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Abstract: Nucleic acid aptamers capable of affine and specific binding to their molecular targets
have now established themselves as a very promising alternative to monoclonal antibodies for
diagnostic and therapeutic applications. Although the main focus in aptamers’ research and
development for biomedicine is made on cardiovascular, infectious, and malignant diseases, the use
of aptamers as therapeutic or diagnostic tools in the context of rheumatic diseases is no less important.
In this review, we consider the main features of aptamers that make them valuable molecular tools
for rheumatologists, and summarize the studies on the selection and application of aptamers for
protein biomarkers associated with rheumatic diseases. We discuss the progress in the development of
aptamer-based diagnostic assays and targeted therapeutics for rheumatic disorders, future prospects
in the field, and issues that have yet to be addressed.
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1. Introduction

Nucleic acid aptamers are small DNA or RNA fragments capable of tight and specific binding to
their molecular targets due to the formation of the spatial structure, providing a unique landscape of
aptamer-target contacts (schematically represented in Figure 1). In the early 1990s, three independent
research groups proposed the technology for generating aptamers, which is now widely known as
SELEX—Systematic Evolution of Ligands by Exponential Enrichment [1–3]. Conceptually, SELEX
represents an “evolution in the test tube” right on a lab bench. Aptamers are the closest analogs
of monoclonal antibodies in terms of binding affinity and specificity. However, aptamers offer a
number of their very own advantages (summarized in Figure 1, lower panel). Generation of nucleic
acid aptamers does not require immunization of animals and allows for selection against any target
molecule, even toxic or non-immunogenic. DNA/RNA aptamers are nucleic acids with established
nucleotide sequences, so they can be synthesized using an automatic DNA/RNA synthesizer in the lab
or by a commercial company. Chemical synthesis, in turn, provides stable properties of the aptamers
(binding affinity and specificity) with minimal lot-to-lot variations and gives the widest possibilities
to introduce different chemical modifications for improving binding properties, biological stability,
or pharmacokinetic profiles. Moreover, aptamers can be conjugated with reporter groups, drugs,
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or nanoparticles. Predictable properties and secondary structure make them convenient building
blocks for incorporation into different multi-component molecular constructs. The functional activity
of nucleic acid aptamers can be easily turned on/off by complementary oligonucleotides as antidotes [4].
Finally, aptamers are tolerant to long-term storage and multiple thermal denaturation/renaturation
cycles and do not require cold-chain transport.

Thanks to these benefits, aptamers now represent a generally acknowledged alternative to
monoclonal antibodies. To date, aptamers have been selected to a huge variety of molecular targets,
from small molecules to viruses and cells (see, e.g., the review [5]). Among them, protein targets
are of particular interest for biomedicine. Aptamers against disease-related proteins can modulate
their functional activity in an inhibitory, antagonistic, or agonistic manner, which offers a possibility
to develop aptamer-based targeted therapeutics [6]. About 30 aptamer therapeutics are currently
undergoing clinical trials, with one aptamer drug, Macugen (Pfizer), approved for the market [7,8].
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On the other hand, aptamers recognizing biomarkers serve as biospecific elements for
diagnostic systems. Relatively small molecular size, huge possibilities of chemical modification,
and compatibility with various biosensing platforms have brought to life an enormous repertoire of
aptamer-based detection systems, from fast and straightforward point-of-care assays to sophisticated
schemes and devices [8–11]. Aptamer-based detection systems are now on the way to clinical
applications, with several examples of commercial aptamer-based assays [12,13]. However, we would
like to make an accent on the great potential of aptamer-based diagnostic assays and their benefits
over ubiquitous antibody-based techniques, such as ELISA. In recent years, researchers have tended
to report the shortcomings and limitations of diagnostic antibodies, which engender a problem of
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reproducibility of the results. The affinity and specificity of antibodies vary between different vendors,
and even the concrete antibody from a particular supplier can suffer from lot-to-lot variations [14,15].
Outside of clinical trials, antibodies are rarely characterized and validated to a degree that provides a
high reliability. A problem of insufficient reproducibility is particularly acute in the cases of long-term
studies relying on certain antibodies that can become unavailable to the manufacturer after some
years [16]. A. Bradbury, with co-authors (more than a hundred co-signers) in their publication
in Nature, suggested standardizing the antibodies [15]. This means that monoclonal antibodies
should be produced recombinantly, and their sequence information should be used as a universal
reference system for the researchers choosing the binding agent. Otherwise, aptamers readily meet the
abovementioned requirements. Their nucleotide sequences are stored as digital information. They are
always available for chemical synthesis, which is not affiliated with one particular manufacturer,
so nearly any chosen aptamer can be obtained any time on request. Moreover, chemical synthesis
guarantees minimal lot-to-lot variations, providing high reproducibility for aptamer-based studies.
Therefore, aptamers seem to be very promising tools to solve the “reproducibility crisis.”

Until now, studies on aptamers’ application for therapy and diagnostics have tended to focus
mostly on cardiovascular, malignant, and infectious diseases (see, e.g., the reviews [8,17–20]). However,
other medicinal disciplines would benefit as well from implementing aptamer-based technologies.
In particular, we would like to consider this problem in the context of rheumatic disorders.
These pathologies show a high prevalence in the general population (only rheumatoid arthritis affects
at least 1% of the world’s population) and greatly impact health-related life quality. Modern therapeutic
approaches for treating rheumatic disorders imply the use of antibody-based drugs targeted to proteins
related to general inflammation or more specific signalling pathways [21]. The early diagnostics and
monitoring of treatment efficiency requires also the quantitative evaluation of protein biomarkers.
Such nonspecific markers as CRP or TNFα serve as precursors of complications and are decreased
during remission or low activity of any rheumatic disease [21–23]. At the same time, evaluation of the
specific markers such as IL-17 in spondylitis can be used both for early diagnostic and for verification
of low disease activity achievements [24]. More than that, the chronic nature of rheumatic diseases
demands long-term studies with repeated monitoring of key biomarkers [25], which, in turn, requires
reliable diagnostic assays. In the present review, we systemize the data concerning the aptamers
specific to proteins associated with rheumatic diseases (summarized in Figure 2), the current status of
their diagnostic and therapeutic applications, and future prospects in the field.
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2. Selection and Chemical Modifications of Nucleic Acid Aptamers

A general SELEX scheme (Figure 3) includes the generation of a combinatorial DNA or RNA library
(1011–1015 sequences), its incubation with the target, partitioning of aptamer-target complexes from
unbound nucleic acids, isolation of bound aptamers, and their amplification. The resulting enriched
library goes to the next round of selection. The final enriched library after approximately 7–12 rounds
of selection is sequenced to identify the individual molecules. Nowadays, high-throughput sequencing
methods are most popular for this purpose. After bioinformatic analysis of sequencing data, the most
promising candidate aptamers are synthesized and tested for their affinity and specificity to reveal the
best binder. A large variety of SELEX methods developed to the moment [26–28] allows for choosing
the most suitable protocol for any research task. Specifically, the type of the library (DNA, RNA, or their
SELEX-compatible modified analogs), its manner of randomization, length, and secondary structure
can also be altered depending on the particular target and the intended use of the aptamer [29,30].
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(1) and ribonucleosides (2), 2′-amino-2′-deoxyribonucleoside (3), 2′-fluoro-2′-deoxyribonucleotide (4),
and 2′-O-methylribonucleotide (5). (B) An “inverted” 3′-thymidine attached by 3′-3′-phosphodiester linkage.
(C) Examples of hydrophobic modifications of heterocyclic bases used in SOMAmers [29].
(D) Phosphorothioate analogs of oligodeoxyribonucleotides. (E) 5′-PEG-modified (PEGylated) aptamer.

As a rule, an additional post-selective design of the aptamer includes removing nucleotides,
which are not necessary for target binding. Aptamer truncation reduces the probability of non-specific
binding and lowers the cost of manufacturing. A no less important part of the post-selective design is the
introduction of chemical modifications which improve the nuclease resistance of the aptamer, such as
replacement of natural ribo/deoxyribonucleotides by their sugar (Figure 3A) and/or phosphate-modified
analogs (Figure 3D), and the addition of the “inverted” 3′-terminal thymidine residue attached via
unnatural 3′-3′ phosphodiester linkage (Figure 3B). Some examples of chemical modifications of the
aptamers described in this review are given in Figure 3. A detailed discussion of aptamers’ chemical
modifications can be found in recent comprehensive reviews [6,29,31,32].

While aptamers employed in diagnostic assays should meet only the requirement of nuclease
resistance, aptamers derived for therapeutic applications face the additional problem of systemic
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clearance through renal filtration because of their relatively low molecular weight (~20 kDa).
The attachment of 40-kDa hydrophilic polymer polyethylene glycol (PEG) to the 3′- or 5′-end (so-called
PEGylation) (Figure 3D) is the most widely used strategy to increase aptamer’s circulation time
and enhance its pharmacodynamic properties [33]. Such polymers have been generally considered
biologically inert; nevertheless, severe allergic reactions to PEGylated therapeutic aptamers were
reported (see the reviews [6,32]). This problem originates from anti-PEG antibodies, which could be
generated with repeated administration, and can potentially occur not only with aptamers, but with any
PEGylated compound [33]. The issues of anti-PEG immunity and alternatives to PEG were thoroughly
reviewed by Zhang et al. [34]

3. Aptasensors—Aptamer-Based Bioanalytical Systems

Aptamer-based biosensors, also referred to as aptasensors, are analytical devices consisting of a
biorecognition element (aptamer) and a transducer that provides a quantitative or semi-quantitative
analytical signal upon analyte binding. As we mentioned above, a huge variety of aptasensing
platforms have been developed to the moment for the detection of analytes related to food
safety [35,36], environmental studies [37–39], and clinical diagnostics [19,40,41]. Most of them rely on
optical (colorimetrical, fluorescent, luminescent, or surface plasmon resonance (SPR)) [9,10,39] and
electrochemical (current, conductance, potential, and impedance) [42,43] types of the analytical signal.

It should be noted that aptasensors intended to be used in clinical diagnostic assays should
meet a set of criteria for their successful application. High specificity and sensitivity of detection are
undoubtedly significant, especially for rheumatological biomarkers, which are commonly presented in
biological fluids in low (pg/mL or ng/mL) concentrations. However, just as important are minimal
sample pre-processing, fast and simple detection protocol, compatibility with standard equipment
of the clinical lab, good reliability, and reproducibility of the results. A very interesting field in
the aptasensors’ engineering is represented by point-of-care (PoC) aptasensors which allow for
rapid on-site testing outside the laboratory, such as lateral flow test strips [44] or devices based on
personal glucometer, portable pH meter, or even a smartphones (see, e.g., the recent review [45]).
The examples of aptasensors for detecting rheumatological biomarkers described in this review are
given in Figure 4.Biomedicines 2020, 8, x FOR PEER REVIEW 6 of 45 
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4. Aptamers for Protein Biomarkers of Rheumatic Disorders

4.1. General Disease Activity Markers

4.1.1. C-Reactive Protein (CRP)

C-reactive protein (CRP) is an established marker for disease activity measurement of inflammatory
arthritis both in clinical practice [21,23,46,47] and in research studies [48,49]. Elevated CRP levels can
be revealed before the clinical manifestation of inflammatory arthropathy [50]. The evaluation of the
activity of systemic vasculitis are also based on the measurement of CRP levels [51,52]. An increased
CRP level may be a predictive marker of systemic scleroderma progression for both skin lesions
and pulmonary fibrosis [53,54]. CRP evaluation is used to exclude the development of infectious
complications in systemic lupus erythematosus (SLE) [55,56]. High CRP levels are directly connected
with the severity and speed of radiographic progression in males with ankylosing spondylitis (AS) [22]
and in rheumatoid arthritis (RA) patients without regard to gender [57]. Increased CRP, along with the
evaluation of alkaline phosphatase levels, allow predicting osteoporosis (OP) progression and spinal
fracture risks in RA patients [58]. Increased CRP level is also an established predictive risk marker of
cardiovascular complications and thrombosis [59–63]. CRP level indicates the efficacy of background
anti-inflammatory therapeutics and biologics, successfully applied either in clinical practice [64–66] or
undergoing clinical trials [67–70]. It is well-known that patients with higher CRP levels show a better
therapeutic response [71,72].

