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Abstract

Objectives: This study was designed to assess the dose-response relationship between tissue, blood, vaginal and rectal
compartment concentrations of tenofovir (TFV) and tenofovir diphosphate (TFVdp) and ex vivo rectal HIV suppression
following oral tenofovir disoproxil fumarate (TDF) and rectal administration of TFV 1% vaginally-formulated gel.

Design: Phase 1, randomized, two-site (US), double-blind, placebo-controlled study of sexually-abstinent males and females.

Methods: Eighteen participants received a single 300 mg exposure of oral TDF and were then randomized 2:1 to receive a
single then seven-daily rectal exposures of TFV 1% gel (40 mg TFV per 4 ml gel application) or hydroxyethyl-cellulose (HEC)
placebo gel. Blood and rectal biopsies were collected for pharmacokinetic TDF and TFVdp analyses and ex vivo HIV-1
challenge.

Results: There was a significant fit for the TFVdp dose-response model for rectal tissue (p = 0.0004), CD4+
MMC (p,0.0001),

CD42
MMC (p,0.0001), and TotalMMC (p,0.0001) compartments with r2 ranging 0.36–0.64. Higher concentrations of TFVdp

corresponded with lower p24, consistent with drug-mediated virus suppression. The single oral treatment failed to provide
adequate compartment drug exposure to reach the EC50 of rectal tissue TFVdp predicted to be necessary to suppress HIV in
rectal tissue. The EC50 for CD4+

MMC was within the single topical treatment range, providing evidence that a 1% topical,
vaginally-formulated TFV gel provided in-vivo doses predicted to provide for 50% efficacy in the ex vivo assay. The 7-daily
topical TFV gel treatment provided TFVdp concentrations that reached EC90 biopsy efficacy for CD42

MMC, CD4+
MMC and

TotalMMC compartments.

Conclusion: The TFVdp MMC compartment (CD4+, CD42 and Total) provided the best surrogate for biopsy infectibility and
the 7-daily topical TFV gel treatment provided the strongest PK profile for HIV suppression.
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Introduction

Ex vivo infection of rectal and cervical biopsies has been used as

a potential biomarker of microbicide efficacy in humans. Ex vivo
tissue biopsies are infected with HIV, following either ex vivo [1–

5] or, more recently, in vivo [6,7] exposure to a topical

microbicide product. When HIV suppression in the biopsy

infectibility assay correlates with drug concentration in tissue it is

possible to derive tissue drug concentrations predicting 50–95%

suppression of ex vivo infections [8]. In the currently reported

RMP-02/MTN-006 Phase 1 rectal microbicide trial of topical and

oral TFV, drug concentrations were quantified in multiple

compartments (blood, rectal tissue, rectal/vaginal fluid compart-

ment concentrations; ‘CC’) and correlated with HIV suppression

in the ex vivo infectibility rectal tissue assay to provide a measure

of drug efficacy.

In the first rectal microbicide trial to correlate ex vivo tissue

infectibility with tissue drug concentration following in vivo
application of a product (0.1 or 0.25% UC781 gel [8]), logistic

regression was used to calculate the EC50,90,95 tissue concentra-

tions predicted to result in 50, 90 or 95% biopsy non-infectibility.

In this analysis model, it was shown that defining a tissue sample as

either infected or non-infected enabled a predictive dose-response

relationship to be identified. Tissue infection was indicated when

HIV replication in the ex vivo assay was greater than 500 pg/mL

cumulative p24 on Day 14. Although there is currently no

consensus on the optimal method for p24 quantification in the

ex vivo challenge assay, cumulative p24 on Day 14 has been found

to be a relatively reliable and precise method for quantifying rectal

ex vivo HIV replication [6–8].

