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ABSTRACT RNA silencing pathways play critical roles in maintaining quiescence of transposons in germ
cells to promote genome integrity. However the precise mechanism by which different types of transposons
are recognized by these pathways is not fully understood. Furthermore, the location in the germline where
this transposition occurs after disruption of transposon silencing was previously unknown. Here we utilize
the spatial and temporal organization of the Caenorhabditis elegans germline to demonstrate that trans-
position of DNA transposons in RNA silencing pathway mutants occur in all stages of adult germ cells. We
further demonstrate that the double-strand breaks generated by transposons can restore homologous
recombination in a mutant defective for the generation of meiosis-specific double-strand breaks. Finally,
we detected clear differences in transposase expression and transposon excision between distinct branches
of the RNA silencing pathway, emphasizing that there are multiple mechanisms by which transposons can
be recognized and routed for small-RNA-mediated silencing.
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Transposons are discrete segments of DNA that are capable of excising
themselves from one locus and reintegrating themselves at another
genomic location.Movementof transposons inandoutofgenescanalter
their expression and function, making transposons a major source of
deleterious mutations as well as a driving force of evolution. In many
organisms, transposons have also been co-opted by researchers
for mapping, random and site-directedmutagenesis, and gene tagging
(Williams et al. 1992; Barrett et al. 2004; Williams et al. 2005; Robert
and Bessereau 2007; Frøkjaer-Jensen et al. 2008; Frøkjær-Jensen et al.
2010). Because transposons utilize their host’s cellular machinery for
their mobilization, they are considered to be selfish DNA parasites,
similar to viruses.

Thereare twomajorclassesof transposableelements– retrotransposons
(Class I), which contain an open reading frame coding for a retroviral-like
reverse transcriptase and transpose through an RNA intermediate,
and DNA transposons (Class II), which move via a DNA-based
“cut-and-paste” mechanism. DNA transposons usually contain a
transposase sequence flanked by Terminal Inverted Repeats (TIRs).
The transposase recognizes the specific sequence of its TIRs and
catalyzes a cleavage reaction that releases the transposon ends. The
transposase also recognizes a preferred target site, and inserts the
transposon at the chosen location (Bessereau 2006). At the site of
excision, a DNA transposon leaves behind a double-strand break
(DSB), whichmust be repaired by the host’s cellular machinery, either
through homologous recombination or non-homologous end joining.
The mechanism of repair is determined primarily based on cell type –
somatic cells favor end joining pathways whereas germ cells often
repair breaks via homologous recombination, and a subset of these
events are resolved as interhomolog crossovers (Plasterk 1991; Robert
et al. 2008).

There are numerous retrotransposons in the genome, which, until
recently, were thought to be inactive. However, a study published in
2012demonstrated thatCER1,Gypsy-like retrotransposon, is transcrip-
tionally active and produces viral-like particles in wild-type C. elegans
germlines (Dennis et al. 2012).More recently, it has been demonstrated
that several other retrotransposons, including CER3, are targets of
the nuclear RNA interference (RNAi) pathway and H3K9 methylation
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(Ni et al. 2014; 2016; Zeller et al. 2016; Ni et al. 2018). It is not yet
knownwhether any of these retrotransposons are capable of transposition
in C. elegans. In contrast, transposition has been detected for at least
seven distinct families of DNA transposons (Tc1-Tc5, Tc7, CemaT1),
though there are many more transposons present that have not been
well studied (Eide and Anderson 1985; Collins et al. 1989; Levitt and
Emmons 1989; Yuan et al. 1991; Collins and Anderson 1994;
Rezsohazy et al. 1997; Brownlie and Whyard 2004; Bessereau
2006). The most well characterized DNA transposon family in
C. elegans is Tc1, of which there are 31 intact copies present in the
genome (Fischer et al. 2003). Tc1 is not normally active in germ cells,
however, gene mutations that result in activation of Tc1 were iden-
tified from a forward genetic screen and are referred to as mutator
(mut) class genes (Ketting et al. 1999). Around the same time, a screen
for mutations that result in defects in RNAi identified a largely over-
lapping panel of genes, suggesting that the silencing of transposons is
an endogenous function of the RNAi pathway (Tabara et al. 1999).