Aptamer-Based CRP Detection Assays

So far, a wide range of aptamer-based assays have been developed for quantitative measurement
of CRP levels. Bini et al. employed a 44-mer RNA aptamer to develop an SPR-based CRP detection
system [73] (here and after, nucleotide sequences of aptamers and corresponding KD values are given
in Table 1). The aptamer was immobilized onto the gold chip surface for SPR detection of the CRP
with the limit of detection of 500 ng/mL and linear range up to 1000 ng/mL (here and after, see Table 2
for the summary of aptasensors and their characteristics). The sensor showed the specificity to CRP,
compared to HSA and IgG taken as controls. Model serum samples were represented by a mixture of
CRP (0.01 ppm), IgG (240 ppm), and HSA (500 ppm). The samples were treated by protein G magnetic
beads and diluted (1:2) to obtain the protein concentrations corresponding to those in 1:100 diluted
human serum.
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Table 1. Aptamers for protein biomarkers associated with rheumatic disorders.

Target Aptamer, Type, Length Sequence, 5′-> 3′ Binding Affinity (KD) Ref.

CRP

RNA 44-mer
(RNA, 44 nt) GCCUGUAAGGUGGUCGGUGUGGCGAGUGUGUUAGGAGAGAUUGC - [73]

CRP1-1
RNA, 104 nt

GGGCGAAUUCGGGACUUCGAUCCGUAGUACCCACCAGGCAUACACCAG
CACGCGGAGCCAAGGAAAAAUAGUAAACUAGCACUCAGUGCUCGUAUGCGGAAGCU 2.3 nM [74]

Clone 1
DNA, 71 nt

GGCAGGAAGACAAACACGATGGGGGGTATGATTTGATGTGGTTGTTGCA
TGATCGTGGTCTGTGGTGCTGT 3.51 nM [75]

6th-62-40,
DNA, 52 nt CGAAGGGGATTCGAGGGGTGATTGCGTGCTCCATTTGGTGTTTTTTTTTTTT 16.2 nM [76]

CRP-80-17
DNA, 79 nt

AGCAGCACAGAGGTCAGATGCCCCGCGGGTCGGCTTGCCGTTCCGTTCG
GCGCTTCCCCCCTATGCGTGCTACCGTGAA 3.9 nM [77]

TNFα

aptTNF-α
DNA, 41 nt GCGCCACTACAGGGGAGCTGCCATTCGAATAGGTGGGCCGC 8 nM [78]

VR11
DNA, 25 nt TGGTGGATGGCGCAGTCGGCGACAA 7 nM [79]

T3.11.7,
2′-NH2- RNA, 28 nt GGAGUAUCUGAUGACAAUUCGGAGCUCC - [80]

T1-4,
DNA, 49 nt TCCGATCGGTATATCCGTCGGATTTTTTTTTTGGTCACTGCATGTGACC 67 nM [81]

VEGF

VEGF Apt 1
DNA, 24 nt GTGGGGGTGGACGGGCCGGGTAGA - [82]

VEGF Apt 2
DNA, 26 nt CAATTGGGCCCGTCCGTATGGTGGGT - [82]

RANK apt1
2′-F-RNA, 46 nt ACGGAUUCGUCGUAUGGGUGGGAUCGGGAAGGGCUACGAACGCCGU 0.6 µM [83]

IL-17RA RA10-6
DNA, 30 nt CTTGGATCACCATAGTCGCTAGTCGAGGCT 1.2 nM [84]

IL-17A Apt21-2
2′-F-RNA, 33 nt GGUCUAGCCGGAGGAGUCAGUAAUCGGUAGACC 48.5 nM [85]

IL-17A/F AptAF42-dope1
2′-F-RNA, 68 nt

GGGCUAGCUGAUCGUACCAGUAGCGUGGCCUGGGG
GGCCUAGUCGUGCGAUACUAACAGCUAACACCC - [86]

IL-6 SL1025
SOMAmer, 31 nt GGCAGBnBnPeGGNapABnBnAACACGBnBnAAGBnCGBnGG 0.19 nM [87]

IL-6R

AIR-3A
RNA, 19 nt, GGGGAGGCUGUGGUGAGGG 60 nM [88]

FAIR-6
2′-F-RNA, 50 nt GUAAGUAGUGUAGGCUGUGGGAGUUAUAGGGGUGGAUGUGGAGUGGGGUG 41 nM [89]

RAID3
2′-F-RNA, 34 nt GGGAGAACUGUGGGAGUGGAGGGUGGAUGGUUCU 43 nM [90]
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Table 1. Cont.

Target Aptamer, Type, Length Sequence, 5′-> 3′ Binding Affinity (KD) Ref.

IL-23 RNA
(mRfY) 60 nt AGGGAAAUCAGGCUUUAUCGGCGCCGCUCCCUGUGCCAUCGUCCGAGAGUAGGUAGUCUG - [91]

IL-32 AC3-3
RNA, 90 nt

GGGUUCACUGCAGACUUGACGAAGCUUCCGGAGAGA
AGGGUCAAAGUUGUGCGGGAGUGUGUUGUGGAAUGGAUCCACAUCUACGAAUUC 78 nM [92]

IL-8 8A-3
52′-F-RNA, 35 nt GGGGGCUUAUCAUUCCAUUUAGUGUUAUGAUAACC 1.72 pM [93]

IL-1α SL1067
SOMAmer, 22 nt CGNapGAGNapNapANapGGGNapNapAGAGNapCG 7.3 nM [94]

DKK1 TD10
DNA, 39 nt CATATGATTAGGCTGTAACGGGGCTAGGCGGGGATCATT 25 nM [95]

Sclerostin Scl
DNA, 30 nt TTGCGCGTTAATTGGGGGGGTGGGTGGGTT 0.67 µM [96]

CTGF

APT1M6T
DNA not reported 1.1 nM [97]

C-ap11
DNA, 39 nt GGACAAGAATCACCGCTCCCCGTACAGGAGGCATACAGA 7.4 nM [98]

Osteopontin OPN-R3
2′-F-RNA, 40 nt CGGCCACAGAAUGAAAAACCUCAUCGAUGUUGCAUAGUUG 18 nM [99]

DEK DTA 64
DNA, 41 nt GGGGTTAAATATTCCCACATTGCCTGCGCCAGTACAAATAG - [100]

Visfatin apt№19
DNA, 75 nt

ATACCAGCTTATTCAATTGGGCAGGACAGGTGTCGGC
TTGATAGGCTGGGTGTGTGTAGATAGTAAGTGCAATCT 72 nM [101]

MMP9

F3Bomf
2′-F-RNA, 36 nt UGCCAAACGCGUCCCCUUUGCCCGGCCUCCGCCGCA 20 nM [102]

8F14A,
DNA, 30 nt TCGTATGGCACGGGGTTGGTGTTGGGTTGG - [103]

CTxI CTx 2R-2h
DNA, 72 nt

ATCCGTCACACCTGCTCTAGACGAATATTGTATCCTC
ATTAGATCAAAAACGGGTGGTGTTGGCTCCCGTAT - [104]

HNE DNA I
DNA, 44 nt TAGCGATACTGCGTGGGTTGGGGCGGGTAGGGCCAGCAGTCTCG 17 nM [105]

HGF H38-15
DNA, 59 nt

GCGCCAGCTTTGCTGATGGGTGGCCACCCTTGC
CCTGGGTTTGAATTTCGATCCTATCG 19 nM [106]

Leptin Lep3
DNA, 40 nt

GTTAATGGGGGATCTCGCGGC
CGTTCTTGTTGCTTATACA 0.3 µM [107]

Oncostatin M ADR58
2′-F-RNA, 33 nt GAACCGGCCCAGCAGACUGCUGACGGCACGAUC 7 nM [108]

All modified nucleosides are marked by italics. Bn, 5-(N-benzylcarboxamide)-2′-deoxyuridine; Nap, 5-[N-(1-naphthylmethyl)carboxamide]-2′-deoxyuridine; Pe, 5-[N-(phenyl-2-ethyl)
carboxamide]-2′-deoxyuridine; iT, 3′-thymidine residue attached via ‘inverted’ 3′-3′ phosphodiester linkage; 2′-F-RNA, RNA with 2′-fluoro pyrimidine nucleotides; mRfY, RNA with
2′-O-methyl purine and 2′-fluoro pyrimidine nucleotides.
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The same RNA aptamer found numerous applications in further works on aptasensor development.
Qureshi et al. [109] reported a label-free electrochemical aptasensor for CRP detection. Gold electrodes
were functionalized by 5′-thiolated 44-nt RNA aptamer, and non-Faradaic impedance spectroscopy was
applied for monitoring aptamer-CRP binding. The sensor detected CRP in the range of 100–500 pg/mL
and demonstrated CRP binding specificity compared to BSA.

The aptamer, immobilized on the gold electrode through a 5′-thiol group, formed a recognition
layer in the electrochemical aptasensor based on square-wave voltammetry with a methylene blue as a
redox indicator [110]. The sensor gave a linear response from 25 to 250 pg/mL and a good specificity
to CRP compared with BSA and IgE (as model interfering proteins). The authors also demonstrated
a principal possibility of CRP detection in a 10% serum sample spiked with the protein. Of note,
the performance in serum decreased significantly because of the adsorption of serum components on
the electrode surface.

Pultar et al. [111] engineered an RNA aptamer-based biochip for a fluorescent sandwich
immunoassay. The aptamer was immobilized on an epoxy-modified microchip, and bound CRP was
detected by using fluorescently labeled anti-CRP antibodies on a GenepixTM 4000B scanner (Figure 5A).
The limit of detection in a buffer was 1.6 ng/mL. Aptamer/antibody sandwich chips demonstrated the
working range in spiked serum from 10 to 100 µg/mL. This range allows determining both normal and
elevated CRP concentrations with only one sample dilution (if necessary). Of note, the aptamer-based
system provided much better performance than the analogous antibody/antibody chip, which was
unable to measure concentrations >1 µg/mL.
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Figure 5. Examples of aptasensors for C-reactive protein: aptamer-based chip for fluorescent sandwich
immunoassay (A) [111], colorimetric assay based on AuNPs aggregation (B) [112], and ELISA-like
system employing citicoline for CRP capture and peroxidase-mimicking AuNPs [113] (C).

The sandwich system for electrochemical detection developed in [114] contained a 44-nt 2′-F-Py
RNA aptamer immobilized on magnetic beads through biotin-streptavidin interactions and anti-CRP
antibody conjugated with alkaline phosphatase. The authors used a uniform 2′-fluoro modification for
RNA aptamer to enhance its serum stability. After the sandwich assembly and transferring of the beads
to the disposable screen-printed electrode, the enzymatic substrate was added, and the product was
determined by differential pulse voltammetry. In the model solution, the system provided a specific
signal (compared to human IgG control) in the detection range of 0.1–50 µg/mL. The electrochemical
aptamer-based assay also demonstrated an ability to quantitatively detect CRP in 1:10 diluted serum
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spiked by 0–1000 µg/mL CRP. Testing two clinical serum samples from healthy individuals gave
reasonably low CRP levels, making this sensor promising for a quantitative CRP measurement in
clinical samples.

Alternatively, Wang et al. [115] employed the functionalized silica microspheres to make an
RNA aptamer-based electrochemical sandwich aptasensor with square wave voltammetry detection.
The aptamer bearing a 5′-SH group was assembled on the Au nanoparticles-modified electrode surface.
The immunoprobe for CRP detection consisted of the silica microspheres decorated by anti-CRP
antibodies and signal Zn2+ ions. Under optimal conditions, the working range of the system was
0.005–125 ng/mL. The sensor showed good specificity to CRP compared to the prostate-specific antigen,
α-fetoprotein, and carcinoembryonic antigen. The analysis of clinical samples (1:500 diluted serums)
gave the same CRP levels as a reference immunofluorescence assay, thus demonstrating the potential
applicability of this aptasensor.

Bernard et al. [116] developed a sandwich aptamer/antibody system for fluorescent CRP detection.
In this case, RNA aptamer-modified magnetic beads were placed into microplate wells, and the
analyte was detected on the Luminex platform by a biotinylated anti-CRP antibody coupled to a
fluorescent phycoerythrin/streptavidin conjugate. The assay provided quantitative CRP detection in
the range of 0.4–10 µg/mL for spiked serum samples diluted 1:100, demonstrating that serum levels
from approximately 40 to 1000 µg/mL could be measurable in clinical samples. However, this assay
was unable to quantify low CRP levels (<10 µg/mL).

An alternative CRP-binding 104 nt RNA aptamer was reported by Orito et al. [74] in 2012.
Despite its high affinity (KD = 2.3 nM), this aptamer still has not found any analytical applications,
most probably because its nucleotide sequence is too long for the design of aptasensors, and needs
rational truncation for further use.

