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Abstract: Phacoemulsification is a widely used surgical method in cataract surgery with a high
energy ultrasound source. The viscoelastic is considered to be tissue protective. The aim of this
study is to investigate during surgery the impact of using viscoelastic versus no viscoelastic on
clinical outcomes, potential complications and effect on endothelial cell density. The study group
included 64 patients, who were subjected to phacoemulsification using balanced salt solution (BSS).
Control group consisted of 62 patients, who underwent phacoemulsification using Hyaloronic acid
1% Healon 1%. Student’s t-test was applied for statistical analysis. The simulations of temperature
changes during phacoemulsification were performed by COMSOL Multiphysics software. In the BSS
group, a mean endothelial cell loss (ECL) of 4.5% was measured one month postoperatively, while in
the Healon group ECL was 5.3%. Data analysis showed no significant difference in ECL between
the groups (Student’s t-test, p = 0.8). No significant difference was observed in endothelial cell
morphology and IOP between the two groups pre- and postoperatively (all p > 0.05). The modeling
of thermo fluid dynamics showed that the heating of the cornea is slightly less when Healon was
used as irrigation fluid. The phacoemulsification technique can be performed by an experienced
surgeon with viscoelastics or continuous anterior chamber (AC) irrigation on the same level of safety
regarding endothelial cell damage, providing equally satisfying clinical outcomes.

Keywords: phacoemulsification; viscoelastics; corneal endothelial cells; intraocular pressure (IOP);
thermo fluid dynamics; numerical simulation

1. Introduction

The mean endothelial cell count at birth varies significantly between 3500 and
7500 cells/mm2 [1–3]. At the beginning of life, the rate of endothelial cell loss is physiologi-
cally high, and this curve flattens out during the course of life. Bourne et al. calculated an an-
nual mean endothelial cell loss rate of approximately 0.6% in adulthood [4]. The average en-
dothelial cell count in adulthood is estimated to range between 1800–2500 cells/mm2 [5–7].

The absolute endothelial cell count is not the only factor for ensuring the proper
corneal endothelial function. Endothelial cell morphology, as evaluated by the examination
of endothelial cell size and shape, is of paramount importance for the reliable assessment
of the endothelial quality and the documentation of potential endothelial cell damage [8,9].
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Critical endothelial cell count for the preservation of the endothelial function and the
maintenance of corneal stromal transparency is reported to vary significantly between
300 and 800 cells/mm2 [10,11].

Although phacoemulsification is considered to be a low-risk surgical procedure, the
following factors could be associated intraoperatively with further endothelial cell dam-
age: direct instrument contact, liquid turbulence, whirl lens fragments due to turbulence
caused by the irrigation system, excessive ultrasound energy, prolonged surgery duration,
pharmacological affection, and toxic damage [12–17]. The effects of irrigating pressure
and temperature rise in the anterior chamber could cause corneal endothelial damage.
The ultrasound energy at the phaco tip induces the formation of free hydroxyl radicals
in the aqueous solution of the anterior chamber, which can further damage the corneal
endothelium. Nevertheless, mechanically induced traumas during the surgery represent
the most frequent cause of endothelial cell loss in phacoemulsification [18]. Viscoelastic
solutions are used in modern cataract surgery for the prevention of corneal endothelial
cell loss.

We also tried to establish the relation between an increase in temperature caused
by phacoemulsification with/without viscoelastics, and potential damage on the corneal
endothelium. The endothelium is sensitive to thermal damage and needs to deal with
possible thermal stress resulting from temperature rise during ultrasound exposure. For
this purpose, the temperature distribution during phacoemulsification was modeled and
the mechanisms that act as heat sources were considered. Laminar flow module and
heat transfer module were considered as physics problems in COMSOL Multiphysics.
Continuity, energy, and Navier-Stokes equations were simultaneously solved for steady-
state and time-dependent conditions in the anterior chamber. Boussinesq approximation
was also used to reduce the complexity of density change due to the temperature difference.

In this context, the aim of this study was to analyze the clinical outcomes and safety
profile of phacoemulsification without use of viscoelastics.