Many of the mutator pathway genes have been identified as com-
ponents of the small RNA-mediated silencing pathways, including the
nucleotidyl transferase (mut-2/rde-3), the 39-59 exonuclease (mut-7),
the DEAD box RNA helicase (mut-14), the glutamine/asparagine
(Q/N)-rich protein (mut-16/rde-6), two proteins of unknown
function (mut-8/rde-2 and mut-15), (Ketting et al. 1999; Tijsterman
et al. 2002; Vastenhouw et al. 2003; Tops et al. 2005; Chen et al. 2005;
Gu et al. 2009). C. eleganswith mutations in these genes not only have
active transposons and defects in response to exogenous RNAi, but
also have temperature-sensitive sterility and defects in endogenous
siRNA production (Gu et al. 2009; Zhang et al. 2011; Phillips et al.
2014). All of proteins encoded by these mutator pathway genes,
along with the RNA-dependent RNA polymerase RRF-1, associate
to form a protein complex that synthesizes highly abundant second-
ary 22G-siRNAs (22 nucleotides starting with a 59 guanosine) that
function downstream of primary Argonaute proteins (Pak and Fire
2007; Sijen et al. 2007; Gu et al. 2009; Gent et al. 2010; Phillips et al.
2012). This complex forms nuclear pore-associated perinuclear con-
densates in germ cells, referred to asMutator foci, where it is thought
to play a key role in surveillance and silencing of deleterious tran-
scripts, including transposon-derived RNAs, as they exit the nucleus
(Phillips et al. 2012; Uebel et al. 2018).

In addition to endogenous siRNAs, PIWI-associated small RNAs
(piRNAs) also have roles in silencing transposons (Batista et al. 2008;
Das et al. 2008). In C. elegans, piRNAs (also referred to as 21U-RNAs)
are bound and stabilized by the PIWI protein PRG-1 and trigger pro-
duction of secondary 22G-siRNAs dependent on the mutator pathway
(Ruby et al. 2006; Wang and Reinke 2008; Batista et al. 2008; Das et al.
2008; Lee et al. 2012; Bagijn et al. 2012). Only a single transposon
family, Tc3, has been demonstrated to transpose upon loss of the
piRNA machinery (Das et al. 2008), however, multiple other DNA
transposons are up-regulated transcriptionally or lose mutator path-
way-dependent 22G-siRNAs (Bagijn et al. 2012; McMurchy et al. 2017).

Here we demonstrate that DSBs generated by transposition of DNA
transposons in mutator pathway or piRNA pathway mutants can be
visualized throughout the germline of adult C. elegans, allowing us to
determine both temporally and spatially where these transposons are
active. Furthermore, in mutator pathway mutants these transposon-
mediated DSBs can, at some frequency, be repaired by homologous
recombination. Thusmutator pathwaymutants can partially rescue the
meiotic defects of spo-11 mutants, which fail to initiate meiotic recombi-
nation through the generation of DSBs. Finally, we observe distinct differ-
ences in transposon mRNA expression and frequency of DSBs generated
by transposition betweenmutator pathway and piRNA pathway mutants,

highlighting the distinct roles these two pathways play in transposon
silencing.

MATERIALS AND METHODS

C. elegans strains
Unless otherwise stated,wormswere grownat 20� according to standard
conditions (Brenner 1974). Strains used in this study include:

N2 – wild-type
AV157 – spo-11(me44)/nT1 IV; +/nT1 V
GR1833 – dpy-3(e27) unc-3(e151) X
GR1922 – mut-7(pk204) III; spo-11(me44)/nT1 IV; +/nT1 V
GR1923 – mut-16(pk710) I; spo-11(me44)/nT1 IV; +/nT1 V
NL1810 – mut-16(pk710) I
PD4792 – mIs11 IV
SX922 – prg-1(n4357) I
USC222 – mIs11 IV; dpy-3(e27) unc-3(e151) X
USC223 – mut-16(pk710) I; mIs11 IV; dpy-3(e27) unc-3(e151) X
USC313 – prg-1(n4357) I; spo-11(me44)/nT1 IV; +/nT1 V

RNA isolation and quantitative RT-PCR
RNA was isolated from synchronized adult C. elegans (66-68 h after L1
arrest) using Trizol, followed by chloroform extraction and isopropanol
precipitation. qRT-PCR was performed using transposon-specific
primer pairs and rpl-32 for normalization (Table 1). Data were analyzed
using the 2-DDCt method and P-values were calculated in R using the
t-test function in the package ‘pcr’ (Ahmed and Kim 2018).