The RMP-02/MTN-006 clinical trial evaluated the safety

(primary outcome), acceptability, pharmacokinetic (PK; secondary

outcome), pharmacodynamic profile (PD; exploratory outcome)

and a limited PK:PD analysis of tissue TFVdp and biopsy p24 ([6])

of TVF 1% gel (single and 7-daily exposures) and oral tenofovir

disoproxil fumarate (TDF; 300 mg; single exposure). Single oral

and topical exposures provided the opportunity to assess within-

subject comparisons of safety, PK and PD following single product

exposure. Safety, PK and PD assessment was also conducted after

7 doses of topical TFV gel, a period approaching the time needed

to reach steady state levels of TFV. The objective of this analysis

was to report on the RMP-02/MTN-006 [6] multi-compartment

correlations between PK (i.e. TFV) and tenofovir diphosphate

(TFVdp) compartment drug concentrations and PD activity (i.e.

biopsy infectibility reflected by the degree of ex vivo p24

suppression in tissue biopsies).

Methods

Study participants
Study participants (N = 18; Figure 1) were healthy HIV-1

seronegative males and females with a history of consensual

receptive anal intercourse (RAI), willing to abstain from vaginal

and anal sex during active protocol phases (V2–V14, Figure 2).

Female participants were required to use an acceptable form of

contraception.

Ethics statement
The trial was IRB-approved at each site (UCLA, Los Angeles,

CA; University of Pittsburgh, Pittsburgh, PA); all participants

provided written informed consent. RMP-02/MTN-006 is regis-

tered at ClinicalTrials.gov (#NCT00984971) and is in compliance

with the CONSORT 2010 trial reporting recommendations

(www.consortstatement.org). The protocol for this trial and

supporting CONSORT checklist are available as supporting

information; see Checklist S1 and Protocol S1.

Study design
The design of RMP-02/MTN-006 Phase 1 trial has been

described [6] and is briefly outlined here. This was a double-blind,

randomized, placebo-controlled comparison of oral TDF

(300 mg), rectally-applied TFV 1% gel (each dose of gel contained

40 mg of TFV), and the HEC placebo gel. Randomization was

carried out by the study pharmacist and was a two-part process.

Following enrollment, participants were randomized (2:1) to

receive TFV 1% gel (N = 12) or HEC placebo gel (N = 6). A

separate randomization was used to assign subjects, for safety

reasons, into one of two post-exposure biopsy sampling arms (A or

B) after each single exposure stage. Group A subjects were

biopsied on Days 1–3 and 7–9 and Group B subjects were biopsied

on Days 4–6 and 10–12. Each two week period of biopsy sampling

was followed by a two week washout period between stages (‘rest’;

Figure 2). At visit 3 (V3 N = 18; Figure 2), all participants received

a single oral dose of TDF administered by a clinical team; this was

followed 4-weeks later (V7) by a single dose of rectally applied

product administered by the clinical team. Four weeks later,

participants received seven sequential daily doses of their assigned

products; six of which were self-administered each morning with

the 7th rectal dose administered in the clinic by the clinical team

(V12; Figure 2). Rectal biopsy infectibility assays were repeatedly

performed over 2 weeks following each treatment phase, with

concurrent CC (i.e. compartment concentrations) measurements

of: (i) TFV from rectal and vaginal fluids, blood and rectal tissue

and; (ii) TFVdp from total peripheral blood mononuclear cells

(TotalPBMC), CD4+ lymphocytes from PBMC (CD4+
PBMC),

CD42 lymphocytes from PBMC (CD42
PBMC)] and tissue [whole

tissue biopsy, total isolated mucosal mononuclear cells (TotalMMC),

CD4+ lymphocytes from MMC (CD4+
MMC), CD42 lymphocytes

from MMC (CD42
MMC)]. CC and explant tissue samples were

taken at time points from 30 minutes through 14 days following

each single exposure (oral and topical) and at 30 minutes following

the 7-day exposure. Biopsy infectibility and compartmental PK

measures were obtained at 7 timepoints following each product

exposure (from 30 minutes to 12 days; e.g., V3, 5, 6, 7, 9, 10 and

12, ‘*’; Figure 2). These paired (blood/biopsy) timepoints were

included in this dose-response analysis. CC and biopsy samples

taken from all participants at baseline (V2; no drug exposure) as

well as from those participants randomized to the placebo arm

(N = 6; V7, 9, 10 and 12) did not follow drug exposure and so were

not included in the dose-response analysis. Sample size (n = 18)

was based on similar phase 1 studies of topical microbicides [7].

Enrollment began November 2009 and was completed July 2010.

