificity of 81.6%. The sensitivity
was quite similar to the cross validation estimates (shown in
Table 2), but the specificity was 11% lower than what was
observed in cross validation. Notwithstanding this reduction in
specificity, it is noteworthy that sensitivity was preserved,
especially because sensitivity is more important than specificity;
that is, a false negative error is considerably worse than the false
positive error.

■ DISCUSSION

In this manuscript, we present a very large corpus of LC−MS/
MS replicates using four different instrument classes. The
primary purpose for which we use the data is to build a classifier
for automatically detecting out-of-control data sets and
therefore poor instrument performance. We envision, however,
that this corpus could be used for a myriad of other
bioinformatics and biostatistics applications. With data
presented on four different classes of instruments, an obvious
application would be the development of MS/MS scoring
functions, using this data to understand how fragmentation
differs between instrument types. A second type of analysis
could be to understand the qualitative presence/absence of
various peptides observed across a large number of replicates.
The missing data problem is an important issue for quantitative
proteomics, and this corpus would allow for rigorous
understanding of the scope of the problem and potentially
causes for sporadic peptide observation. Another application
that we envision is the investigation of unidentified or

unattributed spectra. With thousands of LC−MS/MS data
sets, there are a very large number of fragmentation spectra for
which there is not a confident identification. Of those
unidentified species, many are fragmented in multiple data
sets; spectrum averaging or other methods could be utilized to
obtain a confident identification. For these and doubtless many
other bioinformatics explorations, we have posted the data to
public repositories and encourage researchers to use them as a
resource. We note that the original intent of our research
(classifying bad data sets) necessitated the publication of LC−
MS/MS data that would normally not be published. We openly
acknowledge that some of the data are of low quality, as was
required for our goals. Therefore, in secondary analyses of these
data, we encourage users to carefully consider whether such
data are appropriate for their application, and consult
Supplementary Files 1 and 2, Supporting Information for a
list of data that is considered out-of-control.
The presented approach demonstrates how the Lasso logistic

regression classifier (LLRC) approach can leverage a collection
LC−MS performance metrics to accurately predict the quality
of LC−MS data sets. We note that our classifier models may
not be directly usable by those whose LC−MS instrumentation
or QC regime is different from ours. However, the described
methodology and accompanying software can be applied by
others who want to develop an automated QC analysis. Given
the diverse QC samples, instruments and even goals of various
research laboratories and core facilities, we strongly recommend
that each group train their own classifier. Our research shows
that a statistically trained composite metric is dramatically more
effective than any single metric. Thus, this work describes an
automated process that will greatly improve the use of quality
metrics.
While the approach produces a dichotomous prediction (i.e.,

in or out of control) for each data set, operators may find it
more useful to omit the final classification step and base their
assessments on the probability scores alone. These scores,
which range in the unit interval, may be useful in making
decisions about borderline cases. Similarly, adding an explicit
borderline class would be a valuable future direction. The
LLRC may also provide the underpinnings for a more
comprehensive statistical model designed to identify the
onset of operational drift. Such a methodology would alert
the instrument operator to more closely monitor the system. A
final extension would be to cluster and classify different types of
malfunction in the LC−MS system. Understanding the
particular subsets of the quality metrics that correspond to
out-of-control conditions in LC or MS would assist operators in
diagnosing malfunctions. Moreover, new and more specific
metrics could be created to specifically target different types of
malfunction. Such classifications would provide immense utility
for day-to-day instrument operation.

Availability and Supporting Data

All data used for this project are available at http://omics.pnl.
gov and have been deposited to the ProteomeXchange

Table 4. False Positive (Specificity) and False Negative (Sensitivity) of LLRC versus Single Metrics for Velos-Orbitrapa

metric LLRC P_2C P_2A MS1_2B

false positive (specificity) 0.071 (0.929) 0.323 (0.677) 0.386 (0.614) 0.735 (0.265)
false negative (sensitivity) 0.066 (0.934) 0.066 (0.934) 0.066 (0.934) 0.066 (0.934)

aThe sensitivity is held constant at 0.934 to show the sensitivity for any single metric compared to the LLRC. From Rudnick et al.5 P_2C is the total
unique tryptic peptide identifications; P_2A is the total spectrum identifications; MS1_2B is the median TIC.
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Consortium (http://proteomecentral.proteomexchange.org)
via the PRIDE partner repository16 with the data set identifiers
PXD000320, PXD000321, PXD000322, PXD000323, and
PXD000324. This includes representative instrument raw files
and the complete list of QC metrics for all data sets
(Supplemental Files 1 and 2, Supporting Information).