2. Materials and Methods
2.1. Medical Study Part

This was retrospective case series comparative study. The study was approved by the
Ethics Committee in Novi Sad and bears the number 34-08.18. The study group included
47 (32 females/15 males) patients subjected to phacoemulsification using balanced salt
solution (BSS, Alcon, Fort Worth, TX, USA) and continuous anterior chamber irrigation in-
stead of viscoelastics. The control group consisted of 45 (30 females/15 males) patients who
underwent phacoemulsification using Healon (Alcon, Fort Worth, TX, USA). A CataRhex 3
(Oertli Instrumente AG, Berneck, Switzerland) was used as a phacoemulsification device
for the study. The device was equipped with an easyPhaco® tip, which enables targeted
emulsification through a focused axial release of ultrasound energy. Both groups were age-
and gender-matched. The same experienced surgeon performed all surgical procedures.
Written patient consent was obtained by all participants. Eligible for inclusion in the study
were patients with age between 40–80 years, and age-related cataract up to nuclear grade IV.
Exclusion criteria included: pre-existing glaucoma, underlying pseudoexfoliation, history
of uveitis, history of previous intraocular surgery, diabetes mellitus type I, corneal en-
dothelial dystrophy/degeneration, endothelial cell density below 1400 mm/cm2, anterior
chamber depth below 2.5 mm, and dilated pupil size below 7 mm. Intraoperative exclusion
criteria were total surgical time exceeding 15 minutes, total phaco time exceeding 10 s, as
well as intraoperative complications.

Mean age of patients was 71.2 years (range: 44–88 years) in the BSS group and
71.2 years (range: 40–91 years) in the control group. Pre-operative ophthalmological
examination included manifest refraction, distance visual acuity (best-corrected and uncor-
rected) measured by Snellen optotype charts, measurement of intraocular pressure (IOP) by
Goldmann applanation tonometry, measurement of corneal endothelial cell count and eval-
uation of endothelial cell morphology by non-contact endothelial microscopy, and slit-lamp
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examination of the anterior and posterior segment. Nuclear cataract was graded using the
Lens Opacities Classification System III (LOCS III) [19]. The IOL power was calculated
using the SRK/T formula (IOL-Master, Carl Zeiss Meditec, Oberkochen, Germany).

Patients were allocated alternately to the BSS group or the Healon group according
to the chronological order by which they were first assessed. All patients were evaluated
preoperatively and 1 day, 1 week and 1 month after surgery. IOP was measured additionally
6 h after surgery.

2.1.1. Non-Contact Corneal Endothelium Microscopy

Non-contact corneal endothelium microscopy (Tomey EM-3000) was used for estima-
tion of corneal endothelium cell count and investigation of the endothelial morphology.
Endothelial cells were counted in an area of 860 µm × 650 µm. Counting frame was
manually adjusted for the evaluation of cells divided by the left and lower edge. Cell shape
specification was estimated in % of evaluated cells; based on the cell shape of quadrangular,
pentagonal, hexagonal, heptagonal and other cells. Cell area specification was stated in %
of evaluated cells based on cell size; divided into cells bigger than 700 µm2, 600–700 µm2,
500–600 µm2, 400–500 µm2, 300–400 µm2, 200–300 µm2, smaller than 200 µm2. Qualitative
endothelial changes (polymegathism and pleomorphism) were assessed with an image
analysis procedure. The analyzed endothelial cell number was defined as endothelial cell
density (ECD-measured in cells/mm2). The mean endothelial cell size was described by
the average cell area (AVE-measured in µm2). The variation coefficient CV was received
by division of the cell size standard deviation with the mean endothelial cell size. For
obtaining size in percent, the coefficient had to be multiplied by 100 (SD/AVE × 100).
The percentage of hexagonal cells is described by the parameter 6A. The hexagonal cell
(apex) percentage and the average dispersion of endothelial cell size (area) were imaged by
a diagram.

