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Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting
all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression
of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot
reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust
interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved
all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different
RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with
cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was
in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same
samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs,
novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of
complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA
isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics
of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by
existing methods.

Introduction

The discovery of thousands of non-coding RNAs, both small
and large, has reshaped RNA biology. These non-coding RNAs
have been implicated in numerous biological processes and dis-
eases.1-7 A significant part of non-coding RNA function is control-
ling gene expression, e.g. microRNAs have been established as
such regulators,3,8-11 but it is becoming clear that long non-coding
RNAs (lncRNAs), including non-polyadenylated transcripts rang-
ing from several hundred to thousands of nucleotides in length
also regulate gene expression.12-14 An example is the recently iden-
tified enhancer RNA (eRNA) class, which are mostly non-
polyadenylated lncRNAs transcripts »50 to 2000 nucleotides in
length generated at enhancer sites of active promoters.5,15-17

Thus, systematic quantitative expression analysis of non-coding
RNA classes in combination with mRNA expression will therefore
assist in unraveling RNA networks in much greater detail and
boost our understanding of cellular processes and diseases.

Gene expression profiling by microarray technology has sub-
stantially transformed biology by systematically monitoring the
global gene expression, but also has some limitations such as the
quality of the capture probes and novel RNA discovery. The
emergence of next generation sequencing (NGS) technology has
enormously improved these limitations of arrays and further rev-
olutionized the deciphering of RNA networks by sequencing mil-
lions of RNA-derived cDNA (cDNA) molecules. Established
NGS protocols monitoring RNA expression rely on enrichment
of specific RNA classes, e.g., poly-adenylation (poly(A)) selection

© Kasper WJ Derks, Branislav Misovic, Mirjam CGN van den Hout, Christel EM Kockx, Cesar Payan Gomez, Rutger WW Brouwer, Harry Vrieling, Jan HJ Hoeijmakers,
Wilfred FJ van IJcken, and Joris Pothof
*Correspondence to: Joris Pothof; Email: j.pothof@erasmusmc.nl; Wilfred FJ van IJcken; Email: w.vanijcken@erasmusmc.nl
Submitted: 08/08/2014; Revised: 11/28/2014; Accepted: 12/01/2014
http://dx.doi.org/10.1080/15476286.2015.1017202

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/
by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The
moral rights of the named author(s) have been asserted.

30 Volume 12 Issue 1RNA Biology

RNA Biology 12:1, 30--42; January 2015; Published with license by Taylor & Francis Group, LLC

TECHNICAL PAPER

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


for mRNA sequencing (mRNASeq) or gel-size selection for small
non-coding RNA sequencing (smallRNASeq).

Our objective was to set up RNAome sequencing (RNAome-
Seq), which we defined as sequencing rRNA (rRNA)-depleted
total RNA, both small and large RNAs, coding and non-coding in
a single sequencing run. Sequencing of rRNA-depleted total RNA
has been performed before to discover novel non-coding RNA
species.18-20 In contrast to these methods, RNAomeSeq also
includes small RNA analysis in the sequence run and does not
fractionate rRNA-depleted RNA into a large and small RNA sam-
ple before sequencing, which could lose important information
about the abundance of RNA classes. While there are several RNA
sequencing analysis algorithms available, none of these can simul-
taneously analyze both small and large RNAs from a single sam-
ple. Therefore, we developed a robust and reliable RNA
expression analysis tool named TRAP (Total Rna Analysis Pipe-
line), which is also compatible with existing RNA sequencing pro-
tocols. We show the improvements of RNAomeSeq over existing
profiling protocols, i.e. mRNASeq, smallRNASeq and microarray,
in mouse embryonic stem (mES) cells after cisplatin treatment.

Results

To obtain material for all omics protocols, mES cells were
thawed, grown for 2 passages and subsequently either cisplatin-
or mock-treated. Eight hours later total RNA was isolated. This
complete procedure was repeated 4 times to obtain biological
replicates for statistical analysis (Fig. 1A). Cisplatin treatment
was chosen due to its well-documented transcriptional response
in mES cells.21 Samples received rigorous DNase treatment dur-
ing total RNA isolation to eliminate genomic DNA contamina-
tion. Then, total RNA from each sample was aliquoted for usage
in all omics protocols, i.e., RNAomeSeq, mRNASeq, smallRNA-
Seq and Affymetrix gene expression arrays (Table S1). The latter
3 were processed according to manufacturer’s instruction (see
Material and Methods).

Subsequently, total RNA aliquots for RNAomeSeq were
depleted of highly abundant rRNA, using biotin-labeled LNA
probes specific for rRNAs (i.e. 5 S, 5.8 S, 18 S and 28 S), and the
remaining RNA was fragmented by sonication. All steps in this
procedure were highly reproducible (Figure S1). Sequencing
adapters were ligated to the fragmented RNA allowing the gener-
ation of a cDNA library. Finally, adapter dimers (fragments <
145 nt) were removed by gel size selection and the cDNA library
was sequenced (36 nucleotides reads) (Fig. 1B, Table S2).

