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Five animal phyla in glacier ice 
reveal unprecedented biodiversity 
in New Zealand’s Southern Alps
Daniel H. Shain1*, Philip M. Novis2, Andrew G. Cridge3, Krzysztof Zawierucha4, 
Anthony J. Geneva1 & Peter K. Dearden3

Glacier ice is an extreme environment in which most animals cannot survive. Here we report the 
colonization of high elevation, climate-threatened glaciers along New Zealand’s southwestern coast 
by species of Arthropoda, Nematoda, Platyhelminthes, Rotifera and Tardigrada. Based on DNA 
barcoding and haplotype-inferred evidence for deep genetic variability, at least 12 undescribed species 
are reported, some of which have persisted in this niche habitat throughout the Pleistocene. These 
findings identify not only an atypical biodiversity hotspot but also highlight the adaptive plasticity of 
microinvertebrate Animalia.

Glacier ecosystems are an inhospitable environment for most animals. The cumulative weight of overlying snow/
ice compresses deep subsurface ice to densities > 900 kg/m3, effectively excluding physical space for even the 
smallest single-celled microbes1, 2. Prior to compression, however, upper layers of ice (i.e., weathered surface and 
several metres below) maintain ultrastructural spaces between crystal interfaces, forming arrays of microchan-
nels that connect with the glacial surface3, 4. On maritime glaciers, those most threatened by our changing global 
climate5–7, ultrathin films of water fill these veinous aquifers and provide a microenvironment for extremophilic 
life. Permanently cold temperatures (0 °C and below), high UV radiation, nutrient-poor and hydrologically-
limiting conditions constrain organismal diversity in this habitat to specialized psychrophilic taxa, predominantly 
single-celled microbes8–11.

Wright (1887) discovered the first glacially-obligate, multicellular animal—the glacier ice worm, Mesen-
chytraeus solifugus (phylum Annelida)–inhabiting Muir Glacier, Alaska12, 13, thereafter reported on glaciers 
throughout the Pacific Northwest14, 15. These worms inhabit glacier ice above the equilibrium line altitude (ELA), 
which separates snow accumulation and ablation zones, respectively. Ice worms also appear occasionally in 
meltwater pools common within the ablation zone (e.g., cryoconite holes), which support multiple trophic 
levels across domains of life including apex meiofauna16–18. More recently, two species of bdelloid Rotifera were 
discovered on maritime, Icelandic glaciers, identifying the second known animal phylum with representatives 
inhabiting glacier ice19.

Coastal glaciers in New Zealand’s Southern Alps are exceptional in that they descend steeply into native 
rainforest and experience particularly high levels of orographic precipitation20–22. Moreover, predominant oce-
anic westerlies channel wind up river valleys, leading to turbulent mixing of organic and inorganic debris23, 24. 
Significantly, glaciers in the Southern Alps advanced between 1983 and 2008 as a consequence of anthropogenic 
regional cooling25, but are now in rapid retreat comparable with glacial melting worldwide5, 26, 27.

The unusual climatology and geomorphology of the region, coupled with its proximity to rich sources of 
biodiversity in lower rainforests, prompted us to survey accessible glaciers in the region for animal life. We show 
here that taxa representing five animal phyla co-occur on Southern Alps, New Zealand glaciers, four of which 
(Arthropoda, Nematoda, Platyhelminthes, Tardigrada) are not reported previously in glacier ice.

Results and discussion
Pilot collections during mid-summer on Fox and Franz Joseph Glaciers (− 43.5319, 170.1268 and − 43.4902, 
170.2408, respectively, Feb. 10, 2020) led to the identification of bdelloid Rotifera and Tardigrada populations. 
We returned in late autumn (April 28, 2020) following snowfalls totaling ~ 1 m, to collect ~ 80 L of surface ice 
from a single sampling location at three respective field sites along a NE  SW transect spanning ~ 35 km: Whataroa 
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Glacier (− 43.4002, 170.5231; 4,859 ft), Franz Joseph Glacier (− 43.6575, 170.2374; 6,890 ft) and Fox Glacier 
(− 43.5331, 170.1271; 6,483 ft), all above the ELA (Fig. 1). At each field site, the upper snow layer (~ 1 m) was 
removed to expose ~ 1 m2 of hard surface ice, corresponding to that year’s weathered crust. The upper ~ 10 cm 
were chipped away, collected and processed for microinvertebrates accordingly. In total, > 5,000 individual, glacier 
animals were observed—mostly alive–in laboratory cultures, representing five animal phyla (Fig. 2; Table S1, 
Suppl. Info.): Arthropoda (Crustacea), Nematoda, Platyhelminthes, Rotifera (Bdelloid and Monogononta) and 
Tardigrada. Animal designations were based on morphology and closest alignments with deposited GenBank 
sequences, with the caveat that the global database is incomplete. Nonetheless, some Antarctic ancestries can 
be inferred (e.g., bdelloid rotifers, nematodes, tardigrades), with a likely mechanism of passive, global dispersal 
(e.g., windblown, avian)28–32. 