2.1.2. Surgery Method with BSS

The anesthesia was performed by intracameral of Rapidocain 1% and Carbostesin
0.5%. Two incisions were placed at 10 o’clock and 2 o’clock. The anterior chamber was
maintained with the irrigation terminal while performing a circular capsulorhexis with a
25 G needle. A clear corneal approach with a width of 2.2 mm was performed at 11 o’clock
with consecutive hydrodissection. The lens nucleus was removed by phacoemulsification
and the cortex by bimanual irrigation/aspiration (I/A) system. An acrylic IOL (type Nidek
NS 60YG) was implanted by an injector in the posterior chamber during irrigation. The
IOL was centered with the aspiration unit. Intracameral application of 0.25 mL Carbachol
(Miostat®) and 0.1 mm Cefuroxim (50 mg) (Aprokam®) was performed at the end of
the surgery.

2.1.3. Surgery Method with Healon

In this group, a circular capsulorhexis was performed under the protection of Healon
with a 25 G needle. The IOL was implanted with the use of Healon in the bag with a
consecutive bimanual aspiration of Healon and an irrigation/aspiration (I/A) system. All
other surgical steps were identical to the procedure followed in the BSS group.

2.1.4. Statistical Analysis

IBM SPSS Statistics version 22.0 (IBM Corp., Armonk, NY, USA) was applied for
the statistical calculations. Kolmogorov-Smirnov and Shapiro-Wilk tests were performed
to examine data sets to determine whether they are parametric (normal distribution) or
non-parametric. A data set is considered normally distributed if p > 0.05. The parametric
data sets are further analyzed with Student’s t-test and the non-parametric data sets with
the Friedmann test. Significance is present if p < 0.05.
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2.2. Modeling of Temperature Dissipation in the Anterior Chamber of the Eye
during Phacoemulsification

To obtain the temperature profile in the anterior chamber (AC) of the eye, dur-
ing phacoemulsification with/without viscoelastics, a two-dimensional finite element
model was constructed. COMSOL Multiphysics® (http://www.comsol.com/, accessed
on 30 January 2021) is a finite element analysis software package used to solve coupled
differential equations of laminar fluid flow and heat transport. A physics-optimized mesh
consisting of 4981 triangular elements was automatically generated for the simulation
(Figures 1 and 2).

Figure 1. COMSOL generated mesh.

Figure 2. AH outflow pathway detail.

The relevant dimensions of the observed domain are given in next order: anterior
chamber (AC) length—10 mm, AC depth—3.2 mm, pupil length—2.98 mm, iris thickness—
0.45 mm [20]. At the outer rim of the AC, a system consisting of the porous trabecular
meshwork (TM) and the Schlemm’s canal (SC) was implemented as the outflow path-
way for the aqueous humor (AH). Parameters relevant to this construction, as well as
the constants related to the AH, are given in the following order: dynamic viscosity
µ = 7.5 · 10−4 Pas, density ρ = 998 kgm−3, thermal conductivity k = 0.58 Wm−1K−1,
heat capacity at constant pressure Cp is 4.2 Jkg−1K−1, coefficient of thermal expan-
sion α is 3 · 10−4K−1 [21,22]. Corresponding values for BSS and Healon were taken as:
µBSS = 1.02 · 10−3Pas; µH = 200Pas; CpBSS = 2.5 Jkg−1K−1; CpH = 2.5 Jkg−1K−1;
kBSS = 0.65 Wm−1K−1 and kH = 0.47 Wm−1K−1.

http://www.comsol.com/
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Since the main resistance to AH outflow is localized within the TM with the juxta-
canalicular meshwork, average TM length—85 µm, for TM width—300 µm, TM porosity
εp—0.1, TM permeability κ − 5 · 10−15m2, and a value of 163 µm for SC length [23], were
taken as boundary conditions. The AH inlets consisted of two 20 µm long parts on each
side of the pupil, bordering with the iris. The initial natural inflow rate was also taken
from [23]. The outer wall of the AC was kept at a temperature of 27 ◦C, while the rest of
the borders were fixed at a core body temperature of 36.5 ◦C. Venous pressure at the SC
outlet was assumed to be 10.5 mmHg [23].