While there are several RNA sequencing analysis algorithms
available, none of these can reliably and simultaneously analyze
both small and large RNAs from a single sample. Therefore, we
developed TRAP (Total Rna Analysis Pipeline), which extracts
data from sequence files, categorizes RNAs in classes, identifies
post-transcriptional sequence modifications of small RNAs and
performs statistical analysis. Moreover, TRAP is also compatible
with standard mRNASeq and smallRNASeq (Fig. 2). Briefly,
prior to the analysis with TRAP, datasets containing small RNAs
(i.e., the RNAomeSeq or smallRNASeq) were trimmed for

adapter sequences. Then, sequence reads were divided into a
small RNA category with RNA species length between 14 and 36
nucleotides after adapter trimming or into a group in which
RNA species length is at least 36 nucleotides. The latter group
was aligned to the reference genome with NARWHAL automa-
tion software.22 Expressed transcripts and regions were divided
by RefSeq identifiers into 4 categories, i.e. coding transcripts,
non-coding transcripts, intergenic or intronic transcripts
(Fig. 2A). All reads in the small RNA category were first aligned
to rRNA sequences (5 s and 5.8 s), tRNA sequences, miRBase
database (v19)23 for microRNA identification and aligned to the
genome using NARWHAL.22 Reads that aligned to the genome
(small RNAs) were further processed as the longer RNA category
in TRAP. The modular structure of TRAP also allows easy
adjustments regarding transcript identifiers (e.g. GENCODE
instead of RefSeq) or statistical algorithms (e.g., DESeq instead
of edgeR). The detection of short transcripts, such as snoRNAs,
resulted in an overestimation of these transcripts when normaliz-
ing on transcripts length (such as RPKM or FPKM). Therefore,
we only used statistical analysis algorithms with raw reads as
input. There are several statistical analysis algorithms available
for RNA sequencing data sets.24-27 We tested the performance of
4 algorithms in the mRNASeq dataset and determined overlap in
the microarray data set (Table S3). Three had similar perfor-
mance, identifying 2055 to 2836 differentially expressed genes
(DEGs), which were highly overlapping with the microarray
results (74.2% – 76.8%). We used edgeR26 as the standard statis-
tical analysis algorithm in TRAP for further analyses.

Subsequently, we analyzed the RNAomeSeq dataset. The
reads obtained from RNAomeSeq allowed us to measure the
abundance of all RNA classes found in mES cells (Fig. 3A). Only
7.8% of the reads mapped to rRNA sequences (7.7% 45 s in the
large fraction, 0.1% 5/5.8 s rRNA in small fraction), showing
efficient depletion of rRNA. The percentage of reads that aligned
(Table S4) and did not align to the genome was similar to the
mRNASeq and smallRNASeq data sets (Figure S2). These
unaligned reads are likely to result from SNP-rich regions
(TRAP’s default settings allows 2 mismatches to the reference
genome), small RNA fragments (TRAP’s default settings only
include RNA molecules >14 nucleotides), reference genome dif-
ferences or sequencing errors (Figure S2). In the RNA fraction
with a length of at least 36 nucleotides from RNAomeSeq we
identified exonic reads, which refers to annotated, for function
coding, transcripts (coding transcripts, mitochondrial transcripts,
small nucleolar RNAs (snoRNAs) and annotated long non-cod-
ing RNAs (including e.g. pre-microRNAs)) and transcripts origi-
nating from intronic or intergenic regions (Fig. 3A), which is
similar to previously published long RNA classes distribution.28

The small RNA fraction contained mature microRNAs, micro-
RNA isoforms (isomiRs) and additional small RNA molecules.
In these non-microRNA/isomiR classes of small RNAs we identi-
fied fragments of tRNAs and small RNAs from coding, non-cod-
ing, intergenic and intronic regions (Fig. 3A). The abundance of
RNA classes found by mRNASeq (Fig. 3B) and smallRNASeq
(Fig. 3C) showed the expected RNA classes enriched for poly(A)-
coding transcripts and small RNAs, respectively.
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In addition, we noticed another
important characteristic of RNAo-
meSeq, which is an almost perfect
strand-specificity. We observed a
99.8% accurate orientation of
sequence reads that align to the
correct direction of gene transcrip-
tion (Table S5). This feature will
allow discrimination between
overlapping reads from opposite
strands. For example, reads align-
ing to the 30UTR of Prpf39 and
reads aligning to the overlapping
last exon and 30UTR of the Fkbp3
gene on the opposite strand could
be separated from each other
(Fig. S3).

To assess reliability, we deter-
mined correct RNA class
representation in RNAomeSeq.
Experimental verification of cor-
rect class representation is difficult
to assess for most RNA classes.
Poly(A) RNA however, can be
quantitatively measured in a sam-
ple. Our results indicate that
»90% of total RNA represents
rRNA (Additional file 2), »2.2%
of all reads referred to coding tran-
scripts (Fig. 3A) and mRNASeq
that is based on poly(A) selection,
indicated that »71% of all reads
map to coding regions (Fig. 3B).
This suggests that approximately
0.3% of total RNA represents poly
(A) RNA. We measured poly(A)
RNA content of our samples
directly by poly(dT) beads isola-
tion followed by bioanalyzer analy-
sis (Fig. S4). This analysis indicate
that indeed »0.3% poly(A) RNA is present in total RNA, which
is in line with our RNAomeSeq results. Additional cell lines from
human and mouse origin had similar poly(A) RNA content, indi-
cating that this observation is not specific for mES cells (Fig. S4).