Tardigrades were the dominant taxon across field sites, observed at densities between ~ 7–40 individuals/L; 
bdelloid rotifers and nematodes occurred at densities up to 3–4 individuals/L, while remaining taxa were less 
abundant (Table S2, Suppl. Info.). Additionally, an arachnid (Acari) and springtail (Collembola) were observed 
on the waters’ surface in laboratory cultures and likely reside on the glacial surface (Fig. S1, Suppl. Info.). All 
of the aforementioned animals were observed at the three respective field sites, respectively, suggesting that 
they comprise subpopulations along the southwestern coast, consistent with historical glacial dynamics and ice 
connectivity33–35.

Animal specimens were captured with a fine pipet, transferred individually and DNA barcoded using nuclear 
18S ribosomal RNA (rRNA)36 and mitochondrial cytochrome c oxidase subunit 1 (CO1)37 primers. More than 
90 individual specimens across the five animal phyla were processed identifying at least 12 putative species 
(Fig. 2; Fig. S2, Suppl. Info.), all of which appear new to science and, with the exception of bdelloid Rotifera19, 
not previously reported in glacier ice. Species boundaries were estimated using previously proposed thresholds 
of sequence divergence for nuclear and mitochondrial barcoding (e.g., ~ 10% divergence at CO138, 39; 0.5–1% at 
18S40) coupled with 18S rRNA Bayesian phylogeny across glacial phyla and related species (Fig. 3), collectively 
supporting the designation of discovered taxa as undescribed species (formal taxonomic descriptions of new 
taxa will be reported elsewhere).

The onset of New Zealand glaciation occurred in the late Pliocene41–43. By applying a mitochondrial diver-
gence rate of approximately 2% per million years for invertebrate taxa15, 19, 44, many species identified within 
respective phyla diverged prior to the onset of glaciation and arrived independently upon the onset of glaciation, 
while other putative species pairs (often found in sympatry) are more shallowly divergent and appear to have 
speciated thereafter. For instance, up to seven putative species of tardigrades are recognized using mitochondrial 
DNA divergence thresholds of 3%45, 46 (Fig. S2, Suppl. Info.), with divergence estimates that pre- and postdate 
glaciation. Note that such divergence thresholds (i.e., 3–10%) do not always estimate species diversity accurately 
and thus detailed taxonomic treatment of specimens is required to evaluate the extent of putative new species 
identified here. Representative haplotype networks for single- (Nematoda) and multispecies complexes (Tardi-
grada) (Fig. 4), suggest that glacier animals have and continue to disperse actively between coastal glaciers over 

Figure 1.   Localities of New Zealand glacier field sites. Collections were made on April 28, 2020, along a NE  SW 
transect spanning ~ 35 km, from Whataroa (W; − 43.4002, 170.5231; 4,859 ft) to Franz Joseph (FJ; − 43.6575, 
170.2374; 6,890 ft) to Fox (F; − 43.5331, 170.1271; 6,483 ft) Glaciers. North is up.
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geological time; moreover, mitochondrial DNA divergence patterns (Fig. 4) (i.e., exceeding previously proposed 
species boundary thresholds; Table S3, Suppl. Info.) support the persistence of these glacier animals throughout 
the Pleistocene.

The unexpected discovery of such animal diversity in New Zealand’s Southern Alps raises two important 
evolutionary questions. First, does this habitat represent an anomalous ecosystem that is driven by rainforest 
proximity and turbulent climatic winds, or does comparable animal diversity occur in glaciers worldwide? Lim-
ited data is available to assess this question, but to date North American and Icelandic glaciers appear restricted 
to monophylum animal representatives (Annelida and Rotifera, respectively) above the ELA15, 19. Secondly, the 
independent evolution of disparate animal phyla to the harsh and physiologically challenging conditions of glacial 
life above the ELA highlights the adaptive plasticity among microinvertebrate Animalia, raising the question of 
whether convergent mechanism(s) and/or novel biological strategies have facilitated their respective transitions 
into glacier ice. Previous studies show that glacier residents across domains of life8, 47, and particularly the North 
American glacier ice worm8, 48, 49, display enhanced purine anabolism that may compensate for cold tempera-
ture stress and lethargy50–52; this putative metabolic contribution to other glacial fauna remains an intriguing 
unknown, but now a testable hypothesis.

Methods
Specimen collection.  Ice samples were taken from the top ~ 10 cm of glacier surfaces, chipped away and 
collected with EtOH-sterilized field equipment (shovels, picks) that were washed thoroughly between collec-
tions. Glacier ice was stored in 20 L plastic containers, transported to the University of Otago and thawed slowly 
at 4  °C over several days. To observe microinvertebrate specimens, melted glacier water was gravity filtered 
through Whatman 1 paper employing a Bückner funnel, viewed by stereomicroscopy and sorted into phylo-
groups based on morphology. Images were captured with a Leica M205 C stereomicroscope using LAS software.