To simulate the heating induced by the ultrasonic impulse, a temporary condition
of a boundary heat source representing the probe tip with a diameter 2.2 mm placed at
0.25 mm above the lens surface was added in the duration of the first 5 s of the simulation.
The combined effect of the radiant, as well as viscous friction heating, was taken to total
0.66 W, 1.2 W, 2.4 W and 3 W throughout the duration of the impulse, spread out over the
tip of the probe. The relevant boundary condition can be given by the following equation:

n · ∇T = Q (1)

where n is the unit vector perpendicular to the boundary and Q is the total heat flux.
For the duration of the impulse, as well as in the seconds following it when the

temperature dissipation was observed, a transient solution was obtained for equations
governing incompressible laminar fluid flow in porous media are as follows:

1
εp

ρ
∂u
∂t

+
1
εp

ρ(u · ∇)u 1
εp

= ∇ · (−p2I + K)−
(

µκ−1 + βF|u|+
Qm

ε2
p

)
u + F (2)

where:
K = µ

1
εp

(
∇u + (∇u)T

)
− 2

3
µ

1
εp

(∇ · u)I (3)

ρ∇ · u = Qm (4)

Here, the independent variables obtained by the solver were the velocity field u and
pressure p; I is the identity matrix, and F represents any volumetric force acting on the
domain, such as gravity.

The previous three equations were coupled with the heat transport equation in laminar
fluids, in its time-dependent form:

ρCp
∂T
∂t

+ ρCpu · ∇T +∇ · (−k∇T) = Q + q0 + Qp + Qvd (5)

where T is the temperature field and Q is the heat source (sink) flux, which in the case of
this simulation encompasses viscous dissipation, pressure work and boundary heat source
representing the surgical instrument.

Since the only porous medium domain is located in the TM, for the rest of the simulated
chamber Equations (2)–(4) are greatly simplified:

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ · (−p2I + K) + F (6)

where:
K = µ

(
∇u + (∇u)T

)
(7)

ρ∇ · u = 0 (8)

The buoyancy effects, through which convection inside the AC occurs, were ac-
counted for by using the Boussinesq approximation in the external volumetric force term
of Equations (2) and (6):

F = ραg
(

Tre f − T
)

(9)
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where Tre f is taken as the ambient temperature and α is the AH coefficient of thermal expansion.
In general, no analytical solutions exist for nonlinear models described by previous

equations. The discretization governing equations and solving by Computational Fluid
Dynamics (CFD) is the most common approach to fluid dynamics problems. There are
various discretization techniques such as the finite difference method and the finite volume
method, recently presented in [24,25], that deal with heat and mass transfer in the human
eye. In this paper, the finite element method was used as a discretization technique. The
solution domain is subdivided into a finite number of elements; the governing equation is
solved for each element and then the overall solution is obtained by “assembly”.

Serving as the initial state of the system prior to the application of the ultrasound
impulse, a stationary solution was obtained for the aforementioned equations by neglecting
the time-dependent terms (i.e., the terms containing time derivatives of the sought quanti-
ties). Dealing with the case of the time-dependent solution, the equations were solved for
15 or 30 s after the onset of the impulse, depending on the time needed for the system to
relax to the steady state, with a time step of 0.02 s. Since the time step of 0.02 s was small
enough, this allowed for a better estimation of the pattern of temperature and velocity
distribution in AC. Several assumptions were made in order to simplify the calculations:
(1) Self heating rate of the probe is negligible; (2) Around the phacoemulsification probe
exists a thin layer of incompressible fluid flow; (3) The heat source due to friction from
the probe is the main cause of the increase in ocular temperature; (4) The frictional heat
generation takes place in the entire lens because the phaco probe is repeatedly moved
across the lens surface and spends equal amounts of time at each point of the entire lens.

The solver, solving algorithm and tolerances are automatically assigned by COMSOL,
based on the physics modules used in the model so that the solution is convergent. In
this particular problem, the assigned direct solver for each step of the was PARADISO,
with physics-controlled tolerances in the time-dependent part, and a predefined relative
tolerance of 10−3 in the case of the steady-state solution.