Baseline demographic and clinical characteristics for each group

are reported in the original trial paper [6].

Study products
300 mg tablets of TDF were supplied by Gilead Sciences Inc.

(Foster City, CA). TFV 1% gel providing 40 mg TFV per 4 mL

application, and HEC gel were supplied by CONRAD (Arlington,

VA). The vaginal formulation of TFV 1% gel used was pH

adjusted to 4–5 with an osmolarity of 3111 mOsmol/kg and the

HEC placebo was isotonic with a pH of 4.4, osmolarity of 304

mOsmol/kg [6] and a viscosity similar to other microbicide gel

candidates [9]. TFV and HEC gels were pre-filled into single-use,

opaque applicators (HTI Plastics; Lincoln, NE) containing

approximately 4 mL of gel.
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PK analyses
Plasma TFV and tissue TFVdp concentrations were determined

by previously described LC-MS/MS methods validated for all

matrices at The Johns Hopkins Clinical Pharmacology Analytical

Laboratory and met FDA bioanalytical validation criteria [10].

TFV concentrations were determined in both peripheral blood

mononuclear cells (PBMC) and mucosal mononuclear cells

(MMC) for rectal and vaginal fluids (ng/sponge; Ultracell Aspen,

Caledonia MI) in addition to plasma (ng/mL) and tissue (ng/mg)

concentrations. TFVdp concentrations were also determined for

TotalPBMC, CD4+
PBMC, CD42

PBMC, TotalMMC, CD4+
MMC,

CD42
MMC and Tissue. CD4+ and CD42 subsets from both

PBMC and MMC were acquired by MACS Miltenyi Biotec

QuadroMACS separation unit (Miltenyi Biotec Inc., Auburn,

CA). The measured value from each PK assay was used unless the

PK value was determined to be between the lower limit of

quantification (LLOQ) and the lower limit of detection (LLOD).

In these cases, a number equal to half that assay’s LLOQ was

imputed for that PK value.

PD analyses
At baseline (V2) and timepoints following product exposure (V3,

5, 6, 7, 9, 10 and 12; Figure 2), endoscopic biopsies were collected

in 50 mL RPMI (with 1.125 mg/mL of Fungizone and 50 mg/mL

of Zosyn) and transported to the laboratory for ex vivo infection

within ,1–2 hours using a common viral stock of HIV-1BaL (104

TCID50), as previously described [1,11,12]. Supernatants for p24

quantification were collected every three days during each 14-day

infectibility assay (Days 1, 4, 7, 11 & 14). Results were averaged

across quadruplicate assays and reported as cumulative p24 (p24

HIV antigen ELISA; NCI, Bethesda, MD) where the assay’s

LLOQ was 10 p24 pg/mL. Non-detectable cumulative p24

Figure 1. CONSORT flowchart.
doi:10.1371/journal.pone.0111507.g001

Figure 2. Study flow diagram. Paired measures from compartment concentrations (CC) and both CC and biopsy samples (*) taken at the bolded
visits: V3 (Visit 3: ,30 mins post single oral dose), V5 (1–6 days post V3 dose), V6 (7–9 days post V3 dose), V7 (,30 mins post single topical dose), V9
(1–3 days post V7 dose), V10 (7–12 days post V7 does) and V12 (,30 mins post 7th daily dose) used in the dose-response analysis.
doi:10.1371/journal.pone.0111507.g002
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measures at Day 14 were converted to 1/2 the LLOQ prior to log

transformation. Cumulative p24 was used here to provide both a

continuous (i.e. pg/mL) and binary (,500 pg/mL cumulative

p24 = ‘non-infected’; $500 p24 pg/mL = ‘infected’) measure of

virus growth [8,13].

Statistical analysis
TFV measures from four compartments (rectal fluid, vaginal

fluid, plasma, and rectal tissue) and TFVdp measures from seven

compartments (TotalPBMC, CD4+
PBMC, CD42

PBMC, TotalMMC,

CD4+
MMC, CD42

MMC, and rectal tissue) were log10 transformed

and paired with the corresponding log transformed explant

infectibility result (i.e. log10 cumulative p24 at Day 14) for each

subject and sampling time. The number of CC and p24 paired

measurements (N = 18) are reported in Table 1. Paired CC and

p24 endpoints were entered into a three parameter, log-log, Hill

slope, non-linear model (1) where the fit of the model was tested by

nonlinear least-squares ANOVA and the proportion of variance

that each model explained (r2) was calculated [i.e. (12) the sum of

the squared distances from each fitted curved divided by the

squared distances from a horizontal line].