C. Eid [117] et al. reported a SOMAmer-based system for fluorescent CRP detection by the on-chip
electrophoretic assay. They used an isotachophoresis in the presence of spacer ions to both react and
separate the SOMAmer-CRP complex from a free SOMAmer. The assay protocol took only 20 min,
and the limit of detection in buffer was 50 ng/mL with a 2.5-decade dynamic range. It is worth noticing
that the visualization of the aptamer-target complex required a fluorescence microscope, so the whole
system can hardly be applied for standard lab diagnostics. The sensor also allowed CRP detection
in spiked serum samples (diluted 1:20), although, in this case, the LOD increased up to 625 ng/mL.
The authors mentioned that serum ions (such as phosphate, sulfate, bicarbonate, and uric acid) could
decrease the assay’s performance, and the presence of abundant serum proteins, particularly albumin,
can also increase the background signal due to non-specific binding.

A 71 nt DNA aptamer Clone 1 with high CRP-binding affinity (KD = 3.5 nM) was generated by
Huang et al. [75] A chemiluminescent sandwich assay with aptamer-functionalized magnetic beads,
acridinium ester-labeled anti-CRP antibodies, and HNO3/H2O2 treatment provided a linear range of
detection from 0.0125 to 10 mg/mL in a buffer. The authors also integrated a Clone 1 aptamer into a
field effect transistor (FET) microfluidic device for CRP detection [118]. The aptamer was immobilized
on the Au gate of the FET device through a 5′-thiol group. This assay provided CRP detection in a
buffer with concentrations ranging from 0.625 to 10 µg/mL. A dual aptamer sandwich assay was also
applicable for this system but gave a lower analytical performance.

Wu et al. [76] obtained a 40 nt G-rich DNA aptamer 6th-62-40 for CRP (KD = 16.1 nM) and
employed it in the SPR-based detection system. The gold SPR chip was functionalized by a 3′-thiol
modified aptamer, then after CRP binding, anti-CRP coated gold nanoparticles were added to enhance
the signal. The sensor demonstrated good specificity for CRP compared to other blood proteins
(HSA, IgG, hemoglobin, and myoglobin) and provided an excellent detection range from 0.25 ng/mL
to 2.5 µg/mL in CRP-spiked 1:100 diluted serum samples.

An ability of 6th-62-40 aptamer to form a DNA quadruplex served for a rapid fluorescent
assay based on the enhanced fluorescence of thioflavin T (ThT) dye in the complex with quadruplex
motifs [119]. CRP binding disrupts the aptamer/ThT complex and thus decreases the fluorescence.
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The method showed good specificity for CRP (compared with BSA, IgG, and myoglobin) and the
working range of 12.5 ng/mL–5 µg/mL in a buffer solution.

The fast and straightforward colorimetric assay developed in [112] implies 6th-62-40 DNA aptamer
and citrate-capped gold nanoparticles (AuNP) (Figure 5B). In the absence of the CRP, the aptamer
adsorbs on the AuNP surface and prevents the aggregation of nanoparticles. After CRP addition,
the aptamer is released from the particles and interacts preferentially with the protein, causing the
aggregation of AuNPs and a subsequent red–purple color change for colorimetric detection. The assay
provided a linear sensing range of 0.9–20.1 µg/mL in a buffer. It should be noted that AuNP-based
assays of this type are very sensitive to the presence of serum albumin, which can cause the aggregation
of AuNPs. The authors demonstrated principal applicability of the assay in model solutions with
low albumin concentration (0–6.6 µg/mL) and in 1:100 diluted CRP-spiked urine samples. It remains
questionable whether this detection is suitable for serum samples, which contain very high albumin
concentrations (approximately 35 mg/mL).

Xie et al. [113] recently proposed a very promising sandwich ELISA-like assay for CRP
detection (Figure 5C). The method employs the ability of CRP to bind specifically with
choline phosphate. Citicoline (cytidine 5′-diphosphocholine) coupled with BSA became a plate-coating
CRP-specific molecule. The second component of the sandwich was represented by AuNPs with
a 6th-62-40 DNA aptamer immobilized through a 3′-thiol group. AuNPs exhibited peroxidase
activity and oxidized chromogenic substrate tetramethylbenzidine (TMB), giving a blue color for the
quantitative measurement. The assay demonstrated the working range of 0.1 to 200 ng/mL with an
excellent specificity in the presence of different potentially interfering blood components, including BSA,
myoglobin, troponin 1, amino acids, and glucose. Due to the good stability between batches, the same
calibration curve could be used to calculate the sample content in different batches, which is the
advantage of the assay over the classical ELISA. Notably, the method was applied to analyze real blood
samples (diluted 1:100) and showed perfect agreement with the results obtained by commercial kits.

Yang et al. [77] used the GO-SELEX technique to generate the CRP-binding 79 nt DNA aptamer
CRP-80-17. At the moment, there was only one attempt to use this aptamer for bioanalytical purposes.
The aptamer adsorbed on the optic fiber coated by indium tin oxide film was employed for homogeneous
CRP detection by a high sensitive refractometer [120]. The method demonstrated excellent sensitivity
(LOD of 0.0625 µg/mL) in a buffer solution, but was not tested in the model or real biological samples.

Table 2. Aptasensors for detection of protein biomarkers associated with rheumatic disorders.

Target Sensor Type Working Range Samples Ref.

CRP

SPR 500–1000 ng/mL Buffer solution [73]

Square-wave voltammetry 25–250 pg/mL 10% spiked serum [110]

Fluorescent 10 ng/mL–100 µg/mL 1% spiked serum [111]

Electrochemical sandwich assay 0.1–50 µg/mL 10% spiked serum [114]

Fluorescent sandwich-assay 0.4–10 µg/mL 1% spiked serum [116]

Square-wave voltammetry 0.005–125 ng/mL 0.2% clinical and
spiked serum [115]

non-Faradaic impedance
spectroscopy 100–500 pg/mL Buffer solution [109]

Isotachophoresis with
fluorescent detection - 5% spiked serum [117]

Luminescent sandwich-assay 0.0125–10 µg/mL Buffer solution [75]

Field-effect-transistor 0.625–10 µg/mL Buffer solution [118]

SPR 0.25 ng/mL–2.5 µg/mL 1% spiked serum [76]

Fluorescent 12.5 ng/mL–5 µg/mL Buffer solution [119]

Lossy mode resonance - Buffer solution [120]
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Table 2. Cont.

Target Sensor Type Working Range Samples Ref.

TNFα

Differential pulse voltammetry 10 pg/mL–40 µg/mL 10% clinical serum [121]

Quantum dots-based
photoluminescence 1.7–400 ng/mL 10% spiked serum [122]

Aptameric graphene field-effect
transistor - Buffer solution [123]

Alternating current voltammetry 1.75 ng/mL–8.75 µg/mL Diluted saliva and
urine samples [124]

Square-wave voltammetry 10–100 ng/mL Diluted spiked
blood [125]

VEGF

Colorimetric 100–1 × 105 pg/mL
Clinical serum

samples [126]

Chemiluminescent sandwich
assay 1–20 ng/mL Cell culture

medium [82]

Colorimetric 0.5–225 pg/mL 12.5% spiked
serum [127]

Colorimetric 3.7–148 pg/mL Buffer solution [128]

Colorimetric, aptazyme-based 0.1–40 nM 1% spiked serum [129]

Chemiluminescent - 10% spiked serum [130]

pH-Meter based 0.8–480 pg/mL 1% serum,
centrifuged [131]

Glucose meter based 3–100 pg/mL 10% clinical serum [132]

IL-17RA Impedimetric 10–10,000 pg/mL 10% spiked serum [133]

IL-6

Aptameric graphene field-effect
transistor - Buffer solution [134]

Impedimetric 5 pg/mL–100 ng/mL 50% patients’
serum [135]

Au-NP aptamer-based
sandwich-assay 3.3–125 µg/mL Buffer solution [136]

sIL-2Rα Au-NP colorimetric 25 ng/mL–2.5 µg/mL 10% spiked serum [137]

IL-8 On-chip rolling cycle
amplification 7.5–120 pg/mL Buffer solution [138]

DKK1 Aptamer-based ELISA 62.5–4000 pg/mL 10% clinical serum [95]

CTGF Aptamer-based biolayer
interferometry ELISA 1.1–112 ng/mL 10% spiked serum [97]

Osteopontin Lateral flow 10–500 ng/mL 10% spiked serum [139]

Visfatin non-Faradaic impedance
spectroscopy 1–50 ng/mL 20% filtered spiked

serum [101]

MMP-9 Quartz crystal microbalance 92 pg/mL–230 ng/mL 2–0.25% spiked
serum [103]

CTxI Fluorescent - Buffer solution [104]

HNE

Fluorescent 1.3 ng/mL–2 µg/mL Buffer solution [140]

Colorimetric 31.2 ng/mL–3.1 µg/mL Buffer solution [141]

Capillary electrophoresis coupled
with laser-induced fluorescence 15.6 ng/mL–15.6 µg/mL 1% spiked serum [142]

4.1.2. Tumor Necrosis Factor Alpha (TNFα)

TNFα is a pro-inflammatory cytokine initially discovered in 1975 as an endotoxin-induced factor.
TNFα regulates plenty of biological processes, such as proliferation, differentiation, and death of
different cells, inflammatory responses, and innate and acquired immunity [143]. It also participates
in the structure formation of different organs and tissues, including secondary lymphoid organs.
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Uncontrollable increased TNFα production can induce pathological processes, e.g., septic shock during
infectious or chronic inflammatory diseases [144]. TNFα is released as a response to different stimuli by
immune cells, including monocytes, macrophages, dendritic cells, T- and B-lymphocytes, mast cells, as
well as stromal cells, neural system cells, and skin and endothelial cells. Activated cells produce TNFα
as a transmembrane protein, which is later separated from the cell surface by metalloproteases, mainly
TNFα converting enzyme (TACE), and is then secreted as a soluble protein [145]. Both TNFα forms
are biologically active as homotrimers and induce intracellular signaling through binding cell surface
TNF-receptors 1 and 2 (TNFR1/p55 and TNFR2/p75). TNFR1 is continuously expressed by most of
the organism cells, while the expression of TNFR2 is activation-dependent and is observed mostly
in immune and endothelial cells [145]. The study on transgenic mice revealed that increased TNFα
production leads to spontaneous development of chronic inflammatory processes in different organs
and tissues similar to RA, AS, inflammatory bowel disorders, and multiple sclerosis [146–148]. Notably,
the duration and intensity of TNFα expression in concrete cells and tissues determined certain pathology
development. TNFα level correlates directly with the disease activity [149]. TNFα increases the
number of osteoclast precursors in mice bloodstream and increases RANKL expression on stromal cells,
thus providing the progression of erosion and osteoporosis by affecting osteoclasts [150]. The level
of this cytokine is not routinely evaluated, and, as it influences plenty of cytokines, TNFα does
not represent a highly specific marker for certain rheumatic diseases and could not be used for
differential diagnosis. Meanwhile, the blockade of TNFα is actively used in the treatment of diseases.
So far, TNFα-blocking of several therapeutics are developed to treat RA, AS, chronic bowel diseases,
some central neural system, and skin diseases. Therefore, TNFα represents a widespread target for
the development of therapeutics and detection systems, and its detection in serum is important for
assessing the effectiveness of treatment and predicting the further course of disease.

Aptamer-Based TNFα Inhibitors

X. Yan et al. [80] generated, truncated, and characterized the 28 nt RNA aptamer T3.11.7 specific
to TNFα and subjected it to post-selective modification by replacing all purine ribonucleotides with
their 2′-NH2 analogs. The aptamer inhibited TNFα-dependent cytotoxicity in mouse fibroblast cell
line L929 in a dose-dependent fashion, suggesting the aptamer’s utility for therapeutic applications.

Orava et al. [79] selected DNA aptamers against TNFα, aiming to create novel inhibitors that
could become an alternative for monoclonal antibodies in anti-TNFα therapy. The 25-mer aptamer
VR11 bound specifically to TNFα with KD = 7 nM and inhibited the interaction of TNFα with the
NF-κB receptor on the HEK293T cell line. Experiments with mice fibroblasts cell line L929 proved the
ability of VR11 to inhibit TNFα-mediated cytotoxicity. The authors also demonstrated on RAW264.7
macrophages that, in the presence of IFNγ and TNFα, the aptamer partially inhibits TNFα-mediated
NO release and, respectively, inflammation processes. As such, VR11 DNA aptamers represent a novel
non-immunogenic alternative for protein-based inhibitors of TNFα for therapy.

Very recently, two research groups reported new aptamers binding TNFα. Lai et al. [78] developed
a 41 nt DNA-aptamer for specific inhibition of TNFα for inflammatory processes therapy. The resulting
aptTNF-α possessed a nanomolar target binding affinity (KD = 8 nM). The authors designed the dimeric
PEGylated aptamer aptTNF-α-PEG for in vivo studies. Acute lung injury (ALI) and acute liver failure
(ALF) mice models showed the decrease in the severity of ALI and ALF-associated symptoms and
inhibition of the expression of pro-inflammatory cytokines and chemokines after single intravenous
injections of the aptamer. So, aptTNF-α has the potential for therapeutic application and adds to a new
category of TNF-α blocking agents.