3. Results
3.1. Modeling of Temperature and Velocity Distribution in the Anterior Chamber of the Eye

The convection from the surface of the cornea has been neglected in the modeling
process, because it did not play a significant role in heat transfer within the eye during
the process of phacoemulsification. Namely, the outer surface of the cornea is constantly
exposed to electromagnetic radiation and when the process is stopped, convection still
occurs due to natural air flow and evaporation which results in tears. The aforementioned
processes provide us a baseline in steady state for comparison with cases where heating
effects, due to phacoemulsification, are taken into account. Furthermore, it enables an
assessment of possible damage to the endothelial cells caused by an increase in internal
temperature after heating and it possibly depends on the type of irrigation liquids.

It was observed that the system returns to the initial steady-state solution in 10–25 s
after the end of the applied impulse. The potential risk of a harmful temperature rise is
emphasized by the calculated maximum temperature rise of more than 20 ◦C in certain
conditions at a point probe placed 0.6 mm below the center of the cornea. The initial
temperature and velocity distributions, before the application of the ultrasound, are given
on Figures 3 and 4. Snapshots of the velocity and temperature profiles in the whole domain,
as well as the temperature at the point probe throughout the impulse, were taken for each
of the studied heat flux values and irrigation fluids. The velocity profile graphs represent
values of the velocity of fluids inside the simulated domain in each point throughout the
chamber, with warmer colors on the graph representing faster movement of fluid. Color
scale bar indicates velocity in mm/s and streamlines show the velocity field. These results
are represented in the following figures (Figures 5–11).
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Figure 3. Initial temperature distributions with AH, BSS and Healon.

Figure 4. Initial velocity distributions with AH, BSS and Healon.

Figure 5. Velocity distributions with AH, BSS and Healon after 5 s of 1.2 W impulse.

Figure 6. Temperature distributions with AH, BSS and Healon after 5 s of 1.2 W impulse.
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Figure 7. Temperature at the point probe with AH, BSS and Healon after 5 s of 1.2 W impulse.

Figure 8. Velocity distributions with BSS after 5 s of 0.66 W, 2.4 W and 3 W impulse.

Figure 9. Temperature distributions with BSS after 5 s of 0.66 W, 2.4 W and 3 W impulse.

Figure 10. Temperature at the point probe with BSS after 5 s of 0.66 W, 2.4 W and 3 W impulse.
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Figure 11. Temperature at the point probe with Healon after 5 s of 0.66 W, 2.4 W and 3 W impulse.

The ultrasounds warm the surroundings of the phacoemulsification probe in the
first 5 s of the simulation. The greatest temperature increase occurred at the lens and
declined toward the cornea. At the location of the aforementioned point probe, temperature
increases up to 54 ◦C in certain conditions. These results are in good agreement with values
published in [26,27].

3.2. Results in Medical Part

There was no significant difference regarding the age between the BSS group
(71.2 ± 9.7 years) and the Healon group (71.2 ± 10.6 years) (Student’s t-test, p = 0.99).

Regarding corneal endothelial cell count, a Shapiro-Wilk and a Kolmogorov-Smirnov
test were performed for the analysis of the groups. A p > 0.05 was found for all groups and
time points. In this sense the data set is normally distributed and for the further statistical
calculation parametric tests are used, the ANOVA test where more than two groups are
compared and Student’s t-test when two groups were analyzed together.

In the BSS group, the mean value of the endothelial cell count preoperatively was
2334 ± 436 cells/mm2. On the first postoperative day 2250 ± 472 cells/mm2 could be de-
tected, after the first postoperative week 2211± 485 cells/mm2 and one month after surgery
2228 ± 471 cells/mm2. Comparing the values preoperatively and one month postopera-
tively, the mean endothelial cell loss in the BSS group was 106.2 ± 226 cells/mm2, which
corresponds to a loss of 4.5%. In the Healon group, the mean endothelial cell count preop-
eratively was 2307 ± 427 cells/mm2. On the first postoperative day 2243 ± 435 cells/mm2,
one week and one month after surgery 2195 ± 452 cells/mm2 and 2185 ±389 cells/mm2,
respectively, could be determined. Compared to the preoperative value, the mean endothe-
lial cell count in the Healon group decreased by 122.2 ± 207 cells/mm2 one month after
surgery, which corresponds to a loss of 5.3% (Figure 12). There was no significant differ-
ence in corneal endothelial cell loss between the BSS and Healon groups preoperatively
(p = 0.68), one day (p = 0.61), one week (p = 0.84) and one month postoperatively (p = 0.72).
ANOVA test was used to calculate the progression of corneal endothelial cell count within
the groups. It was found that in the BSS group the corneal endothelial cell loss from preop-
erative to 1 day postoperative was significant (p = 0.042) and from 1 day postoperative no
significance was found, respectively p > 0.05. In the Healon group the corneal endothelial
cell loss from preoperative to 1 day postoperative was significant (p = 0.48). From the first
day onwards, no further significance was found (p > 0.05).
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Figure 12. Number of patients via endothelial cell loss.