Fluorescent microscopy
C. elegans were picked as L4s and dissected the following day for immu-
nofluorescence for most experiments. For diakinesis imaging and scoring,
animals were picked as L4 and kept for three days at 15� prior to dissection.
All strains carrying the spo-11 mutation were selected as L4s from the
progeny of balanced spo-11/nT1 animals. Gonads were immunostained
according to previously described protocol with rabbit anti-RAD-51
(SDIX, 2948.00.02), guinea pig anti-HTP-3 (MacQueen et al. 2005), and
Alexa Fluor secondary antibodies purchased from ThermoFisher (Phillips
et al. 2009). Imaging was performed on an Axio Imager Z1 microscope
with ApoTome running Axiovision software (Zeiss) or a DeltaVision Elite
microscope running SoftWoRx (GEHealthcare). Imageswere collected as

n■ Table 1 Primers used in this study

Name Sequence

Tc1 - F TGGGCTAAACACATCTGGTC
Tc1 - R CGGTTGGGCATTGATACTTTG
Tc2 - F AGTTATGAGGATTGGATGGTGC
Tc2 - R AGTATTGGAGCATTGACGGC
Tc3 - F GTCCGTATCGTGTATGCTCAG
Tc3 - R AATAGACTTCCAAGCGTCGAG
Tc4v - F GTAATCGCTGAACCAAAAGGC
Tc4v - R GTGTCTTGTATCCAGCCCG
Tc5 - F AGTGTACCGTGTCTTTCGTG
Tc5 - R GGAGTTTCCACTTTGACATGTTG
RTE1 - F CCCTGGAATGAGAGTGAATGG
RTE1 - R GTACGAGTTCTTGGAGCATTTTG
CER1/Gypsy - F CCCGGAACTATGCTCATTCTAG
CER1/Gypsy - R TCAGTACAGACGAAGCAGTTC
Mirage - F AGAAGCTGAAACCGATGAGTC
Mirage - R TCAGAGAACGACACAGTTGAC
rpl-32 - F CAAGGTCGTCAAGAAGAAGC
rpl-32 - R GGCTACACGACGGTATCTGT
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three-dimensional data stacks, displayed as maximum intensity pro-
jections, and pseudocolored using Adobe Photoshop.

RAD-51 quantification
Age-matched (one day post-L4) hermaphrodite gonads were immuno-
stained for RAD-51 and imaged. Gonads were divided into six zones of
equal length, starting at the distal tip through the end of pachytene and
the number of foci per nucleus were scored for each zone. Three gonads
were scored for each genotype.

Brood size analysis
Hermaphrodites of the indicated genotypes were placed on individual
plates asL4-stage larvae.Theyweremoved to freshplates approximately
every 24 hr until egg laying was complete. At the time the animal was
removed from the plate, the total numberof embryos andhatched larvae
was counted. Approximately three days later, the total number of
hermaphrodite andmaleprogeny on theplatewas scored.Total number
of broods scored was 11 broods for wild-type, 29 broods for spo-11,
13 broods for mut-7; spo-11, 15 broods for mut-16; spo-11, and
21 broods for prg-1; spo-11.