Mashayekhi et al. [81] selected a series of anti-TNF-α DNA aptamers. The aptamers KM1,
KM4, KM6, and KM8 demonstrated the highest inhibition efficiency of cytotoxic TNFα effects on
mice fibroblasts. Examination of aptamer binding epitopes of TNFα revealed that KM1, KM6, and KM8
recognize the same epitope of TNFα, and KM4 binds to another epitope. Then, truncated versions of
KM1 and KM4 were joined by the (dT)10 linker to make a new 49 nt dimeric aptamer. Its target binding



Biomedicines 2020, 8, 527 14 of 44

affinity was higher than that of separate aptamers. In a cell cytotoxicity assay, the dimeric aptamer
showed the TNFα-neutralizing effect comparable to that of Etanercept and surpassing the effect of the
VR11 aptamer. This aptamer, therefore, represents a potential therapeutic and/or diagnostic agent for
hTNF-α-related disorders.

Aptamer-Based TNFα Detection Assays

The electrochemical detection system developed on the basis of the T3.11.7 aptamer [125] comprised
the phosphorothioate analog of T3.11.7 without 2′-NH2 modifications. The aptamer, 3′-modified with
methylene blue, was immobilized on gold electrodes via the 5′-C6-disulfide linker. Signal tracking by
square wave voltammetry gave the limit of detection of 10 ng/mL, with the linear range extending
to 100 ng/mL both in a buffer solution and in whole TNFα-spiked blood. The sensor’s specificity
was verified using the control mix of cytokines (IL-2, IL-12, IL-17, and IFN-γ). The authors also
demonstrated the reusability of the detection system. The same sensor scheme was then used to
fabricate the electrochemical aptasensor for the simultaneous detection of TNFα and IFNγ upon their
release from cells [151]. The aptasensor successfully monitored TNFα and IFNγ release from T-cell
and U937 monocytes.

Aptamer VR11 was also employed for the development of aptasensing systems.
Ghalehno et al. [121] reported the electrochemical voltametric aptasensor with aptamer-modified
AuNP particles, were immobilized on graphite screen-printed electrode surface. The aptasensor
showed a specific signal (compared with HSA and IgG) and the linear range of 10 pg/mL–40 µg/mL in
a buffer solution. This assay was also tested to analyze diluted human serum samples and compared
with independent ELISA results with similar sample preparation. The results of aptasensor and
ELISA analysis were close, therefore proving possible applicability of the developed aptasensor in
clinical practice.

S. Ghosh et al. [122] proposed a FRET-based optical aptasensor with the use of quantum dots (QD).
The aptamer VR11 conjugated to QD (fluorophore) by 5′- terminus and to AuNP (quencher) by
3′-terminus became a molecular beacon (Figure 6). After target binding, the aptamer adopts the
secondary structure where fluorophore and quencher locate in close proximity, which, in turn,
decreases the photoluminescent signal. The sensor showed sufficient specificity as compared with
HSA, CRP, and transferrin. The working range of this system was 1.7–400 ng/mL in a buffer solution.
The aptasensor demonstrated principal applicability for the analysis of diluted human sera samples
spiked with TNFα. Interestingly, high cross-reactivity was observed for the aptasensor in the
presence of thrombin. The authors attributed this phenomenon to the VR11 ability to form the
G-quadruplex structure, which makes VR11 similar to thrombin-binding aptamer TBA. It is worth
noticing, however, that the binding affinity of TBA is determined not solely by its quadruplex structure
but also by the presence of specific di- and trinucleotide loops (see, e.g., [152,153]), and the overall
spatial structures of these two aptamers are quite different.
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Figure 6. FRET-based optical aptasensor for TNFα based on the VR11 aptamer [122].

Hao et al. [123] used VR11 for developing the electrochemical graphene-based field-effect transistor
(GFET) aptasensor on a flexible, SiO2-coated substrate. The idea was to detect cytokine biomarkers
(by an example of TNFα) sampled reliably from human bodily fluids (e.g., sweat) in wearable sensing
applications. The aptamer was covalently immobilized on the graphene surface functionalized by
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1-pyrenebutanoic acid succinimidyl ester. The binding of TNFα caused a voltage change, which
allowed quantifying the biomarker concentration. Total assay time was only 5 min, and a limit of
detection in a buffer solution was 0.45 ng/mL, with a good specificity compared to IFNγ and IL-2.
The applicability of this sensor for biomarker detection in real sweat samples have not yet been tested.

Mayer et al. [124] proposed the aptamer-based electrochemical aptasensor which relies on the
use of a redox label. The aptamer VR11, with the methylene blue attached to the heterocyclic base
of T25 residue, was immobilized on a gold electrode. Voltammetric detection provided a working
range of 1.75 ng/Ml–8.75 µg/mL in a buffer. The authors also showed the principal applicability of the
aptasensor for the analysis of clinical samples by examples of 1:2 diluted samples of saliva and urine.

4.1.3. Vascular Endothelial Growth Factor (VEGF)

Vascular endothelial growth factor (VEGF) is a biomarker for many diseases including connective
tissue metabolism disorders. VEGF appears in synovial tissues in RA and participates in angiogenesis,
which provides an invasion of pannus and destruction of the nearby bone tissue. VEGF’s concentration
in the blood significantly increases in patients with rheumatoid arthritis and correlates with the disease
activity [154]. An increase of VEGF expression along with other proangiogenic factors is noticed for
psoriatic arthritis. It was more prominent compared to RA and associated with different morphology
of blood vessels [155], so this marker can be useful to differentiate these diseases.

Since VEGF is involved in the pathogenesis of different diseases, it attracted particular attention
as a SELEX target for further use in biomedicine. A very first FDA-approved aptamer drug against age
maculodistrophy, Macugen (Pegaptanib), is based on the anti-VEGF modified RNA aptamer [156].

Aptamer-Based VEGF Detection Assays

The variety of aptasensors for VEGF detection is extraordinarily huge, so we only mention
here the main types of them, such as luminescent, fluorescent, colorimetric, SPR- and SERS-based,
and electrochemical aptasensors. Most of them provide at least pg/mL sensitivity; a more
detailed discussion of VEGF aptasensors can be found in the recent comprehensive review by
Dehghani et al. [157] Below are some recent examples of robust and simple colorimetric aptasensors
for VEGF, which seem to be especially suitable for point-of-care diagnostics.

J. Dong et al. [126] used a 24 nt 5′-biotinylated DNA aptamer VEGF Apt1 instead of antibodies for
the detection of VEGF165 in human serum. In the presence of analyte immobilized in microplate wells,
VEGF165 competitively binds with aptamers and induce a decrease of the colorimetric signal generated
by streptavidin-horseradish peroxidase and TMB/H2O2 system. The aptasensor provided sensitive
detection of VEGF165 in a linear range 100–1 × 105 pg/mL with good specificity compared to IgG, CEA,
DNMT1, and BSA. The authors also tested the aptasensor’s performance in six clinical serum samples
and demonstrated a reasonable correlation between their method and commercial chemiluminescence
enzyme immunoassay kit. Of note, the detection protocol for the developed aptasensor did not require
any pre-processing of serum samples.

S. Shan et al. [82] proposed a sandwich chemiluminescent assay based on a pair of 5′-biotinylated
DNA aptamers VEGF Apt1 (24 nt) and VEGF Apt2 (26 nt) that bind different domains of VEGF165.
The first aptamer was immobilized on magnetic beads for analyte capturing. The second aptamer acted
as a reporter probe. The analytical signal was generated using alkaline phosphatase (AP)-streptavidin
conjugate with a chemiluminescent substrate. The aptasensor demonstrated the specificity of detection
against IgG, BSA, Anti-EGFR, EGFR proteins, and limit of detection of 1 ng/mL. The authors also used
this dual-aptamer detection system to evaluate VEGF165 levels in cell medium under normoxia or
hypoxia conditions. However, the sensitivity of the assay was lower in comparison to ELISA.

Several systems with signal amplification were developed to obtain VEGF colorimetric aptasensors
with a lower limit of detection. For instance, Zhang et al. [127] proposed a label-free colorimetric
biosensor recruiting strand displacement amplification principle (Figure 7A). A conversion of the
chromogenic substrate by G-quadruplex DNAzyme in the presence of H2O2 and hemin generated
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the colorimetric signal. This approach provided much more sensitive detection than other VEGF
colorimetric assays. Namely, the limit of detection was 0.034 pg/mL, with a dynamic range of 0.5 to
225 pg/mL and excellent specificity against HSA, transferrin, cytochrome C, and IFN-γ. The authors
also verified the aptasensor’s performance in 12.5% diluted VEGF-spiked human serum samples.

C.-C. Chang et al. [128] used VEGF Apt1 DNA aptamer as a part of a bifunctional hairpin probe
for engineering an aptameric amplification assay based on a combination of AuNP colorimetric
detection and target-catalyzed branched DNA cascade amplification. This aptasensor demonstrated
high sensitivity (the working range from 3.7 to 148 pg/mL) and specificity against BSA and IFN-γ.
The authors emphasize that their assay does not require time-consuming AuNP surface modification
and enzymatic amplification steps, and the detection procedure takes less than an hour.

D. Wu et al. [129] constructed an aptazyme made of a DNA aptamer and DNAzyme (Figure 7B).
In the presence of the target protein, aptamer binding to VEGF induces structure reorganization of the
whole aptazyme molecule, which leads to the activation of DNAzyme, cleaving the linker sequences
into two fragments that fail to cross-link AuNP. Therefore, AuNPs stay dispersed, and the solution color
remains red. Without VEGF, linker sequences remain intact, giving the purple color of the solution.
The aptazyme system showed the specificity against HSA, BSA, and human thrombin, and the working
range of 0.1–40 nM. Aptazyme-based detection was tested in 1% spiked human serum samples.

An ability of G-quadruplex forming VEGF-specific DNA aptamers to bind hemin [130] allowed
for developing of the aptasensor with aptamer/hemin complex that mimics a horseradish peroxidase
activity and oxide luminol by H2O2 for generating a chemiluminescent signal. This assay provided
VEGF detection with a limit of 360 pg/mL. However, the sensitivity of the proposed method was much
lower as compared to ELISA.
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An interesting variant of the ELISA-like VEGF sandwich detection assay was proposed by
H. Xu et al. [131] The assay implies using specific antibody immobilized in the microplate’s well as a
capture component, and a VEGF-specific DNA aptamer (Figure 7C). An additional nucleotide sequence
at the 3′-end of VEGF-aptamer served as a primer for the hybridization chain reaction with two
concatemeric oligonucleotides conjugated with a glucose oxidase. In turn, the latter transforms glucose
to gluconic acid and H2O2, giving the pH change, which could be monitored using a portable pH
meter or pH indicator. This aptasensor provides a working range of 0.8–480 pg/mL and specificity
against a number of biomarkers, namely HSA, lysozyme, thrombin, PDGF-BB, and alpha-fetoprotein.
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The aptasensor was also tested for the detection of VEGF in serum samples after centrifugation and
1:100 dilution. The results were comparable with those from the reference ELISA test. The same
detection principle with a portable device was also reported by X. Zhu et al. [132] Their assay exploited
the conjugates of concatemeric oligonucleotides with the invertase. The enzyme transforms sucrose
into glucose, which is then measured by a portable glucose meter. This system gives a working range
of 3–100 pg/mL and good specificity against HSA, lysozyme, and thrombin. The authors validated the
assay with three different serum samples, and the obtained values were very similar to the reference
ELISA results.

4.1.4. Receptor Activator of Nuclear Factor Kappa-B (RANK)

Disbalance in the RANKL/RANK/OPG system plays a fundamental role in bone resorption pathogenesis
in RA and represents one of the essential mechanisms of generalized OP development [158,159].
Hyperexpression of RANKL in RA is found in many cells involved in the progression
of joint inflammation: T-lymphocytes, synovial fibroblasts, and osteoclasts in the pannus
zone [160,161]. Synovial macrophages in the presence of RANKL and macrophage colony-stimulating
factor can differentiate into osteoclasts and stimulate osteoclastogenesis (at the stimulation by
1,25-dihydroxy vitamin D) [162,163]. An excessive RANKL concentration can be controlled
by the fully human monoclonal antibody (denosumab), which binds RANKL and prevents
RANK/RANKL interaction [164,165]. Changes in the RANKL/RANK/OPG system also can lead to
bone metabolism disorders, such as OP, osteopetrosis, Paget’s disease, and spontaneous osteolysis [166].