Reliability is also determined by putative biases introduced by
RNAomeSeq compared to standard mRNASeq or smallRNA-
Seq. First, we analyzed the representation of transcripts in
RNAomeSeq and mRNASeq by plotting the percentage of
detected transcripts in transcript length bins (Fig. 4A). A >99%
overlap of coding transcripts was observed between RNAomeSeq
and mRNASeq without any differences in transcript length dis-
tribution. Secondly, we determined gene expression correlation
between RNAomeSeq and mRNASeq by plotting read count per
million (CPM) per coding transcript in a XY-scatterplot
(Fig. 4B). Quantitative gene expression levels detected by RNAo-
meSeq were highly similar to mRNASeq (Pearson correlation

coefficient R D 0.86; P < 2.2e–16). There was a noticeable dif-
ference: a class of coding transcripts was highly expressed in
RNAomeSeq (Fig. 4B, red circle), but hardly expressed in
mRNASeq. This group consisted of histones, which have very
short or absent poly-A tails and are therefore hard to detect with
standard mRNASeq. Thirdly, we determined the distribution of
sequence reads mapping to coding transcripts across the gene
body (Fig. 4C). In contrast to mRNASeq in which read density
was equal across the gene body except for the 50 and 30 transcript
ends, RNAomeSeq harbored several specific peaks. These peaks
were produced by intronic snoRNAs, which transcripts overlap
with exons from host genes. Therefore, these sequences were
automatically included in this analysis. Removal of intronic
snoRNAs from the analysis, which are also not detected by
mRNASeq, abolished these peaks and produced a similar distri-
bution as seen in mRNASeq. Finally, we determined any bias for

Figure 1. RNAomeSeq set up and analysis. (A). Diagram of biological replicate sample preparation from mES
cells treated with 2.7 mM cisplatin or mock-treated (equal volume DMSO) for 8 hours. This procedure was
repeated 4 times to obtain 4 independent biological replicates. All omics methods were performed on the
exact same samples. (B). Schematic of the RNAomeSeq method. Total RNA was depleted of rRNA, frag-
mented and adapters were ligated to prepare a compatible cDNA library followed by fractionation on gel.
Short sequencing reads (<36 nucleotides) were trimmed for adapter sequences and further processed by
TRAP (Fig. 2). 36 nucleotide sequencing reads were processed as long RNAs.
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Figure 2. Schematic of the Total RNA Analysis Pipeline, TRAP, for analysis of sequencing datasets. (A). Modules for long RNA analysis, script 1 for RefSeq
annotated exonic transcripts and script 2 for RefSeq annotated non-exonic regions. (B). Modules for small RNA analysis, script 3 to align trimmed reads
to first rRNA, then tRNA sequences and the microRNA database, miRBase version 19.
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small or large transcripts in the detected sequence reads. The per-
centage of detected sequence reads was plotted for transcript
length bins (Fig. 4D). A slight deviation was observed compared
to mRNASeq, which could be explained by intronic snoRNAs
and histone sequences (Fig. 4D). In toto, RNAomeSeq performs

equally compared to standard mRNASeq without any biases in
detecting coding transcripts.

Subsequently, we determined putative biases in microRNA
and isomiR detection by RNAomeSeq. By plotting the percent-
age of detected transcripts in transcript length bins, we observed

Figure 3. For figure legend, see page 35.
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that the representation of transcripts in RNAomeSeq and small-
RNASeq was similar (Fig. 5A). There was however, a clear shift
toward increased microRNA length in both smallRNASeq and
RNAomeSeq compared to mirBase (v19), which could be
explained by a lack of isomiRs in miRbase. Quantitative micro-
RNA and isomiR expression correlation between RNAomeSeq
and smallRNASeq was also very similar (Pearson correlation

coefficient R D 0.76; P < 2.2e–16) between RNAomeSeq and
smallRNASeq as seen in a XY-scatterplot in which CPM per
microRNA/isomiR has been plotted (Fig. 5B). Finally, we deter-
mined any bias for microRNA/isomiR length in the detected
sequence reads by plotting the percentage of detected micro-
RNA/isomiR transcripts per length (Fig. 5C). A slight deviation
was observed between the 2 methods, i.e., a decrease in