Log10(p24)~bz(a{b)=(1z10((LogDose){c)) ð1Þ

The fit of each three-parameter non-linear model was compared

to an alternative four parameter model using the information

criterion of Akaike (AIC), where a lower AIC indicates improved

model fit [14].

The ability of a microbicide treatment to suppress p24 in the ex-
vivo assay is an indication of treatment efficacy, where lower

concentrations of p24 indicate virus suppression. Based on earlier

published methodology [8], biopsy assays resulting in a cumulative

p24 below 500 pg/mL were categorized as ‘suppressed’ and biopsy

assays with a cumulative p24 at or above 500 pg/mL were ‘not-

suppressed.’ This binary categorization of ex-vivo endpoints (i.e.

‘suppressed’ or ‘not suppressed’) was then used in a logistic

regression model of the relationship between probability of ex vivo
HIV suppression and CCs. CCs necessary to suppress 50, 90 and

95% of biopsy HIV (i.e. EC50, EC90, and EC95) were calculated by

interpolation of the logistic curve at 0.50, 0.90 and 0.95

probability. A predicted EC50, EC90, or EC95 CC that fell within

the PK range (min-max) found following each treatment [15] was

evidence that the treatment provided a CC with the potential to

meet EC50,90,95 levels of efficacy.

All statistical analyses were performed using SAS/STAT

software Version 9.3 of the SAS system for Windows (SAS

Institute Inc., Cary, NC) and an alpha = 0.05.

Results

Paired CC and p24 data meeting the following criteria were

included in the analysis: (i) collected post active drug, (ii) at

timepoints with concurrent ex vivo infectibility assays and, (iii)

with measurable CC and p24 concentrations. For example, of the

102 possible rectal fluid TFV and p24 paired measurements

following the single oral (N = 18 receiving active drug), single

topical (N = 12) and 7-daily topical exposure stages, there were,

respectively, 38, 27 and 12 HIV ex vivo p24 measures that were

paired with detectable rectal fluid TFV CCs (‘TFV Rectal Fluid;

Table 1; see File S1 for non-detectable and missing data

frequencies). There were no detectable CC measures of TFVdp

from either TotalPBMC or CD4+
PBMC at the time-points when

biopsies were acquired (‘*’, Figure 2); no further analyses were

performed on these compartments.

Compartment drug-HIV suppression correlations
The non-linear model fit was improved (smaller AIC) for the

three parameter, compared to the four parameter, regression

model that was used to correlate TFV and TFVdp CCs with tissue

infectibility (cumulative p24; Table 2).

TFVdp: There was a significant fit by non-linear least squares

analysis of variance, for the TFVdp dose-response model for rectal

tissue (p = 0.0004; Figure 3a.), CD4+
MMC (p,0.0001; Figure 3b.),

CD42
MMC (p,0.0001; Figure 3c.), TotalMMC (p,0.0001; Fig-

ure 3d.) compartments with r2 ranging 0.36–0.64. Higher

concentrations of TFVdp corresponded with lower p24, consistent

with drug mediated virus suppression. Non-linear curves provided

a clear upper asymptote, where lower ranges of drug were

ineffective in suppressing virus growth (Figures 3a–d). There was

little or no evidence of a lower asymptote, where suppression of

HIV reached the lower limit of p24 quantification and additional

drug was not increasingly efficacious (Figure 3a–d). No significant

CC:p24 relationships were identified in the blood-derived samples

of CD42
PBMC (Table 2) at the PK timepoints that were

concurrent with an endoscopic biopsy procedure.

Table 1. Number of detectable, concurrent, paired CC and p24 measurements following each treatment.