Mori et al. [83] selected RNA aptamer against RANK to develop potential therapeutics for RA.
The resulting 46 nt aptamer apt-1 formed a G-quadruplex structure. Both apt-1 and its 32 nt truncated
version apt1 shortM4 recognized RANK but failed to inhibit RANK/RANKL interaction. Interestingly,
the replacement of all pyrimidine residues by their 2′-F-modified analogs improved not only the
nuclease resistance of the aptamer but also its target binding affinity. The authors also revealed that
apt1 binds to other TNF receptor family proteins, namely TRAIL-R2, CD30, NGFR, and osteoprotegerin,
a decoy receptor for RANK. These results suggest aptamer’s binding to some common determinant
shared by the TNF receptor family.

4.2. Interleukins and Their Receptors

4.2.1. Interleukin 17A (IL-17A) and Its Receptor (IL-17AR)

An IL-17 superfamily is a group of pro-inflammatory cytokines produced by T-lymphocytes,
which sustain an autoimmune inflammation. Interleukin 17 binding to its receptor IL-17R activates a
cascade of reactions that, in turn, induces the production of chemokines. Currently, IL-17 is considered
to play an essential role in the pathogenesis of many rheumatic diseases. As such, the key role
was proven for IL-17 in the pathogenesis of rheumatoid arthritis [167] and ankylosing spondylitis
(AS) [168,169]. For AS, a high level of IL-17 associates with structural damages and radiological
progression, while no such correlations were found for RA [24]. The level of IL-17 in AS is associated
with the presence of enthesitis, radiographic progression with syndesmophytes formation, and the
development of osteoporosis as an AS complication [24,170,171]. Moreover, in the pathogenesis of
AS, IL-17 is considered together with IL-23 as a IL-17/IL-23 axis. Patients with AS showed high
serum concentrations of IL-17 and IL-23 [25]. The presence of IL-17+T-cells was also shown in the
facet joints of RA patients [172]. High concentrations of IL-17 activate osteoclasts and cause the OP
development, while IL-23 is responsible for osteoproliferation and formation on syndesmophytes.
Therefore, inhibitors of IL-17 found a broad application in AS treatment, not only lowering the disease
activity but also preventing the radiological progression and the development of complications [173].
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Aptamer-Based Inhibitors of IL-17A/IL-17RA

Ishigiro et al. [85] selected and optimized a 22 nt 2′-F-RNA aptamer Apt21-2 against human IL-17A,
which also demonstrated an affinity to mouse protein, although to a lesser extent. The aptamer blocked
IL-17A/IL17-RA interactions in vitro and inhibited IL17A-induced production of IL-6 in mouse and
human cells. For in vivo studies, the aptamer was modified by a 40 kDa PEG at the 5′-end and inverted
thymidine residue at the 3′-end. The therapeutic efficacy of this modified aptamer PEG21-2idT was
evaluated on murine models of experimental autoimmune encephalomyelitis and RA. The aptamer
administered intraperitoneally inhibited in a dose-dependent manner the development of arthritic or
neurologic symptoms and slowed the progression of arthritis. Considering its higher affinity to human
IL-17, the obtained aptamer shows a strong therapeutic potential for human autoimmune diseases.
Interestingly, Apt21-2 recognized both IL-17A/A and IL-17A/F dimers, but not IL-17F/F. An alternative
SELEX to IL-17A/F with counter-selection on IL-17A and IL-17F followed by sequence optimization
gave the new 68 nt RNA aptamer, AptAF42dope1 [86]. The aptamer showed selective affinity to
heterodimer IL-17A/F, blocked its binding to IL-17R, and inhibited IL-17A/F-induced cytokine GRO-α
production in fibroblasts.

Chen et al. [84] selected the DNA aptamer RA10-6 to IL-17RA using the cell-SELEX technique
with positive selection on IL-17RA positive cells and counterselection on IL-17RA-deficient cells of the
same type. This approach allows obtaining aptamers that recognize the target cell-surface protein in its
native form. After sequence optimization, the resulting 30 nt RA10-6 aptamer showed a high affinity
to the target cells (KD = 1.2 nM), recognized purified IL-17RA protein, and blocked IL-17/IL17RA
interaction. Experiments on osteoarthritis mice showed that intra-articular injections of RA10-6 inhibit
synovial inflammation by blocking IL-17/IL17RA-mediated IL-6 expression and did not induce systemic
or immunotoxic effects. The aptamer also acted synergistically with celecoxib to inhibit IL-6 expression
in synovial tissues. Therefore, aptamers blocking IL-17/IL17RA interactions show promise as potential
therapeutics for osteoarthritis and probably other IL-17 rheumatic disorders.

Aptamer-Based IL-17A/IL-17RA Detection Assays

H. Jo et al. [133] developed an electrochemical impedimetric aptasensor to detect cells that
express IL17-RA. Gold nanoparticles were electrodeposited on the working electrode and functionalized
with 5′-thiol modified aptamer (purchased from Aptamer Sciences). The impedimetric detection of
IL17-RA provided a working range of 10–10,000 pg/mL and sufficient specificity compared to human
and bovine albumins, lysozyme, IL-5R, IL-13R, and CD166. The sensor detected neutrophil-like dHL-60
cells that express IL-17RA and neutrophils from asthma patients, thus demonstrating a potential for
diagnostics for IL-17RA-related diseases.

4.2.2. Interleukin 6 (IL-6) and Its Receptor (IL-6R)

IL-6 is a glycoprotein produced by lymphocytes, neutrophils, eosinophils, B-cells, fibroblasts,
mast cells, endotheliocytes, synovial fibroblasts, and macrophages. In RA patients, IL-6 level
significantly increases in synovial tissue, synovial fluid, and blood plasma [174]. IL-6 can activate
the production of acute-phase proteins and antibodies by B-cells, chemokines’ production by
endothelial cells, and expression of adhesion molecules. It also induces synovial fibroblast proliferation
and activates osteoclasts. IL-6 interacts with a monomeric receptor (IL-6R), which consists of 468
amino acid residues and contains a region of 90 amino acids homological to certain domains of
immunoglobulins [175,176]. The pathway of IL-6 cell signaling involves the binding of IL-6 to the
α-chain of IL-6R, the coupling of IL-6/IL-6R complex to gp130, covalent homodimerization of gp130,
and following cascade of intracytoplasmic phosphorylation involving JAK 1, JAK 2, TYK 2, STAT 1,
and STAT 3 kinases [177,178]. The biological activity of IL-6 can be inhibited by blocking the cytokine
itself, IL-6R, or gp130 molecules.
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Rheumatoid arthritis is characterized by hyperproduction of IL-6, and IL-6 serum levels correlate
well with combined indicators of disease activity and progression of bone tissue destruction [174].
Therefore, IL-6 represents a promising therapeutic target for RA treatment. Pathological action of IL-6
in RA is determined by the stimulation of B-cell proliferation, secretion of immunoglobulins, C-reactive
protein (CRP) synthesis, and differentiation of plasmatic cells and cytotoxic T-lymphocytes [179,180].
IL-6 can participate in the development of periarticular osteoporosis and joint destruction by affecting
osteoclast differentiation, increasing aggrecanase proteolytic activity, and accelerating the degradation
of proteoglycans [181,182]. Nowadays, a wide range of monoclonal antibody drugs was designed
targeting either IL-6 itself (sirukumab, olokizumab, clazakizumab) or its receptors (tocilizumab,
sarilumab) [183]. Taking into account its influence on other cytokines, IL-6 is not considered a highly
specific marker of any rheumatic disease, so its level is not routinely evaluated in clinical practice.
However, the IL-6 is quite important as a marker of both inflammation and bone resorption, and its
detection in clinical practice is crucial to assess the efficacy of therapy.

Aptamer-Based Inhibitors of IL-6/IL-6R

Aptamers capable of specific IL-6 binding also demonstrate the potential to inhibit its functional activity.
Gupta et al. [87] developed two SOMAmers against IL-6 with sub-nanomolar affinities (KD = 0.2 nM),
SL1025, and SL1032. PEGylated versions of these aptamers blocked the interaction between IL-6 and
its receptor and inhibited proliferation of tumor cell lines, such as myeloma U266B1, hepatoma HepG2,
and glioma U87MG with an IC50 of 0.2 nM. In these model assays, the aptamers demonstrated higher
efficacy than tocilizumab taken at the same concentrations. High nuclease resistance of SOMAmers,
slow complex dissociation, and an ability to inhibit IL-6 signaling make them promising candidates for
the development of targeted therapeutics. Further studies of their therapeutic potential included the
testing of therapeutic effect of PEGylated SOMAmer SL1025 (31 nt) in a collagen-induced arthritis
model in cynomolgus monkeys [184]. The aptamer formulation administered intravenously for
11 days provided a sustained reduction in plasma IL-6 levels that corresponded to the reduction of
RA symptoms. Importantly, SOMAmer treatment was well tolerated in animals and did not elicit an
immune response.

The research group of U. Hahn generated anti-IL6R aptamers for further use in cell delivery systems.
After selection on the extracellular soluble part of the receptor as the target molecule, the resulted
G-quadruplex-forming RNA aptamer AIR-3A was minimized to 19 nt [88]. The aptamer specifically
bound to the IL-6R on the cell surface and was subjected to IL-6R-mediated internalization. More to
the point, this short aptamer provided specific intracellular delivery of a cargo protein (streptavidin)
with molecular weight ten times higher than its own. AIR-3A delivered photosensitizer chlorin-e6
for photodynamic therapy of IL-6R-positive cancer cells [185] and provided a specific internalization
of gold nanoparticles [186]. After the new in vitro selection, Hahn’s group obtained even more
biologically stable G-quadruplex 50 nt 2′-F-RNA aptamer FAIR-6 [89] with a sequence convergent to
AIR-3A but failed to minimize it as sufficiently as AIR-3A. Both AIR-3A and FAIR-6 recognized domain
1 of IL-6R. To generate an aptamer against another aptatope, domain 3, the authors employed two
SELEX targets, the soluble part of the IL-6R and domain 3 of IL-6R [90]. After selection, minimization,
and post-selective replacement of all pyrimidine nucleotides by their 2′-F-analogs, they obtained the
34 nt RAID3 aptamer specific to domain 3, which was also internalized by IL-6R presenting cells.
Notably, neither AIR-3A nor RAID3 interfered with IL-6-initiated signal transduction [187].

Aptamer-Based IL-6/IL-6R Detection Assays

Recently, several aptasensors were engineered for IL-6 measurement. Hao et al. presented an
electrochemical graphene FET aptasensor [134]. The DNA aptamer was covalently immobilized through
the terminal amino group on the graphene surface modified by pyrenebutanoic acid succinimidyl ester.
The device provided fast and sensitive detection of IL-6 (with a LOD of 3.3 pg/mL) in a buffer, but its
applicability in real samples was not estimated. An electrochemical impedimetric aptasensor was
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also developed by Tertis et al. [135] A 52-nt DNA aptamer with 3′-thio group was immobilized
on the surface of modified electrode via the formation of gold-sulfur bonds and captured IL-6
from the analyzed sample. The sensor showed a linear response from 5 pg/mL to 100 ng/mL in
a buffer solution and good specificity (compared to carcinoembryonic antigen, Mucin 1, Mucin
4, and Mucin 16). The authors also examined this aptasensor on serum samples diluted 1:1 and
demonstrated good agreement with the results obtained by an independent chemiluminescence
immunoassay. Giorgi-Coll et al. [136] used a sandwich pair of anti-murine IL-6 aptamers to create
a colorimetric assay. Aptamers were immobilized on the surface of AuNPs through terminal thiol
groups. The addition of IL-6 caused the aggregation of functionalized nanoparticles and subsequent
red-purple color change (Figure 8). The sensor demonstrated a linear response of 3.3–125 µg/mL in a
buffer. These pilot results show the principal applicability of the sensor but also clearly point to the
need to optimize its sensitivity and examine the assay in more complex samples.
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4.2.3. Interleukin 8 (IL-8)

IL-8 is a chemokine responsible for chemotaxis of neutrophils to the inflammation area, which is
produced by macrophages, lymphocytes, fibroblasts, epithelial and epidermic cells. IL-1, IL-3, TNFα,
GM-CSF, and other molecules can induce IL-8 production. IL-8 exhibits prominent anti-inflammatory
properties by increasing the expression of intercellular adhesion molecules and enhancing neutrophils’
adherence to endothelial cells and sub-endothelial matrix proteins. In RA, IL-8 levels in synovial fluid
rise significantly due to its hyperproduction by neutrophils [188].