■ APPENDIX
Identifying the best LLRC model requires choosing the values
of a variety of parameters that satisfy defined optimization
criteria. Let yi = 1 if the true status of data set i is out of control
and let yi = 0 if it is in control. Let πi = π(xi, β0, β1, λ) represent
the probability that data set i is out of control. This probability
is a function of the quality metrics, xi, the intercept β0, the
regression coefficients, β1 = (β1, ..., βp)

T, and the regularization
parameter, λ. Now let yl̂ ≡ f(xi, β̂0, β̂1, λ, τ) = I{π̂i>τ} denote the
status of the data set predicted by the LLRC, where, once again,
yî = 1 if data set i is predicted to be out of control, and 0 if in
control. The “hat” notation above a parameter (or symbol)
designates a numeric value of the parameter that has been
estimated from data. In Lasso, the estimates of the regression
parameters, β̂0 and β̂1, are chosen to maximize the penalized log
likelihood function

∑ββ λ β− | |
=

x( , , )i
j

p

j10
1 (1)

for a given value of λ, a regularization parameter. The log
likelihood function is given by

∑ββ π π= + − −
=

x y y( , , ) [ log( ) (1 ) log(1 )]i
i

N

i i i i10
1 (2)

We obtained the estimates of λ and τ using 5-fold cross
validation.10 Let δ: {1, ..., N}→ {1, 2, 3, 4, 5} map the data set i
into one of five randomly chosen, nonoverlapping, and
exhaustive partitions of the N data sets. Let f−k(xi, β̂0, β1̂, λ,
τ) represent the classifier whose regression parameter estimates
are obtained by maximizing (1) using all the data except the kth
partition. Now define the loss function, L(y, y,̂ κ) according to
the following matrix:

The parameter κ defines the trade-off between false positives
and false negatives. For example, κ = 5 indicates it is five times
more costly (or 5 times worse, in some sense) to call a poor
data set “good” than to call a good data set “poor.”
The optimal values of λ and τ can be obtained by minimizing

the expected loss over the data:

∑ βλ τ β λ τ κ= ̂ ̂δ

=

− xV
N

L y f( , )
1

( , ( , , , , ), )i
i

N

i
i

1
1

( )
0

(3)

and thus

λ τ λ τ̂ ̂ = λ τV, argmin ( , ), (4)

The optimal classifier (according to the objective functions
defined by (1) and (3)) that would be used for future data sets

is given by f* = f (x, β̂0, β1̂, λ ̂, τ)̂, where the final estimates β̂0
and β̂1 are obtained using λ ̂ and maximizing (1) for all the data.
We arrived at estimates for λ and τ by calculating (3) over a
grid λ × τ where λ = {0.05 to 0.15 by 0.02} and τ = {0.01 to
0.99 by 0.01}.
We now describe the entire process algorithmically as

follows:
(1) Randomly divide the data into five partitions, {1, 2, 3, 4,

5}.
(2) Define a sequence of λ values and a sequence of τ values

and construct a grid of the two sequences, λ × τ.
(3) For each (λ × τ) in the grid λ × τ:
(a) For each training partition ({1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2,

4, 5}, {1, 3, 4, 5}, and {2, 3, 4, 5}), fit the logistic regression
model; that is, obtain the estimates β̂0 and β̂1 by maximizing the
penalized log likelihood function, (1), using the current value of
λ.

(b) For each data set i, calculate the predicted quality, yî =
f−δ(i) (xi, β̂0, β1̂, λ, τ), using the current values of λ and τ and the
parameter estimates β̂0 and β̂1 that were obtained from the four
partitions that did not include data set i.

(c) For each data set, calculate the loss as defined by the loss
matrix above.

(d) Calculate the expected loss, V(λ, τ) by averaging the loss
values over all the data sets.
(4) Identify the (λ, τ) pair in the grid λ × τ that has the

lowest V(λ, τ). This pair, (λ ̂, τ)̂, is the “optimal” estimate of the
regularization parameter λ and the threshold τ.
(5) Having identified (λ ̂, τ)̂, obtain new estimates β̂0 and β̂1

using λ ̂ and all the data. This final LLRC model, f* = f (x, β̂0,
β ̂1, λ ̂, τ)̂, can be used to classify future data sets.
The calculation of sensitivity and specificity in Tables 2 and 4

and Figure 2 is similar to (3), except an indicator loss function
is used, and it is averaged over a subset of the data. For
sensitivity, or the true positive rate (TPR), we have

∑ ∑λ τ = ββ λ τ
=

= ̂ ̂ =
=

=δ−TPR I I( , ) ( )/ ( )x
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and for specificity, the true negative rate (TNR):

∑ ∑λ τ = ββ λ τ
=
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