Recombination analysis
Hermaphrodites heterozygous for dpy-3 unc-3 and homozygous for
spo-11 were generated by mating balanced spo-11/mIs11 males to
mIs11; dpy-3 unc-3 hermaphrodites. The transgene mIs11 is located
on chromosome IV near the spo-11 locus; it can be identified by a
pharyngeal GFP signal and was used to balance the spo-11 mutant.
The spo-11/mIs11; dpy-3 unc-3 F2 hermaphrodites were then mated
to spo-11/mIs11 males to generate the spo-11; dpy-3 unc-3/++ strain
used for recombination analysis. The cross was performed similarly
using mut-16/+; spo-11/mIs11 males and mut-16; mIs11; dpy-3 unc-3
hermaphrodites to generate themut-16; spo-11; dpy-3 unc-3/++ and the
mut-16/+; spo-11; dpy-3 unc-3/++ strains, which were identified as
homozygous or heterozygous formut-16 by genotyping after egg-laying
was completed. Progeny from each cross were scored as wild-type, Unc
Dpy, Unc non-Dpy, or Dpy non-Unc, and as hermaphrodite or male.
Recombination frequency (p) for hermaphrodites was calculated as
P = 1 –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið12 2RÞp
, where R is the fraction of recombinant progeny,

scored as two times the number of Unc non-Dpy hermaphrodites to
account for the possibility that Dpy non-Unc animals are non-recombi-
nant triplo-X animals (Brenner 1974). For males, recombination fre-
quency is calculated as P = R. The total recombination frequency is
calculated ((2 � phermaphrodite

� [# of hermaphrodites]) + (pmale
� [# of

males]))/(2 � [# of hermaphrodites] + [# of males]), which accounts for
hermaphrodites having two X chromosomes andmales only one (Kelly
et al. 2000). Map distances in cM = 100 · p. Total number of broods
scored was 28 broods for spo-11; dpy-3 unc-3/++, 7 broods formut-16/+;
spo-11; dpy-3 unc-3/++, and 9 broods formut-16; spo-11; dpy-3 unc-3/++.

Data Availability
All strains are available either at the Caenorhabditis Genetics Center
(CGC) or upon request from the Phillips lab. The authors affirm that all
data necessary for confirming the conclusions of the article are present
within the article, figures, and tables.

RESULTS

Transposon mRNA expression profiles of RNAi
pathway mutants
It is well known that RNAi pathways regulate DNA transposon activ-
ity in the C. elegans germline (Billi et al. 2014). However, the specific

temporal and spatial region of the germline where this transposition
occurs has not previously been studied. To address this question, we
sought to visualize transposon activity by utilizing the DSBs left
behind by the DNA transposons when they transpose, which are
then repaired by cellular DNA repair machinery. First, however, we
sought to determine how transposon activity differs between dis-
tinct branches of the RNAi pathway. It was previously reported that
mutants in the mutator pathway and the piRNA pathway have
different rates of transposon mobilization depending on the trans-
poson being examined. For example, Tc1, Tc3, and Tc4 transposons
are active in a mut-7 mutant, whereas only the Tc3 transposon is
active in a prg-1 mutant (Das et al. 2008). As a preliminary analysis
of which transposons may mobilize in mutants from either the
mutator pathway or the piRNA pathway, we performed qRT-PCR
analysis of transposon mRNA expression in mut-16 and prg-1 mu-
tants (Figure 1). Specifically, we examined the mRNA expression
from several known DNA transposons (Tc1, Tc2, Tc3, Tc4v, Tc5,
andMIRAGE1) and two retrotransposons (RTE1 and CER1/Gypsy)
and found that, of the DNA transposons, Tc1, Tc4v and Tc5 had
significantly increased mRNA expression in mut-16 but not prg-1
mutants, whereas Tc2, Tc3, and MIRAGE1 had increased expres-
sion in both mutants. Interestingly, Tc2 was significantly higher in
prg-1 (170-fold) compared to mut-16 (eightfold), which is surpris-
ing because piRNA-mediated silencing is generally thought to be
upstream of and to require the mutator pathway (Das et al. 2008;
Lee et al. 2012; Bagijn et al. 2012). It is important to note that this
analysis is only indicative of transposon mRNA expression in the
RNAi pathway mutants relative to wild-type animals, and is not
direct evidence of transposon mobilization rates. Furthermore,
while this analysis does not distinguish between somatic and germ-
line transposon activity, it does suggest that Tc2 transposon silenc-
ing may be mediated, at least in part, by a piRNA pathway that is
independent of the mutator pathway and WAGO 22G-siRNAs.