DNA extraction and PCR.  Individual microinvertebrates were captured in 1–3  μl of glacier meltwater 
using a fine pipet and transferred into 7 μl of 70% EtOH for storage. To extract DNA, EtOH was evaporated on 

Figure 2.   Animals in glacier ice collected from New Zealand’s Southern Alps. Species from five metazoan phlya 
are represented: Arthropoda, Nematoda, Platyhelminthes, Rotifera (with Classes Bdelloidea and Monogononta) 
and Tardigrada, collected from Fox, Franz Joseph and Whataroa Glaciers, respectively. At least 12 new species 
were identified, indicated by lines connected to respective images (e.g., three species of Tardigrada, etc.); genera 
designations were estimated by nuclear and mitochondrial barcoding in comparison with closest GenBank 
matches (see Table 1, Suppl. Info.). Central image shows the accumulation zone at the Franz Joseph Glacier 
collection site, 6,890 ft asl, just west of the continental ridge. Scale bars = 50 μm.
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a 65 °C heat block for ~ 5 min with lid open, and 10 μl of a solution containing 25 mM Tris pH 8.5, 50 mM KCl, 
5 mM MgCl2, Proteinase K (20 μg/μl) was added. Following incubation at 55 °C for 20 min, Proteinase K was 
inactivated by heating at 95 °C for 2 min and 1 μl was removed for polymerase chain reaction (PCR) analysis. 
DNA samples representing individual glacier specimens are archived in the laboratory of PKD. PCR reactions 
contained 1X Takara mix (Takara, Japan), 0.4 μM respective barcode primers [18S rRNA36; cytochrome c oxi-
dase subunit 1 (CO1)37], 1 μl template in a total reaction volume of 25 μl balanced with H2O. Primers were: 
18S2a-GAT​CCT​TCC​GCA​GGT​TCA​CC, 18S11b-GTC​AGA​GGT​TCG​AAG​GCG​36; HCO-TAA​ACT​TCA​GGG​
TGA​CCA​AAA​AAT​CA, LCO-GGT​CAA​CAA​ATC​ATA​AAG​ATA​TTG​G37, respectively. Conditions for PCR 
were 95 °C for 2 min, then 94 °C (20 s)/45 °C for CO1, 54 °C for 18S rRNA (40 s)/72 °C (45 s) for 35 cycles, then 
72 °C for 5 min. Aliquots were run on 0.8% agarose gels with EtBr and visualized by UV light. Positive samples 
were sequenced on both strands with respective PCR primers at the Genetics Services Facility (University of 
Otago, Dunedin).

DNA sequence and data analyses.  Sanger-sequenced DNA chromatograms were assembled and 
trimmed to remove primer sequence and low-quality base reads using 4 Peaks software53. BLASTn searches of 
assembled and cleaned sequences against the GenBank non-redundant nucleotide database were performed 
in 4 Peaks. New multi-sequence alignments were created within each phylum by combining new sequences 

Figure 3.   Midpoint-rooted Bayesian phylogeny across animal phyla based on 18S rRNA sequences. Blue 
highlighted taxa identify representative glacial specimens (designated by glacier followed by isolate number 
and GenBank accession) discovered in the current study. Related sequences with GenBank accession numbers 
appear in respective clades. Values along branches indicate node posterior probability (node support) and range 
from 0 to 1. Phylum and Class taxonomic designations are to the right.
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with existing sequences drawn from Genbank (Suppl. Info., Table S1) using MAFFT v7.45054 employing default 
parameters. Using these alignments pairwise genetic distances were calculated by the Kimura 2-parameter cor-
rection in MEGA655. MrBayes v3.2.7a56 was used to infer phylogenetic relationships among animal taxa by the 
General Time Reversible model of molecular evolution with invariant sites and a gamma distribution of rates 
(GTR + I + G). MrBayes was run on the CIPRES Science Gateway57 for 100 million Metropolis-coupled Markov 
Chain Monte Carlo (MCMCMC) generations with one cold and three heated chains, sampling every 10,000 
generations. The R package RWTY v1.0.158 was used to assess convergence of MCMCMC runs ensuring that 
the posterior sample was stationary and that the posterior sample of trees in independent runs recovered simi-
lar posterior probabilities for nodes. After evaluation, the first 50% of trees were removed as burn-in and the 
remaining sample was retained to infer a majority rule consensus tree. Haplotypes, as defined by unique CO1 
sequences within a population, were created for each phylum by HaplowebMaker59 using default parameters 
(delimiter, mask error, radius proportion), and TCS software60, a Java program to estimate gene genealogies 
including multifurcations and/or reticulations by statistical parsimony61.
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