Preoperative mean AVG was 457.7 ± 252 µm2 (range 170.1 to 942.6 m2) in the BSS
group and 452.3 ± 126 µm2 (range 158.2 to 933.9 µm2) in the Healon group. Coefficient of
variation (CV) was 34.7 ± 5.9 in the BSS group, with a percent of hexagonal cells (6A) of
60.4%. Coefficient of variation (CV) was 34.9 ± 5.1 in the Healon group with a percent of
hexagonal cells (6A) of 58.8% (Table 1). There were no significant differences between the
two groups (Student’s t-test, p > 0.05).

Table 1. Preoperative endothelial cell area pattern and shape.

AVG±SD MAX MIN CV 6A

BSS-group 457.7 ± 252 µm2 942.6 µm2 170.1 µm2 34.7 ± 5.9 60.4%
Healon-group 452.3 ± 126 µm2 933.9 µm2 158.2 µm2 34.9 ± 5.1 58.8%

The mean endothelial cell area pattern and shape at first postoperative day is shown
in Table 2. There were no statistically significant differences at any time between the two
groups (all p > 0.05).

Table 2. The first postoperative day endothelial cell area pattern and shape.

AVG ± SD MAX MIN CV 6A

BSS-group 481.8 ± 211 µm2 1014.0 µm2 170.0 µm2 36.7 ± 6.0 57.9%
Healon-group 467.0 ± 116 µm2 962.3 µm2 150.0 µm2 35.5 ± 5.2 57.1%

Four weeks after cataract surgery, the number of hexagonal cells decreased by 3.5% in
the BSS group and by 3.2% in the Healon group, but the difference in the decrease of
hexagonal cells (pleomorphism) between the two groups was not significant (p = 0.05).
Coefficient of variation of cell size (polymegathism) was approximately 1.8% in the BSS
group and 2% in the Healon group (p = 0.8).

The trend shows almost no statistical correlation between the preoperative corneal
endothelial cell count and the preoperative age of the patient, calculated with the Student
t-test (p = 0.059).

The age of the patient played a significant role in relation to corneal endothelial
cell count loss one day (p = 0.04), one week (p = 0.003) and one month postoperatively
(p = 0.049). The older the patient, the greater the endothelial cell loss after cataract surgery.

The preoperative BCVA was 0.39 ± 0.14 in the Healon group and 0.30 ± 0.14 in the
BSS group, which was not statistically significant (p = 0.33). One day postoperatively, the
BCVA was 0.68 ± 0.19 in the Healon group and 0.72 ± 0.18 in the BSS group. There was
no significance between the groups (p = 0.479), but the BCVA increase was statistically
significant within the Healon group (p = 0.001) and the BSS group (p = 0.003). One week
postoperatively, BCVA was 0.88 ± 0.17 in the Healon group and 0.74 ± 0.18 in the BSS
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group, which is not statistically significant (p = 0.118). Within the group, the BCVA increase
was significant in the Healon group (p = 0.001) and in the BSS group (p = 0.002) compared
to the preoperative values. One month postoperative BCVA in the Healon group was
0.92 ± 0.22 and in the BSS group 0.88 ± 0.18 which is not statistically significant (p = 0.321).
However, the BCVA increase within the Healon group (p = 0.001) and the BSS group
(p = 0.006) is significant.

The preoperative mean IOP was 15.2 ± 3.8 mmHg (range 6.0 to 24.0 mmHg) in the
BSS group and 13.9 ± 2.7 mmHg (range 7.0 to 19.0 mmHg) in the Healon group. The
difference was not significant (p = 0.05) (Figure 13).