Figure 1 Mutator pathway mutants and piRNA pathway mutants
have distinct profiles of transposon mRNA expression. Primers
recognizing the transposon mRNAs were used for quantitative
RT-PCR with rpl-32 as a normalization standard. Expression levels
shown are relative to wild-type animals (gray horizontal line) and
error bars represent the standard deviation of two technical rep-
licates. Two primer sets were used for each transposon mRNA
with similar results, however only one representative set is shown.
n.s denotes not significant and indicates p-value . 0.05 and � indicates
p-value , 0.05.
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Visualization and quantification of
transposon mobilization
To visualize transposon activity specifically in the C. elegans germline,
we chose to examine the expression of RAD-51, a homolog of
the bacterial RecA protein and a key protein in DSB repair pathways
(Ogawa et al. 1993). In wild-type C. elegans, RAD-51 can be visualized

as distinct, punctate foci in the zygotene/pachytene stages of meiosis
(Figure 2A) (Alpi et al. 2003).We initially examinedmultiple mutants
in the RNAi pathway for increased RAD-51 foci in germ cells, however,
the presence of programmed DSBs generated for meiotic recombina-
tion, complicated the analysis. To alleviate this problem, we crossed the
RNAi pathway mutants into a spo-11 mutant. SPO-11 is the type-II

Figure 2 SPO-11-independent RAD-51
foci are present throughout the germ-
lines of mutator pathway mutants. (A)
Whole gonads (left) stained with RAD-51
(red) and DAPI (blue). RAD-51 foci can
be seen throughout the germlines of
mut-7; spo-11, mut-16; spo-11, and to
a lesser extent, prg-1; spo-11. This is
in contrast to wild-type, where the ma-
jority of RAD-51 foci are found in the
zygotene to mid-pachytene region. Scale
bars, 20mm. Magnification of pachytene
stage nuclei (right) stained with RAD-51
(red) and DAPI (blue). Scale bars, 5mm.
(B) Diagram (top left) depicting the six
zones in which RAD-51 foci were quanti-
fied. Stacked bar charts show percent of
nuclei in each zone with the specified
number of RAD-51 foci for the indicated
genotypes. X axes indicate the position in
the germline (zone).
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topoisomerase that is required to initiate meiotic recombination
through the generation of DSBs (Keeney et al. 1997; Dernburg et al.
1998). In the spo-11 mutant, RAD-51 foci are virtually eliminated
(Figure 2A-B) (Alpi et al. 2003), providing us a background where
we can examine spo-11-independent DSBs generated due to trans-
poson mobilization. We first examined the germline of mutator mu-
tants (mut-7 ormut-16) in the spo-11 background. In these strains we
could visualize numerous DSBs throughout the germline, starting in
the mitotic proliferation zone, and extending through the meiotic
stages of leptotene, zygotene, pachytene, and diplotene (Figure 2A-B).
Because the number of foci increases as the nuclei progress through
the meiotic program in the mutator pathway mutants, we can infer
that transposons are generating new DSBs throughout these stages.
Additionally, we examined the germline of C. elegans with a mutation
in the piRNA pathway (prg-1). In prg-1 mutants we observed signif-
icantly fewer DSBs compared to the mutator mutants, but higher
levels than in the spo-11 mutant alone (Figure 2A-B). These results
are consistent with a role for the piRNA pathway in silencing only a
subset of transposons, in contrast to the mutator pathway, which is
more broadly required for transposon silencing.

Transposon-induced DSBs can partially rescue meiotic
defects of spo-11 mutants
We next sought to examine whether transposon-induced DSBs are
competent to rescue themeiotic phenotypes of the spo-11mutant. In the
absence of functional SPO-11 protein, chromosomes fail to undergo
meiotic recombination (Keeney et al. 1997; Dernburg et al. 1998).
Failure to undergo meiotic recombination causes errors in segrega-
tion of chromosomes at the meiosis I division, ultimately resulting in