Figure 3 (See previous page). The proportion of RNA species found in mES cells. (A). The proportion of RNA classes detected by the RNAomeSeq proto-
col with a minimum of one read per million found across all biological replicates from at least one of the experimental groups. Detecting small RNA clas-
ses (right panel): tRNA fragments (0.2%), small coding (0.2%), small non-coding (0.3%), mature microRNA (miR) (0.7%), microRNA isoforms (isomiR)
(0.9%), small intergenic (1.7%), small intronic (2.0%); and long RNA classes (left panel): non-coding transcripts also containing complete tRNAs (12.2%),
coding transcripts (2.2%), snoRNA (19.4%), mitochondrial (1.9%), histones (0.2%), intronic region (37.4%), intergenic region (20.7%) classes. (B). The pro-
portion of RNA species detected by the mRNASeq protocol with a minimum of 5 reads found across all biological replicates from at least one of the
experimental groups. Detecting coding transcripts (71.0%), non-coding transcripts (1.2%) and reads from mitochondrial (2.3%), histones (0.1%), intronic
regions (9.3%) and intergenic regions (16.2%). (C). The proportion of small RNA species detected by the smallRNASeq protocol with a minimum of 5
reads found across all biological replicates from at least one of the experimental groups. Detecting small RNA classes: tRNA fragments (4.0%), small cod-
ing (2.0%), small non-coding (17.6%), mature microRNA (miR) (27.9%), microRNA isoforms (isomiR) (25.7%), small intergenic (10.6%) and small intronic
(12.1%). The indicated % represents the total aligned RNAs from that particular class compared to the total number of reads, excluding rRNA reads.

Figure 4. Representation of coding transcripts. (A) Coding transcript length distribution of the whole genome or detected by mRNASeq and RNAome-
Seq. (B) The Pearson-correlation between and X-Y scatter plot of coding transcript expression between RNAomeSeq and mRNASeq, histones encircled in
red. (C) Distribution of reads along the body of all coding transcript for mRNASeq, RNAomeSeq and RNAomeSeq depl (depleted of histones and tran-
scripts with intronic snoRNA). (D) Distribution of reads aligning to the detected coding transcripts by mRNASeq, RNAomeSeq and RNAomeSeq depl
(depleted of histones and transcripts with intronic snoRNA) in regard to transcript length.
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microRNA/isomiRs with a length of 21 nucleotides and an
increase in 24 nucleotide long microRNAs/isomiRs. Sample
preparation differences such as gel excision (smallRNASeq)
might explain the differences. RNA fractionation as performed
in RNAomeSeq could result in fragments of long transcripts in
the small RNA compartment that align to the genome and
thereby generate observed differences between RNAomeSeq and
smallRNASeq (Fig. 3A, C). We did not observe any obvious
expression correlation in coding, non-coding, intergenic
and intronic transcript levels between the small and large frac-
tions in RNAomeSeq (Fig. S5). Taken together, this data indi-
cate that RNAomeSeq correctly represents small RNA expression
as well.

We continued by analyzing expression level correlations
between the biological replicates from coding transcripts in
mRNASeq, microRNAs in smallRNASeq and both coding tran-
scripts and microRNAs in RNAomeSeq. We observed very high
and significant correlations for all replicates, which was on aver-
age a 0.99 and 0.95 correlation coefficient for the existing

protocols and RNAomeSeq, respectively (Pearson rank correla-
tion, all samples P-values < 2e–16) (Table 1), indicating that the
RNAomeSeq procedure in itself is very reliable and can be used
for expression profiling. We performed statistical analysis
between cisplatin and mock treatment and compared the results
from RNAomeSeq to mRNASeq and microarray (Fig. S6). First,
we compared DEGs between microarray and mRNASeq, since
both rely on poly(A) selection and are therefore expected to be
most similar. For comparisons with the microarrays, probes were
first filtered for correct annotation, i.e. probes annotated in the
RefSeq database. RefSeq annotated probes specific for microar-
rays and not found in mRNASeq were mostly low intensity sig-
nals and therefore likely not expressed (Fig. S6A). 77% of the
DEGs found by microarray (n D 4/group) were also significantly
regulated in mRNASeq (n D 3/group). Moreover, DEG fold
changes were highly correlated as well (Fig. S6B). We identified
genes and enriched pathways as previously reported for cisplatin
treatment in mES cells,21 indicating, together with the highly
overlapping DEGs between microarray and mRNASeq, correct

Figure 5. Representation of microRNAs and isomiRs. (A) Length distribution of the microRNA/isomiRs transcripts in the miRbase database or detected by
smallRNASeq and RNAomeSeq. (B) The Pearson-correlation between and X-Y scatter plot of microRNA/isomiRs expression between RNAomeSeq and
smallRNASeq. (C) Distribution of microRNA/isomiRs reads detected by smallRNASeq and RNAomeSeq in regard to length.
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performance of the experiment and TRAP. High DEG fold
change correlations were also observed between RNAomeSeq
and microarray (Fig. S6C) and between RNAomeSeq and
mRNASeq (Fig. S6D). Thus, we conclude that differential
expression is also preserved in RNAomeSeq.

Since RNAomeSeq quantitatively preserves all RNA species in
a single sequence run, we compared all RNA classes in mES cells
with and without cisplatin treatment. We observed a specific
global repression of the microRNA and isomiR classes after cis-
platin treatment (Fig. 6). This observation is in agreement with
observations that key components of the microRNA biogenesis
pathway are targeted by caspases during apoptosis,29,30 which is
consistent with the onset of apoptosis of cisplatin-treated mES
cells. This demonstrates that RNAomeSeq can be used to study
behavior of complete RNA classes.