Figure 13. Mean IOP, preoperative and postoperative (6 h, 1 day, 1 week and 1 month).

IOP recordings 6 h after surgery, at first postoperative day, 1 week and four weeks
after surgery, are shown in Figure 13. There were no statistically significant differences at
any time between the two groups (all p > 0.05).

The Phaco time was 1.75 ± 0.89 s for the Healon group and 1.62 ± 0.60 s for the BSS
group (Student T test p = 0.777). The effective phaco time (EPT) was 1.40 ± 0.71s in the
Healon group and 1.31 ± 0.49 in the BSS group (Student T test p = 0.396). According
to the Lens Opacities Classification System III (LOCS III), the cataract density grad was
2.16 ± 0.95 in the Healon group and 2.40± 0.81 in the BSS group (Friedmann test p = 0.153).
No statistical difference was found between the groups in Phaco time, EPT or cataract
density. Surgery time was 6.54 ± 1.87 minutes in the BSS group and 7.69 ± 1.32 minutes in
the Healon group. Surgery time was significantly shorter in the BSS group (p = 0.004).

4. Discussion

Cataract surgery requires a high level of skill and care in order to avoid any endothelial
damage, which could lead to severe impairment of vision postoperatively. Bullous ker-
atopathy after traumatic cataract surgery has been a major indication for keratoplasty in the
past [28,29]. The use of viscoelastics during phacoemulsification has increased the safety
profile of the procedure, reducing the endothelium-related complications [30]. Within this
context, the aim of our study was to investigate whether the use or not of viscoelastics may
affect the clinical outcomes after phacoemulsification performed by a highly experienced
cataract surgeon.

Additionally, the production of ultrasound energy is associated with heat generation
that can result in thermal damage of corneal endothelium. Friction was identified as the
main source of heat generation during the surgery. If we want to gain more complete
information about the amount of the generated heat, we need to know the local distribution
of velocity. The motion of a Newtonian fluid is described by the non-linear Navier Stokes
equations and the continuity equation. Those equations were numerically solved with
some simplifications, such as: self heating rate of the probe is negligible, a thin layer
of incompressible fluid flow exists around the phacoemulsification probe, and frictional
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heat generation takes place in the entire anterior chamber. These calculations yielded
the velocity and the temperature distributions. In these calculations it was assumed that
during surgery, the phacoemulsification probe was surrounded by AH or BSS or Healon
(Figures 5–11). The results of the simulations showed that heating was minimal when
Healon was used as irrigation fluid for all chosen heating rates (

.
Q = 0.66 W; 1.2 W; 2.4 W;

3 W). Additionally, there was no significant rise in temperature inside the eye in the first ten
seconds of the modeled surgery. The maximum increase in corneal surface temperature of
4 ◦C was obtained for

.
Q = 3 W. For lower input power settings, no significant temperature

rise on the corneal surface was observed in the simulation. On the other hand, when the
anterior chamber was completely filled with fluid such as AH or BSS, the temperature
rise was around 6 ◦C for 5 s at the center of the corneal endothelium, for minimal values
of heating power. If the anterior chamber is filled with Healon, the temperature rises no
more than 0.5 ◦C (Figures 7 and 11). Particularly, when the probe is in contact with Healon,
which has a viscosity five times higher than that of BSS, or water, this fluid suppresses any
heat generation in the simulated domain. At 30 seconds, the temperature on the corneal
endothelium was elevated at maximum up to 54 ◦C or 40 ◦C in AH or BSS, respectively,
for maximum heating rate of

.
Q = 3 W. Based on the modeling of the heating rate, it

can be concluded that with higher input power there is a potential risk of damaging the
corneal endothelium.

The simulated velocity fields of AH and BSS are very similar during the surgery
process. The streamline is symmetric and diverges uniformly from the center of pupil to
the surrounding area. From the velocity distributions (Figures 5 and 8), we can obtain
the velocity values within 0.1–1.6 mm/s. A potentially worrying problem is whether the
redistribution of the velocity profile affects the increase in intraocular pressure (IOP). The
corneal endothelium is the thinnest layer of the cornea, and is a relatively “leaky” layer
due to its high porosity. The relevant role of fluid dynamics quantities as well as porosity
and permeability of the trabecular meshwork and flow resistance of AH on endothelial cell
damage, and consequently on IOP will be the object of interest in our further investigations.