aneuploidy and embryonic lethality. The few progeny surviving to
adulthood from spo-11 mutants are frequently males (Dernburg et al.
1998). This “High incidence of males” or Him phenotype is also in-
dicative of a chromosome segregation defect; male C. elegans have a
single sex chromosome (XO) and thus mis-segregation of the X chro-
mosomes in anXXhermaphrodite results in an increased production of
males (Hodgkin et al. 1979). In contrast to the spo-11 null mutants,
which largely produce inviable embryos that fail to survive to adulthood
(2.8% viable), mut-7; spo-11 and mut-16; spo-11 produce 12.1% and
10.7% viable embryos that survive to adulthood, respectively (Table 2).
Similarly, mut-7; spo-11 and mut-16; spo-11 produce fewer male prog-
eny (14.9% males for mut-7; spo-11 and 21.4% males for mut-16;
spo-11) than the spo-11 mutant alone (40.9% males) (Table 2). Unlike
themutator pathway mutants, the piRNA pathway mutant prg-1 failed
to rescue embryonic viability or the production of male progeny. These
data indicate that theDSBs generated by transposonmobilization in the

n■ Table 2 Mutator pathway mutations increase progeny viability
and reduce the number of self-progeny males in a spo-11 mutant

Genotype % Viable Embryosa % Male Progenyb

wild-type 100.00 (n = 3035) 0.07 (n = 3035)
spo-11 2.80 (n = 5328) 40.94 (n = 149)
mut-7; spo-11 12.11 (n = 1882) 14.91 (n = 228)
mut-16; spo-11 10.68 (n = 2144) 21.40 (n = 229)
prg-1; spo-11 2.12 (n = 4105) 51.72 (n = 87)
a
Total number of embryos scored to calculate % viable embryos indicated in
parentheses.

b
Total number of adults scored to calculate % male self-progeny indicated in
parentheses.

Figure 3 Mutations in the mutator pathway can restore crossover formation in the spo-11 mutant. (A) Representative wild-type and mutant
diakinesis oocytes stained with HTP-3 (white) and DAPI (red) to allow for counting of the number of the number of bivalents (homologous
chromosomes connected by chiasmata) or univalents in each strain. Yellow arrows in mut-7; spo-11 and mut-16; spo-11 point to a single pair of
non-recombinant chromosomes. Scale bars, 5mm. (B) Graph indicating the number of DAPI-stained bodies in diakinesis oocytes for each geno-
type. Wild-type oocytes display six DAPI-stained bivalents, representing the six pairs of chromosomes held together by chiasmata, while spo-11,
which fails to make double-strand breaks for recombination, displays 12 DAPI-stained univalents. Mutations in the mutator pathway but not the
piRNA pathway can partially rescue the spo-11 phenotype. Occasionally, two bivalents lie too close together to be visually resolved, resulting in a
modest underestimation of the number of DAPI-stained bodies. (C) Mean number of DAPI-stained bodies scored for each of the genotypes in (B).
Total number of oocytes scored is indicated in parentheses.
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mutator pathway mutants, but not piRNA pathway mutants, can com-
pensate for the lack of SPO-11 protein and increase the frequency of
proper chromosome segregation, presumably by promoting the forma-
tion of crossovers.

To test directly whetherDSBs generated by transposonmobilization
can promote the formation of crossovers, we examined diakinesis stage
of meiosis for the presence of recombinant chromosomes. In wild-type
C. elegans, six bivalents (pairs of recombinant chromosomes) are
present, whereas, in spo-11, 12 non-recombinant univalents can be
observed (Villeneuve 1994; Dernburg et al. 1998). The mutator
pathway mutants, mut-7 and mut-16, were able to partially rescue
the spo-11 diakinesis phenotype, averaging approximately eight
DAPI-staining bodies, but with a range of six to 11 DAPI-staining
bodies (Figure 3A-C). In contrast, the piRNA pathway mutant,
prg-1, was indistinguishable from the spo-11 mutant alone with
12 univalents (Figure 3A-C). We also analyzed the frequency of
recombination between two genetic markers, dpy-3 and unc-3, which
lie on opposite ends of the X chromosome, a distance of �38 cM in
wild-type animals (Villeneuve 1994; Dernburg et al. 1998; Kelly et al.
2000). In spo-11 mutants, recombination is undetectable in this region
(Dernburg et al. 1998) whereas mut-16; spo-11 mutants we calculated
the map distance between dpy-3 and unc-3 as 26.6 cM (�70% of wild-
type) (Table 3). These data indicate that, in each germline nucleus of
a mutator pathway mutant, most chromosomes have at least one
mobilized transposon generating a DSB that is subsequently repaired
by homologous recombination. Because some DSBs are occurring
well before or after the stage at which nuclei are competent for ho-
mologous recombination and because many DSBs may be repaired by
other mechanisms, these figures significantly underestimate the total
number of mobilized transposons per nucleus.