Discussion

Here we demonstrated that RNAomeSeq is a strand-spe-
cific (99.8% correct orientation, Table S5), robust and reli-
able method to sequence both small and large RNAs, coding
and non-coding, in a single sequencing run. Expression corre-
lations with standard smallRNASeq and mRNASeq were very
high. In addition, we found that isomiRs are abundantly
present in mES cells, which can be well documented by
RNAomeSeq as well as standard smallRNASeq. Although the
exact function of isomiRs is not known,31,32 TRAP can pro-
vide a thorough isomiR overview (Supplemental Dataset 1).
Our approach allows simultaneous analysis of RNA expres-
sion, identification of novel RNAs and transcripts and a com-
parison between RNA classes.

As far as we can determine, the RNAomeSeq method does not
introduce additional biases in quantitative transcript expression
within a RNA class, such as microRNAs or coding transcripts,
compared with standard smallRNASeq and mRNASeq. Next to
a high transcript expression correlation between RNAomeSeq
and mRNASeq / smallRNASeq, we did not observe a transcript
length bias or differences in read distribution across transcripts.
There were some noticeable differences between RNAomeSeq
and mRNASeq, mostly in the detection of specific RNA classes
(see Fig. 3). RNAomeSeq was able to identify non-polyadeny-
lated RNAs, including histones and snoRNAs, and improved

detection of annotated long non-coding RNAs. The complete-
ness of RNAomeSeq also provides a disadvantage: sequencing
depth should be sufficient, an estimated 180–200 million reads
(compared to 10–20 million for smallRNASeq and mRNASeq),
in order to identify and classify differentially expressed genes.
The expected decrease in sequencing costs however, will compen-
sate for the required sequencing depth.

Current methods based on RNA selection cannot quantita-
tively determine transcript level ratios across RNA classes. While

Figure 6. Quantitative preservation of all RNA species. Total proportion
of RNA classes before and after cisplatin treatment. Panel I, long RNA
classes, Panel II small RNA classes. Error bars represent standard
deviations.

Table 1. The Pearson-correlation between replicate samples in RNAomeSeq, mRNASeq and smallRNASeq, for the coding transcripts and/or microRNAs, all
correlations had P-value< 2.2E–16.

coding microRNA

Pearson correlation mRNASeq RNAomeSeq smallRNASeq RNAomeSeq

Replicate 1 vs 2 0.997 0.999 0.996 0.949 Cisplatin
Replicate 1 vs 3 0.996 0.992 0.996 0.868
Replicate 2 vs 3 0.999 0.983 0.994 0.976

Replicate 1 vs 2 0.999 0.997 0.999 0.973 Control
Replicate 1 vs 3 0.996 0.831 0.998 0.983
Replicate 2 vs 3 0.996 0.969 0.997 0.970

www.tandfonline.com 37RNA Biology



RNAomeSeq detects most, if not all, RNA classes besides rRNA,
it is conceivable that the technical procedures of RNAomeSeq
introduce detection biases toward or against specific RNA species
and classes. Therefore, it remains a question to what extent
RNAomeSeq can be used to quantitatively determine transcript
level ratios between RNA classes or map a complete quantitative
RNAome from a sample. Qualitative analysis, i.e., comparisons
between experimental groups, is not hampered by biases. Two
putative biases could be identified. Small RNAs are favored over
longer RNAs in NGS methods and therefore overrepresented.
Secondly, RNA fragmentation by sonication could result in a
break at the hydroxyl or the phosphate group at the 30 end. The
30 adapter used in the NGS protocol is specifically modified to
ligate to RNAs with a 30 hydroxyl group, such as microRNAs,
resulting from enzymatic cleavage by Dicer or other RNA proc-
essing enzymes. However, the detection of numerous isomiRs, to
which specialized enzymes add additional nucleotides at the 30

end after Dicer cleavage, would suggest that the 30 adapter has
tolerance for other 30 ends as well. Furthermore, if we assume
that breakage by sonication occurs randomly, we would expect
that only 1 in 2 fragments could be used in sequence adapter liga-
tion and subsequent cDNA formation, which could translate into
a 2-fold underrepresentation of non-enzymatically processed
small and longer RNAs in RNAomeSeq.

To estimate an underrepresentation or overrepresentation of
specific RNA classes, it is essential to know the ratio between spe-
cific RNA classes. Single cell sequencing experiments and subse-
quent follow up studies have provided an estimate for the total
number of mRNAs33 and microRNAs34 in a single mES cell.
These data indicate that for every mRNA molecule 5 microRNA
molecules are present in mES cells.33,34 Since the smallRNASeq
adapter ligation kit for RNAomeSeq was used, we assume that
microRNAs and isomiRs are very efficient labeled and sequenced
in which 1 microRNA translates to 1 sequence read. 2.2% of the
detected reads in RNAomeSeq aligned to coding transcripts and
1.6% to microRNA transcripts. (Fig. 3) Coding transcript with a
mean length of 3300 nucleotides (Fig. 4A) are likely to break
evenly during fragmentation with an average fragment size of
300 nucleotides (Fig. S1). Thus, we expect approximately 11
fragments per transcript. Subsequent calculations estimate the
presence of 1 mRNA molecule per 8 microRNA molecules in
RNAomeSeq, suggesting a »1.6 fold overrepresentation of
microRNA or underrepresentation of mRNA molecules.