Compartment Single Oral* Single Topical** 7-Daily Topical*** Total

TFV Rectal Fluid 38 27 12 77

TFV Vaginal Fluid 6 1 2 9

TFV Plasma 45 16 12 73

TFV Rectal Tissue 14 10 10 34

TFVdp Rectal Tissue 10 17 12 39

TFVdp CD42
MMC 17 17 11 45

TFVdp CD4+
MMC 10 13 9 32

TFVdp TotalMMC 4 14 9 27

TFVdp CD42
PBMC 9 1 0 10

*Post Single Oral (V3, 5 & 6). Maximum of 18 (N; number of subjects)63 (V; visits) = 54 paired CC:p24 measurements, 12 for vaginal fluid [4 (f; female subjects)63 (V)].
**Post Single Topical (V7, 9 &10). Maximum of 12 (N)63 (V) = 36 paired CC:p24 measurements,6 for vaginal fluid [2(f)63 (V)].
***Post 7-Daily Topical (V12). Maximum of 12 (N)61 (V) = 12 paired CC:p24 measurements, 2 for vaginal fluid [2(f)61 (V)].
doi:10.1371/journal.pone.0111507.t001
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TFV: There was a significant fit for the non-linear model of

rectal fluid TFV and p24 biopsy suppression (Figure 3e;

p = 0.0012); higher concentrations of TFV correlated with lower

cumulative p24. Although statistically significant, this rectal fluid

TFV CC:p24 suppression model had a relatively low r2 value

(0.17). This is likely reflective of many high CC values [,4–6

log10(TFV) ng/sponge] not associated with suppression of biopsy

p24 [,3–4 log10(p24) pg/mL; Figure 3e]. No significant CC:p24

relationships were identified for TFV in vaginal fluid, plasma or

rectal tissue, the latter in contrast to the significant relationship

found for TFV in rectal fluid (Table 2).

TFVdp and TFV EC50,90,95

Logistic regression analyses were performed for those TFV and

TFVdp compartments showing significant dose-response relation-

ships: TFVdp concentrations in rectal tissue, CD4+
MMC,

CD42
MMC, TotalMMC and TFV concentrations in rectal fluid

(Figure 3a–e). The concentrations of drug (TFV or TFVdp) in

each compartment predicted to suppress biopsy HIV below a

cumulative p24 of 500 pg/mL were determined using a logistic

regression model. The fit of the logistic regression model was

measured by the area under the receiver operator characteristic

curve (‘AUC’) where an AUC = 1.0 indicates perfect prediction of

biopsy suppression [16]. The fit of the logistic models ranged from

0.83–1.00 AUC. Interpolation at the 50, 90 and 95% HIV

suppression probability levels of the logistic curve provided

EC50,90,95 point estimates for TFV and TFVdp CCs (Table 3).

Bootstrap samples (x1000, data not shown) were run and results

were highly consistent at the EC50 endpoint (within 4% of the

Table 3 EC50 values) but less consistent at the EC90 and EC95

efficacy levels presumably due to few observations at those

modeled concentrations.

The likelihood that a treatment (i.e. single oral TDF, single

topical TFV gel or 7-daily topical TFV gel) would provide a CC

necessary for ex vivo HIV suppression (i.e. EC50,90,95) was

evaluated by determining whether the EC50,90,95 point estimates

were within the range found following each treatment ([15];

Table 2). An EC50,90 and/or EC95 estimate that fell within the

likely range found in subjects following a treatment provided

evidence that the treatment had the potential to suppress biopsy

HIV growth at the 50, 90, or 95% probability level. Conversely, if

the range in actual CC following a treatment was less than the

predicted EC50,90,95 levels then the treatment failed to provide CC

at levels predicted to be necessary for suppression of HIV growth

in the biopsy assay.