DISCUSSION
By visualizing transposon-derived DSBs as RAD-51 foci present in a
spo-11 mutant background, we can provide quantification of trans-
poson-hopping levels in the mutator pathway and piRNA pathway
mutant backgrounds. Furthermore, in mutator mutants, transpo-
son-derived DSBs can rescue spo-11 mutant phenotypes, including
recombination frequency, chiasma formation, viability, and male
production. The assays described could be extended to examine
new mutants in the transposon-silencing pathway, to screen for new
mutants by taking advantage of the increased fertility of spo-11mutants
when combined with mutations in the transposon silencing pathway,
or to probe more deeply into which classes of transposons are mobi-
lized and the frequency using ChIP-seq of RAD-51.

Interestingly, we observe clear differences in the expression of
transposon mRNAs by qRT-PCR and in the rates of transposition
assayed by frequency of DSBs, demonstrating that these two pathways
do not have fully overlapping roles in transposon silencing. This result,

along with previously reported differences in Tc1 and Tc4mobilization
between the two pathways (Das et al. 2008), is somewhat surprising
because piRNA pathways are thought to be the primary mediator of
transposon silencing in many organisms (Czech and Hannon 2016).
That leads to the question of how transposons silenced independently
of piRNAs are recognized. piRNA-targeting can trigger multigenera-
tional silencing that can be maintained in the absence of the initial
piRNA trigger (Ashe et al. 2012; Shirayama et al. 2012; Luteijn et al.
2012). Thus one possibility is that silencing of these transposons was
initiated by piRNAs, but when those piRNAs were lost, silencing was
maintained by mutator-dependent heritable siRNAs. In fact, a muta-
tion in hrde-1, the Argonaute protein required to inherit siRNAs from
one generation to the next, in combination with a mutation in prg-1,
desilences the Tc1 transposon to a level similar to that of a mutation in
themutator pathway (de Albuquerque et al. 2015). Alternatively, some
features of the transposon mRNA structure could be recognized by the
cell as aberrant and routed for silencing completely independently of
piRNAs. For example, multiple reports have implicated splicing factors
in the RNA silencing pathway, suggesting that irregular introns or mis-
splicedmRNAs can be a signal for siRNA-mediated silencing (Kim et al.
2005; Dumesic et al. 2013; Akay et al. 2017; Tyc et al. 2017; Newman
et al. 2018). Many C. elegans transposons contain introns, including
Tc1 and Tc3 (van Luenen et al. 1993; Vos et al. 1993). Interestingly, the
Tc1 intron is inefficiently spliced, yet 22G-siRNAs are exclusively
made from spliced transcripts which accumulate in spliceosomes,
suggesting that siRNA biogenesis is downstream of splicing-
mediated surveillance (Sijen and Plasterk 2003; Newman et al.
2018). How these surveillance mechanisms are interwoven to me-
diate efficient recognition of transposon and other foreign mRNAs
remains to be determined.
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n■ Table 3 A mutation in the mutator pathway restores recombination in the spo-11 mutant

Recombinant hermaphrodites Recombinant males

Genotype
Unc non-Dpy

hermaphrodites
Dpy non-Unc

hermaphrodites
Total

hermaphrodites
Unc non-
Dpy males

Dpy non-
Unc males

Total
males

Map
distance
(cM)a

+/+ or mut-16/+; spo-11;
dpy-3 unc-3/++

0 0 134 0 0 131 0.0

mut-16; spo-11; dpy-3
unc-3/++

27 29 239 9 10 60 26.6

a
Map distance was calculated as described in Materials and Methods.
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