Sung et al. [93] selected and minimized the 35 nt 2′-F-RNA aptamer 8A-35 against IL-8 with a very
high binding affinity (KD = 1.72 pM). The aptamer demonstrated potent IL-8 neutralizing activity and
modulated multiple biological activities of IL-8, such as intracellular signaling and chemotaxis.
These properties make 8A-35 a promising molecule for developing therapeutic agents against
inflammatory diseases. Zhang et al. employed 8A-35 aptamer to engineer a microfluidic chip
for fluorescent Il-8 detection with signal enhancement by rolling circle amplification (see Figure 9 for a
detection scheme) [138]. The biosensor showed a working range of 7.5–120 pg/mL in a buffer solution
and allowed analysis of the secreted IL-8 in endothelial cells.
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4.2.4. Interleukin 23 (IL-23)

IL-23 is a cytokine produced by different cells, such as dendritic cells, macrophages, and intestinal
cells [189]. It plays a crucial role in Th17-activating and production of IL-17 [189]. It is considered that
IL-23 is the main controller for NK-cells, must cells, and γ-δ T-cells that predominate in AS patients [190].
IL-23 also plays an important role in psoriasis [191] and Crohn’s disease [192]. The IL-17/IL-23 axis is
important in AS, psoriasis, Crohn’s disease, and OP progression.

Aptamer-Based Inhibitors of IL-23

Recently, Lenn et al. [91] reported a new fully modified 60 nt RNA aptamer with 2′-O-methyl,
2′-O-methoxyethyl, and 2′-fluoro modifications and 3′-inverted terminal thymidine residue. This set
of modifications seems to provide excellent nuclease resistance in biological media. Despite relatively
high molecular weight (~20 kDa), the aptamer demonstrated efficient penetration through intact
human skin in an ex vivo human skin model. After topical application, the aptamer accumulated in
deeper skin layers at therapeutically relevant levels, and inhibited IL-23 signaling, thus representing a
potential therapeutic agent for the treatment of psoriasis.

4.2.5. Other Interleukins

Aptamer-Based Inhibitors of Interleukins

Kim et al. [92] generated a 90 nt RNA aptamer AC3-3 against IL-32. The aptamer antagonized
the functional activity of IL-32 and inhibited IL-32-dependent expression of TNFα in human lung
carcinoma cells. As a selective antagonist of IL-32, the AC3-3 aptamer can be considered as a potential
anti-inflammatory therapeutic agent.

Ren et al. selected, truncated to 22 nt, and thoroughly characterized the SOMAmer SL1067 against
IL-1α [94]. The aptamer selectively bound IL-1α but not IL-1β and possessed a very compact spatial
structure comprising an unknown G-quadruplex form. The ability to inhibit IL-1α-mediated secretion
of IL-6 and IL-8 in HS27 and HUVEC cell lines makes the SL1067 aptamer a useful foundation for
developing new therapeutics targeting IL-1α and related cytokines.

Aptamer-Based Detection Assays

A rapid, washing-free colorimetric aptasensor for detecting the soluble IL-2Rα was developed on
the basis of the cognate sIL-2Rα-specific C5-dU-naphthyl-modified DNA aptamer [137]. The aptasensor
employs the peroxidase mimetic activity of the AuNP. First, the aptamer molecules non-covalently bind
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to the surface of AuNP through the DNA adsorption mechanism. The increased negative net charge
attracts more ortho-phenylenediamine (oPD), a positively charged peroxidase chromogenic substrate.
After the addition of sIL-2Rα, the aptamers desorb from nanoparticles, which weakens the oPD,
thus decreasing the colorimetric signal. The sensor provided the working range of 25–2500 ng/mL
and showed high specificity in experiments with other immunity-associated proteins such as IL-5Rα,
IL-13Rα2, IL-17Rα, and CD166. The feasibility of the aptasensor for detection in clinical samples was
validated in sIL-2Rα-spiked diluted human sera. The working range in model serum samples was
the same as in the buffer. The whole detection process is simple, relatively inexpensive, and fast
(it takes approximately 25 min). Therefore, this method seems very promising for diagnostics of
inflammatory diseases.

4.3. Other Specific Markers

4.3.1. WNT Pathway

The WNT signaling pathway plays a key role in cell proliferation and determines the pathogenesis
of various autoimmune disorders [193]. WNT activation can proceed through a canonical pathway
involving β-catenin, which indirectly stimulates NF-κB activation and production of anti-inflammatory
cytokines (IL-1B, TNFα, IL-6) [194], or through the non-canonical pathway without β-catenin.
WNT signaling results in the production of anti-inflammatory cytokines, activation of osteoblasts by
enhancing osteoprotegerin expression, and a decrease of RANKL expression [195]. Sclerostin and
DKK-1 inhibit WNT signaling and participate in the pathogenesis of AS, affecting bone remodeling with
syndesmophytes formation [196,197]. The increase of WNT signaling antagonist expression promotes
the development of osteoporosis. WNT signaling components are now considered as therapeutic
targets for monoclonal antibodies. For instance, romosozumab, a sclerostin-blocking monoclonal
antibody, showed good efficacy and safety in OP therapy [198–201].

Aptamer-Based Inhibitors of WNT Proteins

Sclerostin (Sn) is mostly specific for bone tissue, secreted mainly by osteocytes, with the highest
level of this protein in canaliculi and lacunae of osteocytes [193,202]. To a lesser extent, it can be produced
by vascular cells [203]. Sclerostin binds to co-receptors LRP5 and LRP6 on the osteocyte surface and
prevents the formation of the WNT-FZD-LRP5 complex, thus breaking off WNT signaling, hindering
osteoblastogenesis and bone tissue formation. Studies of hereditary diseases associated with SOST
gene mutations, such as sclerosteosis and van Buchem disease, allow tracing out the influence of Sn on
osteoblastogenesis [204,205]. Expression of sclerostin in osteocytes is regulated by hormones involved
in bone tissue metabolism: parathyroid hormone (PTH), calcitonin, and glucocorticoids [193,202].
RA patients demonstrated higher Sn levels in serum, significantly correlating with disease activity
indicators and inflammation markers, but not with bone destruction [206]. Aside from the loss of
bone mass, RA is characterized by accelerated atherosclerosis, previously assigned to anti-inflammatory
cytokines and traditional risk factors. However, a mutation in LRP5, the co-receptor target of Sn, causes
early damaging of coronary arteries and severe osteoporosis [207]. Therefore, Sn is possibly involved
in joints and cardiovascular diseases and can participate in RA pathogenesis.

Shum et al. [96] performed a selection of sclerostin-binding 30 nt DNA aptamer Scl 2, which
formed a parallel G-quadruplex structure, and supplied it with 3′-inverted thymidine to enhance
biological stability. The aptamer inhibited sclerostin’s antagonistic effect on WNT signaling in MC3T3
osteoblasts, showing a dose-response with an IC50 of 900 nM. Therefore, this aptamer can be considered
as a potential sclerostin-inhibiting therapeutic.

Aptamer-Based Detection Assays for WNT Proteins

Dickkopf-1 is a soluble inhibitor of the WNT pathway, playing a key role in the regulation of bone
metabolism. Its levels defined the development of erosion or formation of new bone tissue in a model of
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inflammatory arthropathy [208]. DKK-1 affects the AS pathogenesis: AS patients showed a high level
of DKK-1, which further increased during the treatment by TNFα inhibitors [209]. Furthermore, the
functional activity of DKK-1 determines the development of syndesmophytes and sacroiliitis. A strong
connection was revealed between the DKK-1 and CRP levels and the number of syndesmophytes [210].
DKK-1 also affects the development of both primary and secondary osteoporosis. Serum levels
of DKK-1 vary during anti-OP treatment with different drugs [211,212]. Therefore, anti-DKK-1
monoclonal antibodies represent promising therapeutics for OP treatment [213]. Simultaneously, TNFα
does not directly regulate DKK-1 production, so anti-TNFα therapy does not affect radiological AS
progression [214].

Zhou et al. [95] developed a 39 nt DNA aptamer TD10 for DKK-1 and employed the
aptamer/antibody sandwich pair (with the aptamer as a capture component) in an ELISA-like
colorimetric microplate assay. The aptamer/antibody construction demonstrated analytical performance
close to conventional ELISA with a working range of 62.5-4000 pg/mL. Quantification of the large set
of sera samples (diluted 1:10) were also well correlated with the conventional ELISA, which points to
the potential of this assay for clinical practice.

4.3.2. Connective Tissue Growth Factor (CTGF)

Connective tissue growth factor (CTGF or CCN2), an extracellular matrix regulatory protein of
the CCN family, represents one of the key regulators of fibrotic scarring in health and disease [215].
CTGF synthesis is stimulated mostly by transforming growth factor β (TGFβ), causing the production
of type 1 collagen and fibronectin, proliferation of fibroblasts and osteoblasts, and repair of lesions.
Alongside other factors, CTGF affects many fibrosis-associated disorders, such as systemic scleroderma,
which was proved on animal models [216]. The level of CTGF expression increases with fibrosis
progression, and serum levels of CTGF correlate with the extents of skin involvement and pulmonary
lesions in scleroderma [217]. Direct blocking of CTGF in murine skin fibroblasts by FG-3019 antibody
(pamrevlumab) decreased inflammation, fibrosis and vascular lesions provoked by angiotensin
II [218]. Skin fibroblasts of scleroderma patients show a decreased level of PTEN, which limits CTGF
activity [219]. This can also prove the potential of CTGF as a therapeutic marker in the regulation of
fibrosis progression.

Aptamer-Based CTGF Detection Assays

Gao et al. [97] selected a DNA aptamer against CTGF, using a counter-selection on several targets
such as thrombin, TNF-α, LCN 1, LCN 2, and SEMA 3A to improve the specificity. The resulting aptamer
APT1 was truncated to a 21 nt sequence, which formed an antiparallel G-quadruplex. The introduction
of LNA nucleotides into single-stranded regions connecting G-tetrads further stabilized the structure
and improved the nuclease resistance of modified APT1M6TL aptamer. To test the possibility of
using the aptamer in diagnostic assays, the authors engineered a quite unusual ELISA-like sandwich
assay on the biolayer interferometry (BLI) platform, which provided the amplification of analytical
signal (Figure 10). Interestingly, the LNA-modified aptamer acted as a capture component, and a
non-modified aptamer of the same sequence was chosen as the reporting component of the sandwich.
The working range of the assay was 1.1–112 ng/mL, and the system showed good reproducibility and
stability for the analysis of diluted (1:10) spiked serum and urine samples. Therefore, the obtained
aptamer looks promising for engineering CTGF diagnostic assays in biological samples.

A series of CTGF-binding 39 nt DNA aptamers with relatively high affinities in the nanomolar
range were also selected in [98] but have not yet been employed for diagnostic or therapeutic purposes.
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4.3.3. Osteopontin

Osteopontin (OPN) is a glycoprotein with cytokine-like properties that presents in bone and teeth
and takes part in bone metabolism [220] and bone mineralization. It has a high affinity to calcium
and could bind hydroxyapatites and cause differentiation of osteoclasts [221,222]. It was established
that OPN-deficiency causes a decrease in fracture toughness [223]. OPN also seems to take part in
pathogenesis of cancer, fibrosis, and neurology disorders [224–226].

Aptamer-Based OPN Inhibitors

Mi et al. [99] selected a 40 nt 2′-F-RNA aptamer OPN-R3 specific to both human and mouse
osteopontins. The aptamer inhibited osteopontin binding with its cell surface receptors CD44 and
αvβ3-integrin in cell culture assays. For in vivo studies, the aptamer was modified by 3′-inverted
deoxythymidine, 5′-cholesterol, and 2′-O-methyl pyrimidine nucleotides. It seems somewhat surprising
that the replacement of 2′-fluoro atoms by –OCH3 groups did not significantly decrease the aptamer’s
binding affinity. After injection in the tail vein, the modified aptamer showed anti-tumor activity in
mice with xenograft tumors. Although this model is not directly related to rheumatic diseases, the
results clearly show that the aptamer can inhibit osteopontin’s signaling in vivo after systemic delivery.

Aptamer-Based OPN Detection Assays

The DNA aptamer against human osteopontin was employed in [139] to develop lateral flow strips
for fast and sensitive osteopontin detection (Figure 11). The biotinylated aptamer provided pre-capture
of the target from the sample, the specific antibody was immobilized on the test line for second
specific target identification, and streptavidin-modified AuNP were responsible for color detection.
The resulting red zone was seen by the naked eye and evaluated semi-quantitatively by the strip reader.
The use of these test strips allowed OPN detecting in the range of 10–500 ng/mL. The sensor was also
successfully tested on diluted spiked and clinical serum samples.
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DEK Protein

DEK is an oncoprotein with cellular functions including (but not limited to) activities in modifying
chromatin structure, transcription and DNA repair regulation, RNA splicing, and inflammation [227].
Increased levels of DEK expression were revealed in tumors of different types. DEK is also secreted into
intracellular space by activated neutrophils participating in the generation of neutrophil extracellular
traps (NET). Anti-DEK antibodies were found in blood sera of patients with autoimmune disorders [228].