The single oral treatment failed to provide adequate CC to

reach the EC50 levels of rectal tissue TFVdp predicted to be

necessary to suppress HIV in the rectal biopsy [ie. TFVdp (fmol/

mg) = 1660; Table 3] at 24 hours post treatment (i.e. TFVdp

C24 hrs (fmol/mg) = BLQ-991; min-max; [15]). The EC50 level for

CD4+
MMC (2884 fmol/106 cells; Table 3) was within the single

topical treatment range at C30 min (BLQ-3950 fmol/106 cells;

[15]), providing evidence that a TFV 1% gel could deliver a

CD4+
MMC concentration necessary for 50% efficacy in the ex vivo

assay. The 7-daily topical TFV gel treatment provided TFVdp

concentrations (min-max) that reached EC90 biopsy efficacy for

CD42
MMC (C30 min = BLQ-12000 fmol/106 cells; Table 2 [15];

EC90 = 1318 fmol/106 cells Table 3), CD4+
MMC (C30 min = BLQ-

31200 fmol/106 cells [15]; EC90 = 13183 fmol/106 cells Table 3)

and TotalMMC (C30 min = BLQ-13900 fmol/106 cells [15];

EC90 = 8318 fmol/106 cells Table 3) compartments. The

EC50,90,95 serve as point estimates of efficacy where the range in

in vivo drug concentrations found following use of an efficacious

product would, ideally, be higher than the EC50,90,959s found in

this ex vivo model. Up to a 4-log spread in compartment drug

concentration was found following the single oral, single rectal and

7 day rectal dosing, where only a small proportion of subject

timepoints resulted in concentrations exceeding the predicted

EC90 doses. For example, only 3/12 of detectable CD42
MMC

concentrations of TFVdp were above the EC90 of 1318 fmol/106

cells (Figure 3c), providing evidence suggestive of at least partial

efficacy in this model.

Discussion

This Phase 1 trial confirmed that the ex vivo biopsy challenge

model can provide a pharmacodynamic endpoint (p24 suppres-

sion) correlated with in vivo drug concentrations and varied by

treatment regimen. The pharmacodynamic endpoint of p24

suppression following HIV-1BaL infection of freshly-acquired

Table 2. TFV and TFVdp dose, p24 suppression response non-linear models.

Compartment n p r2 AIC* (3-param1) AIC (4-param11)

TFV Rectal Fluid (ng/sponge) 77 0.0012 0.17 149.29 151.29

TFV Vaginal Fluid (ng/sponge) 9 ns 0.26 27.83 29.83

TFV Plasma (ng/mL) 73 ns 0.01 155.84 157.84

TFV Rectal Tissue (ng/mg) 34 ns 0.13 81.41 83.41

TFVdp Rectal Tissue (fmol/mg) 39 0.0004 0.36 81.96 83.96

TFVdp CD42
MMC (fmol/106 cells) 45 ,0.0001 0.64 69.42 71.42

TFVdp CD4+
MMC (fmol/106 cells) 32 ,0.0001 0.53 63.57 65.57

TFVdp TotalMMC (fmol/106 cells) 27 ,0.0001 0.57 55.55 57.55

TFVdp CD42
PBMC (fmol/106 cells) 10 ns 0.46 14.84 16.84

p = probability of non-linear model fit.
ns = non-significant at alpha 0.05.
n = number of CC:p24 paired measurements.
r2 = (1-) the sum of the squared distances from each fitted curved divided by the squared distances from a horizontal line.
*AIC = Akaike information criterion value. The 3-parameter non-linear model provided lower AIC values indicating a better fit than an alternative 4-parameter model.
13-parameter model: Log10(p24)~bz(a{b)=(1z10((LogDose){c)):
114-parameter model: Log10(p24)~bz(a{b)=(1z10(((LogDose){c){d)):
doi:10.1371/journal.pone.0111507.t002
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human tissue biopsies has yet to be validated as a bio-indicator of

HIV prevention in a large scale human efficacy trial but does

present the closest surrogate currently available. This paper

demonstrated that tissue HIV infectibility (cumulative p24) was

inversely correlated with in vivo concentrations of both TFV and

TFVdp. Statistically significant, non-linear dose-response relation-

ships with reduced tissue infectibility were found for one TFV

compartment and four TFVdp compartments; the dose-response

relationships were highly significant for TFVdp in whole rectal

tissue, CD4+
MMC, CD42

MMC and TotalMMC compartments. The

finding that TFVdp, the active metabolite of TFV, was more

predictive of ex vivo virus inhibition than TFV demonstrates the

utility of measuring TFVdp in cellular spaces. Isolation of cells for

the measurement of TFVdp may not be necessary as TFVdp in

whole rectal tissue was found to be as predictive of a

pharmacologic response as TFVdp in isolated cell populations.