While exact RNA content in a single cell or sample is difficult
to assess, several observations allow us to provide a rough esti-
mate of the expected number of mRNA sequencing reads in
RNAomeSeq. The poly(A) content of a typical cell is 1% of the
total RNA,35 implicating an underrepresentation of the poly(A)
content in RNAomeSeq, since our experiments indicate »0.3%
poly(A) content and an estimated 0.2 – 025% mRNAs in total
RNA from mES cells (Fig. 3A and Fig. S4). Compared to other
cell types however, mES cells have fewer mRNA molecules per
cell (20-fold reduction) as well as lower total RNA content per
cell (5.5-fold reduction). 33 This suggests a relative »3.6-fold
lower mRNA content in mES cells. The standard mRNASeq
data indicates that »71% of all poly(A) RNA refers to coding

transcripts (Fig. 3B). Extrapolating these estimations, one would
expect »2% of the reads in RNAomeSeq to refer to coding tran-
scripts, which is in agreement with our observations. These calcu-
lations suggest an overrepresentation of microRNAs rather than
underrepresentation of mRNA molecules in RNAomeSeq.

Transcripts from intergenic and intronic regions were abun-
dantly present among small and large RNA classes, among which
we could also identify differential expressed RNAs, suggesting
functional roles in the cellular cisplatin response (intronic,
Supplemental Dataset 2; intergenic, Supplemental Dataset 3).
In particular the large content of intronic transcripts was intrigu-
ing for both cisplatin- and mock-treated samples. We found in
RNAomeSeq that on average 37.4% of the reads originated from
intronic regions (note that the intronic DNA content of the
genome is »12.8 times larger than the exonic DNA content). It
has long been thought that the splicing process is very fast and
spliced intronic RNA is rapidly degraded, but it is becoming clear
that some introns have additional functions and escape the rapid
degradation process.36 Evidently, a part of the intronic RNA con-
tent in RNAomeSeq can be explained by the presence of precur-
sor-mRNAs (pre-mRNAs). Secondly, some introns could be
more stable than anticipated or, thirdly, functional non-coding
RNAs could originate from intronic regions. If co-transcriptional
splicing is very fast and spliced introns are directly degraded, one
would predominantly expect sequence reads overlapping 50

exon – intron 30 boundaries as pre-mRNA is captured during iso-
lation. RNAomeSeq indeed detected sequence reads that overlap
exon-intron boundaries, but also equal numbers of reads that
map to intron-exon boundaries. In total, these reads were much
less than sequence reads that span exon-exon boundaries
(Table S6). Remarkably, standard mRNASeq, which requires a
double selection for poly(A)C RNAs, also detects sequence reads
that overlap exon-intron or intron-exon boundaries, suggesting
that a significant part of reads spanning exon-intron or intron-
exon boundaries originate from introns that are maintained in
mature mRNA and are thus very stable (Table S6). Based on
RNaomeSeq data, we suggest that a significant part of all intronic
transcripts are likely bona fide non-coding RNAs that is consis-
tent with our results in which snoRNAs are present in intronic
regions (Fig. 4C) and previous reports indicating the presence of
intron-derived non-coding RNAs.37-40 Finally, RNAomeSeq is
highly strand specific (99.8% correct orientation; Table S5).
Using strand-specificity sequence information intrinsic to the
RNAomeSeq method, we regularly observed intronic reads
expressed from the opposite strand compared to gene orientation,
strongly indicating the presence of a non-coding RNA encoded
in the intron. Further RNAomeSeq studies will allow more in
depth analysis of intron biology.

In addition, we also noted numerous intergenic RNAs
upstream of gene promoters, which were not present in mRNA-
Seq or smallRNASeq. Their location and size were reminiscent
of a recently identified class of non-poly(A) non-coding RNAs,
named eRNAs. These are detected as sequence peaks upstream of
the promoter. Since only very few eRNAs have been experimen-
tally verified, we did not systematically categorize them in a dis-
tinct RNA class as seen in Figure 3. The widespread occurrence
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of non-poly(A) RNAs in close proximity of highly expressed
genes (examples see Figure S6) suggests that RNAomeSeq can
also detect eRNAs, exemplifying that RNAomeSeq (but not
mRNASeq) can be used to study relationships between different
RNA classes in an unbiased manner.

One of RNAomeSeq’s strengths is monitoring global upregu-
lation or repression of complete RNA classes since it quantita-
tively preserves all RNA species in a single sample. This allows
for monitoring/identifying pathways that control the expression
of complete RNA classes. A prime example is repression of the
microRNA biogenesis pathway during tumorigenesis, leading to
reduced numbers of mature microRNAs in human cancer.41 We
observed a specific global repression of the microRNA and iso-
miR classes after cisplatin treatment (Fig. 6), demonstrating that
RNAomeSeq can be used to study behavior of complete RNA
classes.