Aptamer-Based DEK Inhibitors

Mor-Vakhin et al. [100] generated a 41 nt DNA aptamer DTA-64 for DEK protein, aiming to obtain
the therapeutic agent for inflammatory arthritis. The aptamer injected into the knee joint of mice
with zymosan-induced inflammatory arthritis reduced the inflammatory cell migration and levels
of IL-1β and IL-6. Therefore, targeting DEK with aptamer therapy is a potentially useful approach
to treating arthritis, although further optimization of the aptamer’s formulation is necessary for
subsequent in vivo studies.

4.3.4. Visfatin

Visfatin, also known as nicotinamide phosphoribosyltransferase (NAMPT), catalyzes the
rate-limiting first step of NAD synthesis from nicotinamide. Its extracellular activity is associated
with participation in the inflammation by affecting macrophages and interaction with TLR4. Thus,
visfatin represents one of the soluble factors with damage-associated molecular patterns (DAMP)-like
activity [229]. The increase of the NAMPT level and its correlation with disease activity were shown for
psoriasis, RA, osteoarthritis, and inflammatory bowel diseases. In the case of RA, visfatin is considered
as a therapeutic target [230].

Aptamer-Based Visfatin Detection Assays

Park et al. [101] selected a visfatin-recognizing DNA aptamer using counter-selection against other
adipokines (adiponectin and retinol-binding protein 4) and HSA. The resulting aptamer 19 was then
employed as a bio-specific element of an electrochemical capacitive biosensor based on non-Faradaic
impedance spectroscopy. This detection method provided a specific concentration-dependent signal
with a working range of 1-50 ng/mL in a buffer solution. The sensor also showed a dose-dependent,
specific capacity response in visfatin-spiked serum samples (diluted 1:5).
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4.3.5. Matrix Metalloproteinase 9 (MMP-9)

Matrix metalloproteinase 9 (also referred to as gelatinase-B) secretes as a zymogen with a
molecular weight of 92 kDa. Its substrates include denatured type 1 collagen (gelatin), native collagens
of types IV, V, VII, X, and XI, fibrinogen, vitronectin, IL-1, and entactin, which joins laminin and
type IV collagen [231]. MMP-9 is produced by different cells, including keratinocytes, monocytes,
tissue macrophages, polymorphonuclear leukocytes, as well as various malignant cells. MMP-9 cleaves
the denatured type IV collagen, the main component of basal membranes, enabling the invasion of
immune cells (including T-cells) to the damaged tissue. Increased MMP-9 levels are found mostly
not in the serum but in synovia and synovial fluid in arthritis patients and in unstable atherosclerotic
plaques in patients with atherosclerosis. The treatment decreasing MMP-9 level or activity can be a
therapeutic variant for autoimmune disorders. Intravenous γ-globulins and steroids can decrease the
amount of secreted MMP-9 and its expression [232]. So far, no targeted drugs are known for inhibiting
MMP-9 activity.

Aptamer-Based MMP-9 Detection Assays

Da Rocha Gomes et al. [102] developed a 2′-F-pyrimidine RNA aptamer F3B against human MMP-9,
truncated it to 36 nt, and replaced purine nucleotides with their 2′-O-methyl analogs. The resulting
modified aptamer F3Bomf possessed high binding activity and selectivity and distinguished MMP-9
from matrix metalloproteinases MMP-2 and MMP-7. The authors employed the 99mTc-containing
derivative of F3Bomf for in vivo tumor imaging.

The F3Bomf 2′-F-RNA aptamer was also used for engineering a piezoelectric biosensor based on
the quartz crystal microbalance detection principle [103]. An additional selection of DNA aptamer
against the MMP-9 catalytic domain [103] provided a second MMP-binding aptamer, which possessed
a G-quadruplex secondary structure and did not compete with F3B for binding to MMP-9. The use of
an aptamer sandwich pair allowed for specific and sensitive assay with a working range from 92 pg/mL
to 230 ng/mL in a buffer solution. The sensor was also successfully tested in MMP-spiked diluted
(1:100) human serum. Of note, pre-treatment of serum samples by magnetic beads for removal of
immunoglobulins improved the analytical performance of the sensor.

4.3.6. C-Terminal Telopeptide (CTX-I)

C-terminal telopeptide of collagen type I (CTX-I) is a biomarker of bone metabolism. CTX-I peptide
undergoes further degradation with the formation of α- and β-isomeric octapeptides (α- and
β-CrossLaps). The International Osteoporosis Fond (IOF) and International Federation of Clinical
Chemistry and Laboratory Medicine (IFCC) recommended CTX-I as a reference marker for
OP management. It is now actively used in routine medical and scientific practice to monitor
OP therapy and evaluate its efficacy [233]. The decrease of β-CrossLaps concentration by >25% from
the starting level in 3–6 months from the beginning of therapy points to antiresorptive treatment
efficacy. The β-CrossLaps level increases with age. High levels of C-telopeptides were found in
women with low BMD. At the same time, OP patients receiving antiresorptive therapy demonstrated a
reliable decrease in those markers [234,235]. Different clinical and pre-clinical studies showed enhanced
collagen degradation in RA due to the high proteolytic activity of CTX-1 [236].

Aptamer-Based CTX-I Detection Assays

Bruno et al. [104] selected DNA aptamers against CTX-I and performed a thorough post-selective
design supported by structure modeling to obtain short hairpin structures suitable for fluorescence
molecular beacon assay. Fluorophore and quencher introduced to the opposite ends of the aptamer
provided fluorescence signaling in a concentration-dependent manner. In the buffer solution, it gave
a limit of detection of 1 ng/mL with a good specificity compared to several other bone markers.
The authors intended to use this aptasensor to quantitate the CTX-I in urine samples for fast and
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easy bone resorption monitoring. However, it turned out that urea and creatinine dramatically
destabilize the hairpin structure, and chromatographic pre-processing of the samples is required
before the fluorescence analysis. Therefore, when designing aptasensor constructs for urine analysis,
the researchers should keep in mind the impact of denaturing amines and urea.

4.3.7. Human Neutrophil Elastase (HNE)

HNE is a serine protease that is contained in neutrophils granules and acts in pathogen destructions,
such as killing bacteria by oxygen metabolites with phagolysosomes and the NADPH system [237].
It is expected that HNE can regulate inflammation by the degradation of some cytokines such
as TNFα or their predecessors [238]. HNE is involved in the pathogenesis of ANCA-associated
vasculitides [239–241]. In such diseases, neutrophils are activated by binding with ANCA and produce
reactive oxygen species and neutrophil extracellular traps that deposit in vessels and cause necrotizing
glomerulonephritis [242].

Lin et al. [105] selected, optimized, and characterized a 44 nt G-quadruplex DNA aptamer DNA I
against HNE. Interestingly, a conjugation of the aptamer with tetrapeptide Ala-Ala-Pro-Val, a weak
inhibitor of HNE, resulted in nearly five orders of magnitude more potent competitive inhibition
than by the peptide alone. It could be suggested that the aptamer attached to the peptide through
3′-thiol group tethered to three 18-carbon linkers allows for tight binding and precise positioning of
the peptide near the substrate binding center.

Aptamer-Based HNE Detection Assays

The aptamer DNA I found its further application as a biospecific element of aptasensors for HNE
detection. He et al. [140] developed a fluorescent aptasensor which involved a molecular beacon
and an auxiliary DNA oligonucleotide (Figure 12A). The sensor showed good specificity for HNE
compared with HSA, IgG, and IgE, and a working range of 31.2–3100 ng/mL in a buffer solution.
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Cheng et al. [141] employed an intrinsic enzymatic activity of HNE to obtain a colorimetric signal.
An anti-HNE aptamer was immobilized on magnetic beads or microplate, then captured HNE catalyzed
the conversion the chromogenic peptide substrate to the coloured product (Figure 12B). During the
specificity test, other proteins (e.g., trypsin, proteinase K, chymotrypsin, thrombin, lysozyme) did
not influence the assays. The working range for ELISA-like microplate format of the assay was
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0.06–15 ng/mL in a buffer solution. However, in spiked diluted serum the presence of HNE inhibitors,
such as alpha-1-antitrypsin, significantly lowered the performance of the aptasensor. To overcome the
problem, the authors pre-heated the serum before spiking, but this protocol can hardly be recommended
for analyzing real serum samples.

Bai et al. [142] proposed using a fluorescently labeled aptamer to detect HNE by capillary
electrophoresis (CE) with a laser-induced fluorescence assay. The electrophoretic mobility of
HNE/aptamer differed very well from the unbound aptamer in CE separation. The aptamer
was labeled by tetramethylrhodamine attached to the thymine residue in the 40th position of the
oligonucleotide chain. The assay demonstrated the working range of 15.6–15 600 ng/mL and good
specificity (IgG, hemoglobin, thrombin, and PDGF-BB as controls). The authors also sufficiently tested
the assay for HNE detection in 1:100 diluted spiked serum samples with a limit of detection of 800
ng/mL.

4.3.8. Hepatocyte Growth Factor (HGF)

Hepatocyte growth factor (HGF) is a cytokine that participates in embryogenesis, histogenesis,
cancerogenesis, and in repair processes. HGF induces processes of proliferation and regeneration by
interacting with its tyrosine kinase receptor c-MET [243] and regulates bone metabolism processes
through expression in osteoblasts and osteoclasts [244]. HGF also affects the pathogenesis of
rheumatic diseases. In particular, HGF expression was demonstrated in the synovium of patients with
RA and osteoarthritis [245]. Sugiura et al. [246] observed the presence of HGF in striated muscles and
proved the role of this cytokine in polymyositis progression. They also described an increase of HGF
expression on myoblasts after dexamethasone treatment and suggested that a combination of HGF
and dexamethasone can be more effective in polymyositis therapy. The role of HGF was also proven
in the progression of AS. L. Torres et al. [247] demonstrated higher levels of HGF in the serum of AS
patients compared to healthy donors, which directly correlated with the disease activity and inversely
correlated with the level of BMD. This observation demonstrates the importance of this cytokine in
diagnostics and treatment of AS and osteoporosis as a frequent AS complication.

Aptamer-Based HGF Inhibitors

Saito et al. [106] generated two 60 nt DNA aptamers for HGF—a hairpin H38-15 and a G-quadruplex
H38-21—both with a nanomolar binding affinity. The aptamers inhibited the functional activity of
HGF in cell culture assays involving KP-3 and HUVEC cells. Considering their high affinity and
inhibiting properties, these aptamers seem promising for diagnostic and therapeutic use.

4.3.9. Leptin (Lp)

Leptin is a non-glycosylated 16 kDa protein of cytokines superfamily type 1, mostly produced
by adipocytes. Aside from its biological function of fat accumulation and energetic consumption,
leptin also affects the immune system regulation for innate and adaptive immunities. At the same
time, it directly participates in the development of autoimmune diseases [248]. In patients with
SLE, higher levels of Lp were found in comparison to remission patients but this does not correlate
with the severity of proteinuria in lupus nephritis [249]. The serum level of Lp inversely correlates
with circulating Treg lymphocytes, and thus in SLE, Lp can disrupt the regulatory mechanism of
adaptive immunity [59]. A positive correlation between CRP and Lp levels was shown [250]. Patients
with RA demonstrated increased Lp levels [251]; those with positive ACCP and obesity exhibited
higher levels of Lp [250]. In synovial fluid, higher Lp levels are also noticed in comparison to
osteoarthritis patients [252,253]. The correlation between Lp and cardiovascular risks in RA was
already established [254].

Ashley et al. [107] reported the selection of anti-leptin DNA aptamers by a CE-SELEX. The obtained
40 nt aptamers Lep1, Lep2, Lep3, and Lep4 demonstrated high-nanomolar binding affinities with the
best affinity of 410 nM for Lep2. Further studies on these aptamers have not yet been published.
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4.3.10. Oncostatin M (OSM)

OSM is a member of the IL-6-cytokine family that regulates immune reactions and plays an essential
role in endothelial dysfunction and fibrosis [255,256]. An increase in OSM production influences the
progression of a wide range of pathologies, including atherosclerosis, psoriasis, and many kinds of
cancer [257]. Recently, the role of OSM in inflammatory bowel disorder was demonstrated, and the
increase in OSM levels correlated with disease severity [258]. In RA, OSM is excessively expressed
in synovial fluid and the tissues with active inflammation [259,260]. Therefore, OSM stimulates
intra-articular inflammation and destruction of cartilage tissue, which was proved in studies on murine
arthritis models [261]. Simultaneously, OSM can exhibit pleiotropic effect and express functions of
both pro- and anti-inflammatory cytokine, dependent on cell type and microenvironment. Thus, this
protein plays a complicated role in RA, mostly dependent on cell microenvironment [262].