Figure 3. Tenofovir (TFV) and Tenofovir Diphosphate (TFVdp) concentration and biopsy cumulative p24 dose-response
relationships. Results are shown for those CC:p24 paired measurements with detectable concentrations of drug following single oral TDF ( ),
single topical TFV gel (%) and 7-day topical TFV gel (.) microbicide treatments for the dose-response relationship between CC drug concentrations
and ex vivo p24 levels. Figure panels A-D show TFVdp in (A) rectal tissue, (B) TFVdp CD4+

MMC, (C) TFVdp CD42
MMC, (D) TFVdp TotalMMC and (E)

Tenofovir (TFV) rectal fluid concentration. Parameters from the log-log non-linear model with a Hill slope factor of –1.0, where r2 and probability
levels for the fit of the non-linear least-squares analysis of variance are embedded. Vertical lines indicate the EC50 and EC90 calculated by the logistic
regression analysis as the compartmental drug concentrations predicted to provide 50 and 90% efficacy in the explant infectivity assay.
doi:10.1371/journal.pone.0111507.g003
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These findings support the measurement of TFVdp from whole

tissue homogenates in clinical trials, as isolation of cells from tissue

may not be necessary to obtain a measure of TFVdp that is related

to activity. The ability to describe a concentration-response

relationship allowed identification of target concentrations of

TFVdp in specific compartments so providing a means to ensure

that different dosing strategies result in adequate in vivo TFVdp

ranges for ex vivo HIV inhibition.

Robust dose-response correlates predicting the in vivo CCs in

tissue, blood, rectal/vaginal fluid compartments needed for ex vivo
suppression of HIV (i.e. EC50,90,95) were found using logistic

regression analyses. In demonstrating these correlations, this

intensive Phase 1 trial design, involving the measurement of

multiple PK endpoints in multiple tissue/fluid compartments and

the PD ex vivo assay endpoint, predicted CCs necessary for

ex vivo suppression and, by inference, in vivo dosing. The ex vivo
biopsy assay for HIV infectibility uses intact, freshly-acquired,

tissue samples, providing one of the closest pre-clinical surrogates

to a human efficacy clinical trial. Phase 1 rectal microbicide study

designs that integrate safety, acceptability, and PK/PD measure-

ments have the potential to provide early indications of harm and/

or potential efficacy of candidate products prior to embarking on

larger, longer and more expensive Phase 2B/3 trials.

When drug concentrations are independently varied, correla-

tions between dose, in vivo drug concentration and infectibility

can be used to predict the drug concentration needed to effectively

suppress HIV infection, ex vivo [8]. The single doses of oral and

topical drugs used here did not allow for correlations to be made

with initial doses but a wide range in in vivo drug concentrations

were found following the various treatment regimens tested. The

in vivo drug concentrations following the 7-daily topical TFV gel

treatment were quantifiable at the EC90 level in various

compartments, and were within the range found 30 minutes post

product use. The single oral TDF dose did not provide a high

enough in vivo drug concentration for even a 50% probability of

ex vivo suppression. The single topical TFV gel treatment

provided evidence of partial suppression in some compartments

but did not reach the 95% probability of suppression in any of the

compartments tested.

The statistical methodology used here, and in the previous

UC781 biopsy challenge trial [8], can inform on the design of

future trials to reduce the number of biopsy samples required,

increase power and provide relevant information from these small,

early stage clinical studies. Placebo and baseline infectibility data

are generally associated with high p24 variability and low

statistical power [8]. Baseline and placebo data were not used

(nor needed) here as the intent was to study the compartmental

concentration-response relationship only following active dose(s) of

the drug. Although the dose-response models found were

consistent with drug-mediated virus suppression, there was only

the merest indication of a lower asymptote, where suppression of

HIV reached the lower limit of p24 quantification and increased

drug would lead to diminished effect. Dose-ranging biopsy

challenge studies are needed to provide a range of drug mediated

HIV suppression in order to populate both upper and lower

asymptotes of the dose-response curve. A clearly defined lower

asymptote, where tissue/blood drug concentrations were correlat-

ed with p24 suppression in the explant assay, following in vivo
exposure to a product, would provide the range of in vivo drug

that would reliably suppress HIV in this model. Ideally, this range

that would be representative of the range in in vivo compartmen-

tal drug concentrations found amongst users of the product.