In summary, we show that RNAomeSeq quantitatively pre-
serves global and differential RNA expression patterns of RNA
classes. Besides novel RNA species identification, RNAomeSeq
can identify relationships between different RNA classes, allowing
the elucidation of RNA networks in much greater detail.
For example, mRNA expression levels are determined by tran-
scriptional activity, but also by microRNA expression. It is becom-
ing clear that eRNAs, generated upstream of the gene locus, are
needed for transcriptional activity 16 and therefore can serve as
marks for active transcription. MicroRNAs predominantly act
via mRNA degradation, which can be visualized by RNA sequenc-
ing methods.42 Analyzing mRNAs, microRNAs and eRNAs
simultaneously could indicate which mechanism controls observed
gene expression changes. In toto, the described characteristics of
RNAomeSeq will significantly improve expression analysis as well
as studies on RNA biology not covered by existing methods.

Material and Methods

Total RNA isolation
Mouse embryonic stem (mES) cells (HM1) were cultured as

described.21 One vial of mES cells was thawed and grown for 2
passages on feeder-coated plates followed by one passage on gela-
tin-coated plates before beginning the experiment. The mES cells
in experiment were treated with 2.7 mM cisplatin (75% survival;
Platosin) or mock-treated (equal volume dimethylsulfoxide
(DMSO)). After 8 h continuous exposure total RNA was isolated
using Qiazol Lysis Reagent (Qiagen) and total RNA was purified
with the miRNeasy kit (Qiagen), according to manufacturer’s
protocols. The integrity (scores >9.0) of the RNA was deter-
mined on the Agilent 2100 Bioanalyzer (Agilent) according to
manufacturer’s protocol. This procedure was repeated 4 times to
obtain 4 independent biological replicates. Subsequent sequenc-
ing and array protocols were performed on the total RNA from
the same biological samples.

Microarray sample preparation
The poly(A) RNA enrichment for Affymetrix GeneTitan�

array was performed by ServiceXS, following their standard

protocol. In short, 100 ng of total RNA was labeled with the
Affymetrix 30 IVT-Express Labeling Kit (containing oligo dT pri-
mers), amplified and fragmented before hybridizing to Affyme-
trix HT Mouse Genome 430 PM Array.

mRNASeq sample preparation
Total RNA enrichment for sequencing poly(A) RNAs was per-

formed with the TruSeq mRNA sample preparation kit (Illumina)
according to the manufacturer’s protocols. In short, 1 mg of total
RNA for each sample was used for poly(A) RNA selection using
magnetic beads coated with poly-dT, followed by thermal frag-
mentation. The fragmented poly(A) RNA enriched samples were
subjected to cDNA synthesis using Illumina TruSeq preperation
kit according to the manufacturer’s protocol. Briefly, cDNA was
synthesized by reverse transcriptase (Super-Script II) using poly-
dT and random hexamer primers. The cDNA fragments
were then blunt-ended through an end-repair reaction, followed
by dA-tailing. Subsequently, specific double-stranded bar-coded
adapters were ligated and library amplification for 15 cycles was
performed.

smallRNASeq sample preparation
The cDNA library for smallRNASeq was generated by the

small RNASeq kit (Illumina TruSeq smallRNA v1.5) according
to the manufacturer’s protocol. In short, specific bar-coded
adapters were ligated to 1 mg of total RNA followed by reverse
transcriptase and amplification for 11 cycles. Small RNAs were
enriched by fractionation on a 15% Tris-borate-EDTA gel, excis-
ing the RNAs of 15–30 nucleotide of length.

RNAomeSeq sample preparation
rRNA (rRNA) depletion was performed using RiboMinus

Eukaryote Kit (Life Science), according to the manufacturer’s
protocol. 10 mg of total RNA was incubated with biotin-labeled
LNA probes (2 for each of the 4 rRNA species, i.e. 5 S, 5.8 S,
18 S and 28 S) and hybridized to streptavidin-coated magnetic
beads. The rRNA-depleted samples were concentrated using the
RiboMinus Concentration Module, according to manufacturer’s
protocols. The concentrated rRNA-depleted samples were frag-
mented by sonication (Covaris s200, duty cycle 5% and
200burst/cycle for 210 sec), to fragments smaller than 500
nucleotides. The cDNA library preparation was performed
according to the smallRNASeq sample preparation. Adapter
dimers, approx. 145 nucleotides in length, were removed by
excising RNAs ranging 160– 645 nucleotide of length from the
gel, corresponding to RNAs 15–500 nt in length. The excised
gel containing the adapter-ligated cDNA fragments were
extracted from the gel using the gel breaker kit (IST Engineer-
ing). Finally, the cDNA was pooled after extraction and further
prepared for sequencing.

Sequencing
The pooled cDNA libraries all consisted of equal concentra-

tion bar-coded samples, i.e., 3 mock- and 3 cisplatin-treated sam-
ples. The mRNASeq and smallRNASeq pooled libraries were
sequenced in one lane each and the RNAomeSeq pooled library
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was sequenced in 2 lanes, all 36 bp single read on the HiSeq2000
(Illumina).

Total RNA analysis pipeline
The analysis of the sequencing datasets was performed with

TRAP, which stands for Total RNA Analysis Pipeline. The analysis
was performed on a quad-core CPU desktop with 64-bits windows
system and 16 gigabyte RAM. Per sample, the analysis takes around
5 minutes for mRNASeq and 20minutes for smallRNASeq.