Mean ECD was comparable in the BSS group and the Healon group at first post-
operative day, 1 week and 4 weeks after surgery. Mean endothelial cell loss was 4.5%
(106.2 ± 226 cells/mm2) in the BSS group and 5.3% (122.2 ± 207 cells/mm2) in the Healon
group, which is in compliance with other studies reporting endothelial cell loss rate varying
between 3.8 and 11.8% [14–17].

Mean ECD is not the only factor influencing corneal endothelial function. The morpho-
metric characteristics of the endothelial cells (endothelial cell size and cell shape) appear
to represent a sensitive indicator of the corneal endothelial function [8]. Four weeks after
cataract surgery, the number of hexagonal cells decreased by 3.5% in the BSS group and by
3.2% in the Healon group, but the difference in the decrease of hexagonal cells (pleomor-
phism) between the two groups was not significant (p = 0.05). Coefficient of variation of
cell size (polymegathism) was approximately 1.8% in the BSS group and 2% in the Healon
group (p = 0.8). These results are comparable with those reported by Koch et al., who
documented a decrease of hexagonal cells of 2.6% and a coefficient of variation of 2.7%
after phacoemulsification with the use of viscoelastics [31].

To our knowledge, our study is the first to compare BSS and Healon in terms of their
effect on corneal endothelium during phacoemulsification.

In our study, we did not observe significant difference in ECD and endothelial morpho-
metric characteristics between the BSS and Healon group postoperatively. To achieve these
results, it was important to have a deep enough anterior chamber and to perform a careful
implantation of a posterior chamber IOL through 2.35 mm aperture without touching the
corneal endothelium. It was found that there was no difference in endothelial cell count
loss between the Healon and BSS groups with no statistical difference in EPT. However,
the surgery time was significantly shorter in the BSS group. This fact, as well as the fact
that the cataract surgery was performed by an experienced surgeon, may indicate that the
protective effect of viscoelastic may play a lesser role. The postoperative IOP peaks after
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using viscoelastics is explained by a viscosity-dependent increasing trabecular outflow
resistance due to obstruction of the aqueous drainage system [32–34]. Most often, the IOP
peaks occur within the first 8 h postoperatively, and despite viscoelastics elimination from
the anterior chamber, they cannot always be prevented [35]. Therefore, an intraoperative
application of Carbachol could be an option to reduce the IOP in the first postoperative
hours. The transitory IOP peak over 20 mmHg, which occurred in nine cases of the BSS
group 6 h after the cataract surgery, normalized at the first postoperative day. The reason
for this IOP peak could have been a small quantity of methyl cellulose as a lubricating agent
in the injector. In the Healon group only five cases had an IOP peak over 20 mmHg 6 h after
the cataract surgery, which normalized at the first postoperative day. Meticulous removal
of Healon even behind the IOL and application of Carbachol at the end of surgery, were
crucial for achieving these results. It was interesting to note that there were no significant
differences in IOP between the groups. It can be concluded that a complete washout of
the Healon has a positive effect on IOP. BSCVA pre- and postoperatively was comparable
in both groups. Apart from the transient postoperative IOP peaks, no other complication
occurred in both groups.

These results indicate that phacoemulsification with BSS and continuous anterior
chamber irrigation instead of viscoelastics, could provide comparable results in terms of
clinical outcome and safety, with the viscoelastics-assisted cataract surgery, if performed
by a highly experienced cataract surgeon.

5. Conclusions

Numerical simulation and modeling of the heating rates with a finite element soft-
ware package, including both fluid and heat flows, can provide valuable information on
thermal exposure during the surgery. Phacoemulsification with the use of BSS instead
of Healon could provide excellent postoperative clinical outcomes regarding the best
spectacle-corrected visual acuity, the intraocular pressure and the endothelial cell density,
if performed by a highly experienced cataract surgeon.
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