The dose-response relationships reported here are specific to the

TDF 300 mg tablet, the TFV 1% gel study product and the dosing

regimens used. The EC50,90,95 levels calculated cannot be easily

extrapolated to other doses, drugs and treatment regimens but do

provide an efficacy endpoint, expressed in units of in vivo PK

parameters, that could be comparable between studies. In the

CHARM-01 study (ClinicalTrials.gov: NCT01575405) the corre-

lations found in the RMP-02/MTN-006 study described in this

paper will be reassessed for three different formulations of TFV

1% gel to evaluate whether re-formulation impacts the clear dose-

response relationships found with the formulation of TFV 1% gel

used in the RMP-02/MTN-006 study. For example, while

compartment concentrations of TFVdp in CD4+
PBMC and

CD4Total were non-detectable at the time points where blood

levels were paired with p24 biopsy measurements (the only time

points reported here), there were detectable blood levels at

sampling periods post exposure that were not paired with biopsy

sampling. These are reported in our concurrently submitted

manuscript comparing timing of drug detection in multiple

compartments from the same Phase 1 trial [15]. Although these

derivations apply only to TFV and the particular formulations and

delivery methods tested, the analytical framework can be applied

to many promising candidate microbicides.

The high titer of HIV infection used here (HIV1BaL; 104

TCID50), far in excess of the titer found in semen [17], was

previously found to reduce inter- and intra- subject variability in

this tissue assay compared to a lower 102 TCID50 titer [8]. The

risk of transmission during anal intercourse has been estimated at

Table 3. Compartment TFV and TFVdp efficacy concentrations (EC50,90,95) predicted by logistic regression to suppress HIV
infection following single oral TDF, single topical TFV 1% gel and 7-day topical TFV 1% gel in vivo product use.

Compartment (measured unit) Predicted Efficacy1

EC50 EC90 EC95

TFV Rectal Fluid (ng/sponge) 4.96106 3.661010 3.461011

TFVdp CD42
MMC (fmol/106 cells) 661 1318 1549

TFVdp CD4+
MMC (fmol/106 cells) 2884 13183 19498

TFVdp TotalMMC (fmol/106 cells) 2138 8318 12023

TFVdp Rectal Tissue (fmol/mg) 1660 10233 16596

1Predicted compartment dose concentrations to suppress 50, 90 and 95% of HIV infection interpolated from the logistic regression probability curve where infection
was defined as cumulative p24 pg/mL $500.
Actual drug concentrations in the delivered product were 300 mg tenofovir disoproxil fumarate in the oral pill (equivalent to 245 mg of tenofovir disoproxil) and
40 mg/4 mL tenofovir in each topical gel application.
doi:10.1371/journal.pone.0111507.t003
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0.65–1.7% [17], so perhaps it is not surprising that the use of

higher titer inoculants than those found in vivo result in higher

infectibility rates ex vivo (,60% of explants HIV1BaL102 TCID50

[7]) in this model system. Drug treatments that reliably suppress

such high HIV titers ex vivo set a high bar for drug mediated

efficacy assays, and may overestimate the drug dose needed

in vivo to prevent acquisition of HIV infection. The choice of

isolate could increase the power of these analysis methods if a

primary or mucosal-derived virus isolate was found to reliably

infect mucosal tissue at lower, more virologically relevant

infectious titers. Dose-ranging, use of sampling time points that

reflect the known pharmacokinetic profile in each compartment,

and use of more virulent HIV isolates may provide more reliable

and valid dose-response analytics and derived results.

In summary, the TFVdp MMC compartment (CD4+, CD42

and Total) provided the best surrogates for biopsy infectibility and

the 7-daily topical TFV gel treatment provided the strongest PK

profile for HIV suppression. Although the sample size here was

relatively small (N = 18, where only N = 12 received the microbi-

cide gel formulation), the dose-response models reached statistical

significance showing that meaningful, informative findings can

result from this type of small, intensive PK/PD study.
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