The RNAomeSeq and smallRNASeq reads were, prior to the
analysis with TRAP, trimmed for adapter sequences with a cus-
tom script. Reads from RNAomeSeq and mRNASeq were
aligned to the mouse mm9 reference genome using Tophat (ver-
sion 1.3.1.Linux_x86_64, –coverage-search, -butterfly-search,
–segment-mismatches 1,–segment-length 18) via the NAR-
WHAL automation software.22 We have developed NARWHAL
to automate sequence data processing using pre-existing open-
source tools. TRAP makes use of several R Bioconductor43 pack-
ages, e.g., Biostrings (version 2.26.3), Rsamtools (version
1.10.2), IRanges (version 1.16.6), GenomicRanges (version
1.10.7), Limma44 and EdgeR.26 Reads that aligned within and
between RefSeq transcripts were extracted from the resulting
BAM files using Scripts 1 and 2 in module I. RefSeq can be
replaced in TRAP by other annotations such as GENCODE
depending on the users preference. Exonic reads were summed
per transcript. In module II, a specific transcript or region was
referred to as expressed, when a predefined threshold was reached
(1 read per million). The threshold was defined as a minimum
number of reads that could be aligned to a transcript or non-
exonic region across all biological replicates in at least one of the
experimental groups. In module III, expressed transcripts were
divided by RefSeq identifiers into coding and non-coding tran-
scripts. The non-exonic regions were divided by location into an
intergenic or intronic category. Statistical analysis of the tran-
scripts and regions can be performed with several published sta-
tistical algorithms for mRNASeq that are all compatible with
TRAP. We used in our analysis EdgeR,26 since this was the best
performing statistical algorithm.

Next, we used TRAP to analyze reads smaller than 36
nucleotides from smallRNASeq and RNAomeSeq. In module
I, trimmed sequence reads were discarded if smaller than 14
nucleotides of length. Reads were referred to as expressed
when the threshold was reached, which was defined as a prede-
fined minimal reads being present in all biological replicates in
at least one experimental group. In Module II, the expressed
reads were first aligned to rRNA sequences (5 s and 5.8 s),
tRNA sequences, the miRBase23 database (v19) (using vmatch-
Pattern from the Biostrings package) or the genome (using
NARWHAL,22 using only bowtie; –best, ¡l 32, ¡n 2, ¡M
1). In module III, statistical analysis of the tRNA aligned reads
and miRBase23 aligned reads (microRNAs) was performed
with EdgeR.26 The reads aligned to the genome (small RNAs)
were further processed as long RNAs in Script 1 and 2 in
TRAP. Threshold in TRAP can be manually set and adjusted
according to needs.

Statistics and pathway analysis
Differentially expressed (DE) transcripts were identified in the

mRNASeq data set with EdgeR,26 assuming negative binomial
distribution of the reads. DE transcripts were identified in the
Affymetrix dataset by computing a linear model using Limma.44

For both platforms cut-offs were used for DE transcripts detec-
tion (fold change > 1.5 and FDR < 0.05). Pathway analysis was
performed with Ingenuity Pathway Analysis Software.

Proportion of precursor-mRNA
The presence of precursor mRNA (pre-mRNA) was defined as

the number of reads spanning exon-intron and intron-exon bor-
ders compared to reads spanning exon-exon borders. Exon-exon
reads were reads with a start position 10 - 5 bp to the 50 side of
the 50 part of the exon-intron junction which span to the next
exon. Exon-intron and intron-exon reads were reads that do not
have a span (“N” in cigar string). The reads aligning to exon-
intron reads run into the intron and had a start position 10 -
5 bp to the 50 side of the 50 part of the exon-intron junction.
Intron-exon reads have a start position 10 - 5 bp to the 50 side of
the 30 part of the junction and run into the exon. Pre-mRNA
reads were reads aligning to exon-intron and intron-exon
borders.

Strand specificity
To determine the strand specificity of a gene, we divided the

number of reads aligning to the gene to either the plus or minus
strand by the total number of reads aligning to the gene. We deter-
mined the percentage of reads aligning to genes orientated on the
plus or minus strand and calculated the percentage of reads with
the correct orientation over all genes. Reads aligning to the genome
were visualized using integrative genomics viewer (IGV).45

Proportion of RNA species
The proportion of RNA species was defined by the number of

reads that primary aligned to the genome (script 1 and 2 propor-
tion). Only reads used to align to the genome were 36 nucleoti-
des of length or did not align to miRBase,23 tRNA or rRNA
sequences. The proportion of small RNA reads (<36 nucleoti-
des) was defined by being uniquely aligned to miRBase,23 rRNA
or tRNA. The proportion of protein-coding RNAs found in the
RNAomeSeq data set was validated using a gel-analysis of poly
(A) RNA enriched by poly-dT beads. We added magnetic beads
coated with poly-dT, from the mRNASeq protocol (Illumina
TruSeq), to 1 ug of total RNA. The bound poly(A) RNA was
subsequently analyzed on an RNA pico-chip Agilent 2100 Bioa-
nalyzer (Agilent), using manufacturer’s protocols.
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