Aptamer-Based OSM Inhibitors

Rhodes et al. [108] isolated 2′-F-Py RNA aptamers against OSM to investigate its role in
inflammatory disorders. The resulting 33 nt aptamer ADR58 with a low-nanomolar affinity (KD = 7 nM)
was subjected to post-selective modification, with the replacement of all purine residues by their
2′-O-methyl analogs. In cell culture assays, ADR58 blocked the binding of human OSM to the gp130
receptor in a dose-dependent manner, therefore representing a highly potent functional antagonist of
human OSM.

5. Conclusions and Future Directions

Nucleic acid aptamers established themselves as affine and specific tools for biomedical
applications. A vast number of aptamer-based targeted therapeutics and bioanalytical assays have
been proposed to the moment. While studies in this field focus mostly on aptamers’ applications
in the fields of infectious, cardiovascular, and malignant diseases, the potential of aptamers for
treatment and diagnostics of rheumatic disorders is also very promising. As it is seen from the works
referenced above, aptamer-based targeted drugs and bioanalytical assays already found numerous
applications in rheumatology research studies. Different DNA and RNA aptamers and their modified
analogs have been generated against protein biomarkers related to rheumatic diseases, from general
markers such as C-reactive protein, TNFα, interleukins, and their receptors, to more specific proteins
such as members of the WNT signaling pathway. Some of these aptamers demonstrated promising
potential as specific therapeutics, inhibiting target proteins’ functional activities in cell assays and
animal models. Other aptamers showed themselves as biospecific recognizing elements for the
engineering of sensitive and specific aptasensors. In many cases, the use of such aptasensors for
analysis of clinical samples faces the problem of interfering components (such as proteins and amines)
and therefore requires the pre-processing of the probes. This issue has to be addressed for the
routine use of aptamer-based diagnostic assays. Otherwise, the examples of aptasensors effectively
employed for biomarker detection in clinical probes with no other pre-treatment as minimal dilution
strongly suggest that this problem can be successfully overcome. Further efforts in this field should
be concentrated on broadening the variety of aptamers for biomarkers, in-depth structural studies
of these aptamers and their protein complexes, engineering of aptasensors suitable for routine lab
diagnostics, and developing and testing therapeutic aptamers.

It should be emphasized that many aptamer-based diagnostic sandwich assays reviewed above
rely on the use of aptamer/antibody sandwich pairs. In our opinion, the replacement of only one
antibody in the sandwich by the aptamer counterpart improves the cost-efficiency and, probably,
the specificity of the assay. Nevertheless, such combined aptamer/antibody pairs are still prone to
problems of reliability and long-term reproducibility brought by the antibody component. Therefore,
we should pay more attention to the generation of aptamer/aptamer sandwich pairs, which are now
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available only for a limited number of biomarkers. For instance, universal approaches to the selection
of such pairs have been proposed by Ochsner et al. [263]

We would also like to mention here an emerging trend in the aptamers’ engineering for biomedicine.
Very recently, it was proposed to generate aptamers against therapeutic monoclonal antibodies [264,265].
Thanks to their unique specificity and ability to recognize a certain spatial conformation of the protein,
aptamers represent precise molecular tools for quality control of therapeutic antibodies. In particular,
aptamers may provide a possibility to compare originators and biosimilar biopharmaceuticals,
to monitor lot-to-lot consistency between different batches of the same antibodies and to assess
the product quality during transportation and storage. For example, DNA aptamers against anti-CD20
antibody rituximab detected structural differences upon thermal denaturation and demonstrated
the high similarity of rituximab originator and biosimilars, and changes for all the lots of a copy
product [265,266]. DNA aptamers against anti-HER2 trastuzumab showed the potential to detect the
target in complex samples and distinguished native antibodies from heat-treated ones [264]. As the
treatment of many rheumatic disorders largely relies on the use of targeted monoclonal antibodies,
the development of cognate aptamers and aptamer-based tools for their quality monitoring represents,
in our opinion, an up-and-coming trend in the field. Until now, no aptamers have been reported
against biopharmaceuticals used in rheumatology, but it is undoubtedly only a question of time.

To summarize, aptamers represent readily available, versatile, and effective molecular tools for
therapeutic and diagnostic tasks in rheumatology. It is no doubt that greater diversity of aptamers for
proteins associated with rheumatic disorders, as well as aptamer-based platforms, will appear in the
near future.
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ANCAs Anti-neutrophil cytoplasmic antibodies
AS Ankylosing spondylitis
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BLI Biolayer interferometry
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CEA Carcinoembryonic antigen
CRP C-reactive protein
CTGF Connective tissue growth factor
CTX-I C-terminal telopeptide
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DNMT1 DNA methyltransferase 1
EGFR Epidermal growth factor receptor
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FDA U.S. Food and Drug Administration
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FRET Förster resonance energy transfer
GFET Graphene-based field effect transistor
GO-SELEX Graphene oxide-based SELEX
HGF Hepatocyte growth factor
HNE Human neutrophil elastase
HSA Human serum albumin
LOD Limit of detection
MMP-9 Matrix metalloproteinase 9
NAMPT Nicotinamide phosphoribosyl transferase
OP Osteoporosis
OPG Osteoprotegerin
OPN Osteopontin
OSM Oncostatin M
PDGF-BB Platelet derived growth factor-BB
PEG Polyethylene glycol
PoC Point-of-care
QD Quantum dots
RA Rheumatoid arthritis
RANK Receptor activator of nuclear factor kappa-B

SELEX
Systematic evolution of ligands by exponential
enrichment

SERS Surface-enhanced Raman spectroscopy
SLE Systemic lupus erythematosus
Sn Sclerostin
SOMAmer Slow off-rate modified aptamer
SPR Surface plasmon resonance
TMB tetramethylbenzidine
TNFα Tumor necrosis factor α
VEGF Vascular endothelial growth factor
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54. Lis-Święty, A.; Widuchowska, M.; Brzezińska-Wcisło, L.; Kucharz, E. High acute phase protein levels correlate
with pulmonary and skin involvement in patients with diffuse systemic sclerosis. J. Int. Med. Res. 2018,
46, 1634–1639. [CrossRef] [PubMed]

55. Wang, J.; Niu, R.; Jiang, L.; Wang, Y.; Shao, X.; Wu, M.; Ma, Y. The diagnostic values of C-reactive protein
and procalcitonin in identifying systemic lupus erythematosus infection and disease activity. Medicine 2019,
98, e16798. [CrossRef]

http://dx.doi.org/10.1007/s00253-020-10747-0
http://dx.doi.org/10.3390/bios8020028
http://dx.doi.org/10.3390/s19245435
http://dx.doi.org/10.3389/fchem.2020.00434
http://dx.doi.org/10.1007/s00604-020-04526-x
http://dx.doi.org/10.1002/elan.200804561
http://dx.doi.org/10.1016/j.ab.2020.113574
http://www.ncbi.nlm.nih.gov/pubmed/31911046
http://dx.doi.org/10.1016/j.talanta.2019.02.066
http://www.ncbi.nlm.nih.gov/pubmed/30952298
http://dx.doi.org/10.1097/CM9.0000000000000227
http://www.ncbi.nlm.nih.gov/pubmed/30946065
http://dx.doi.org/10.1136/rmdopen-2019-001008
http://dx.doi.org/10.1136/rmdopen-2018-000853
http://dx.doi.org/10.1093/rheumatology/key250
http://dx.doi.org/10.1371/journal.pone.0211946
http://dx.doi.org/10.1186/s41927-019-0061-z
http://dx.doi.org/10.2147/OPTH.S151385
http://www.ncbi.nlm.nih.gov/pubmed/29200816
http://dx.doi.org/10.1136/annrheumdis-2019-215145
http://dx.doi.org/10.1177/0300060518760955
http://www.ncbi.nlm.nih.gov/pubmed/29512396
http://dx.doi.org/10.1097/MD.0000000000016798


Biomedicines 2020, 8, 527 34 of 44

56. Littlejohn, E.; Marder, W.; Lewis, E.; Francis, S.; Jackish, J.; McCune, W.J.; Somers, E.C. The ratio of erythrocyte
sedimentation rate to C-reactive protein is useful in distinguishing infection from flare in systemic lupus
erythematosus patients presenting with fever. Lupus 2018, 27, 1123–1129. [CrossRef]

57. Bay-Jensen, A.C.; Platt, A.; Jenkins, M.A.; Weinblatt, M.E.; Byrjalsen, I.; Musa, K.; Genovese, M.C.;
Karsdal, M.A. Tissue metabolite of type I collagen, C1M, and CRP predicts structural progression of
rheumatoid arthritis. BMC Rheumatol. 2019, 3, 3. [CrossRef]

58. Yeh, J.-C.; Wu, C.-C.; Choy, C.-S.; Chang, S.-W.; Liou, J.-C.; Chen, K.-S.; Tung, T.-H.; Lin, W.-N.; Hsieh, C.-Y.;
Ho, C.-T.; et al. Non-hepatic alkaline phosphatase, hs-CRP and progression of vertebral fracture in patients
with rheumatoid arthritis: A population-based longitudinal study. J. Clin. Med. 2018, 7, 439. [CrossRef]

59. Yu, Z.; Kim, S.C.; Vanni, K.; Huang, J.; Desai, R.; Murphy, S.N.; Solomon, D.H.; Liao, K.P. Association between
inflammation and systolic blood pressure in RA compared to patients without RA. Arthritis Res. Ther. 2018,
20, 107. [CrossRef]

60. Azevedo, S.; Santos-Faria, D.; Leite Silva, J.; Ramos Rodrigues, J.; Sousa Neves, J.; Peixoto, D.; Tavares-Costa, J.;
Alcino, S.; Afonso, C.; Teixeira, F. Obesity, metabolic syndrome and other comorbidities in rheumatoid
arthritis and psoriatic arthritis: Influence on disease activity and quality of life. Acta Reumatol. Port. 2019,
44, 322–324.

61. Ferguson, L.D.; Siebert, S.; McInnes, I.B.; Sattar, N. Cardiometabolic comorbidities in RA and PsA: Lessons
learned and future directions. Nat. Rev. Rheumatol. 2019, 15, 461–474. [CrossRef] [PubMed]

62. Dimitroulas, T.; Hodson, J.; Sandoo, A.; Smith, J.; Kitas, G.D. Endothelial injury in rheumatoid arthritis:
A crosstalk between dimethylarginines and systemic inflammation. Arthritis Res. Ther. 2017, 19, 32.
[CrossRef] [PubMed]

63. Pan, L.; Wang, T. Features of cardiac remodeling in patients with acute coronary syndrome complicated with
rheumatoid arthritis. Sci. Rep. 2017, 7, 10268. [CrossRef] [PubMed]

64. Nash, P.; Ohson, K.; Walsh, J.; Delev, N.; Nguyen, D.; Teng, L.; Gómez-Reino, J.J.; Aelion, J.A. Early and
sustained efficacy with apremilast monotherapy in biological-naïve patients with psoriatic arthritis: A phase
IIIB, randomised controlled trial (ACTIVE). Ann. Rheum. Dis. 2018, 77, 690–698. [CrossRef] [PubMed]

65. McInnes, I.B.; Chakravarty, S.D.; Apaolaza, I.; Kafka, S.; Hsia, E.C.; You, Y.; Kavanaugh, A. Efficacy of
ustekinumab in biologic-naïve patients with psoriatic arthritis by prior treatment exposure and disease
duration: Data from PSUMMIT 1 and PSUMMIT 2. RMD Open 2019, 5, e000990. [CrossRef]

66. Park, J.W.; Kim, H.-A.; Shin, K.; Park, Y.-B.; Kim, T.-H.; Song, Y.W.; Lee, E.Y. Effects of tapering tumor necrosis
factor inhibitor on the achievement of inactive disease in patients with axial spondyloarthritis: A nationwide
cohort study. Arthritis Res. Ther. 2019, 21, 163. [CrossRef]

67. Cohen, S.; Pablos, J.L.; Pavelka, K.; Müller, G.A.; Matsumoto, A.; Kivitz, A.; Wang, H.; Krishnan, E.
An open-label extension study to demonstrate long-term safety and efficacy of ABP 501 in patients with
rheumatoid arthritis. Arthritis Res. Ther. 2019, 21, 84. [CrossRef]
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