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Abstract Dose and time intensifications of chemotherapy improved the outcome of
lymphoma therapy. However, recent study results show that too intense therapies can
result in inferior tumour control. We hypothesise that the immune system plays a key
role in controlling residual tumour cells after treatment. More intense therapies result
in a stronger depletion of immune cells allowing an early re-growth of the tumour.

We propose a differential equations model of the dynamics and interactions of
tumour and immune cells under chemotherapy. Major model features are an expo-
nential tumour growth, a modulation of the production of effector cells by the pres-
ence of the tumour (immunogenicity), and mutual destruction of tumour and immune
cells. Chemotherapy causes damage to both, immune and tumour cells. Growth rate,
chemosensitivity, immunogenicity, and initial size of the tumour are assumed to be
patient-specific, resulting in heterogeneity regarding therapy outcome. Maximum-
entropy distributions of these parameters were estimated on the basis of clinical sur-
vival data. The resulting model can explain the outcome of five different chemother-
apeutic regimens and corresponding hazard-ratios.

We conclude that our model explains observed paradox effects in lymphoma ther-
apy by the simple assumption of a relevant anti-tumour effect of the immune system.
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Heterogeneity of therapy outcomes can be explained by distributions of model pa-
rameters, which can be estimated on the basis of clinical survival data. We demon-
strate how the model can be used to make predictions regarding yet untested therapy
options.

Keywords Chemotherapy - Differential equation based model - Immune system -
Lymphoma - Survival analysis

1 Introduction
1.1 Medical and Biological Background

High-grade non-Hodgkin lymphoma (NHL) is a haematologic malignancy, which
is curable by multi-drug and multi-cycle cytotoxic chemotherapy in a substantial
proportion of cases (DeVita et al. 1975). The classical model of chemotherapy ac-
tion and tumour regrowth proposed by Skipper et al. (1970) provided a rationale for
chemotherapy intensifications either by increasing the dose of the drugs or the num-
ber of cycles, adding additional drugs or shortening the time between chemother-
apy cycles. Accordingly, a number of trials were performed which, however, were
only partially successful. For example, in the NHL-B2 trial (Pfreundschuh et al.
2004a), it has been shown that either dose- or time-intensification of the standard
multi-drug chemotherapy containing cyclophosphamide, doxorubicin, vincristine,
and prednisone (CHOP) improves the outcome. But double-intensification is inferior,
which cannot be explained away by increased toxic side-effects (see Fig. 1). Since
this phenomenon partially disproves the Skipper paradigm, we aim at extending this
model. We hypothesise that the immune system plays a crucial role in controlling
residual tumour cells and treatment effects on the immune system need to be consid-
ered.

There is some biological evidence supporting a role of the immune system: The
immune system responds to a growing tumour in a cell-mediated way involving pre-
dominantly cytotoxic T-lymphocytes and natural killer cells. It is well known that
cancer cells are attacked and killed by these immune cells. This is also the case
for lymphoma and especially NHL. For instance, patients with rheumatoid arthritis
treated with immune-suppressing methotrexate have a higher risk in developing lym-
phoma. After the withdrawal of methotrexate, the lymphoma vanishes in some cases
(Lim and Bertouch 1988; Mariette et al. 2002; Niitsu et al. 2010; Wang et al. 2010).
Lymphoma sometimes occurs in patients under immunosuppression, e.g. after bone
marrow transplantation. These lymphomas can regress spontaneously after recovery
of the immune system (Mohsin et al. 2007; Nalesnik et al. 1988). The so-called graft-
versus-lymphoma effect after allogeneic haematopoietic stem-cell transplantation is
also associated with the effect of immune cells on tumour cells, i.e. immune cells of
the donor attack tumour cells of the host (Bishop et al. 2008; Dodero et al. 2012).
Patients suffering from AIDS have a 165-fold increased risk to get NHL than persons
without AIDS (Coté et al. 1997). Finally, there are cases of spontaneous regression of
NHL without apparent reasons, which could be explained by immune control (Abe
et al. 2007; Cole 1974; Engel and Lee 2009; Iwatani et al. 2011; Watari et al. 2005).
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Fig. 1 Event-free survival of o |
older patients from NHL-B2. -
Standard CHOP-21
chemotherapy was compared
with dose-intensification
(adding of the additional drug
etoposide (CHOEP-21)),
time-intensification (shortening
the cycle duration (CHOP-14))
and double intensification
(CHOEP-14). While the first
two intensifications are superior,
the double intensification does
not result in further
improvements. n and e indicate g
the number of patients and the

number of events
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Massive doses of chemotherapy, too many cycles, or too few days between dose
applications result in a strong depletion of immune cells. In consequence, remaining
immune cells may transiently be unable to control residual tumour cells responsi-
ble for relapse in a critical period just after the end of therapy. This might explain
paradoxic effects of therapy intensifications observed in clinical trials. Therefore, we
propose a model of the dynamics of tumour, immune system, and their interactions
considering the effects of chemotherapy and patient heterogeneity.

The optimal choice of dose and time schedule in chemotherapy is an impor-
tant and intricate question. We are in particular interested in describing and under-
standing these phenomena by model simulations. For this purpose, it is necessary to
parametrise the model for humans. Outcome data is available as event-free survival
curves derived from clinical trials. Since these data only provide limited informa-
tion regarding the dynamics of the tumour and immune system, the model is kept as
simple as possible in order to reduce the number of free parameters.

In the present paper we explain our model assumptions, requirements and equa-
tions, derive the mathematical properties of the model and describe a technique for
parameterising the model on the basis of clinical survival data. We discuss the plau-
sibility of our model on parameters in detail. Finally, we demonstrate how the model
can be used to make predictions regarding yet untested therapy options.

1.2 Model Assumptions and Requirements

We propose an ordinary differential equations (ODE) model of the interaction of a
growing tumour, an anti-tumour immune response, and the effect of chemotherapy
on both the tumour and immune system. The system is based on a model proposed
by Kuznetsov et al. (1994). To keep our model simple, the immune system will be
represented by a single equation describing the overall status of the immune cell
population. This population is called effector cells in the following and fits best to
the CD8+ T-cell population. We construct a model of the dynamics of tumour and
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effector cell populations, i.e. we consider large numbers of cells rather than single-
cell interactions. The model is based on the following mechanistic assumptions and
requirements:

(1) The tumour grows uncontrolled in the absence of chemotherapy and immune
effector cells.

(2) Both effector cells and chemotherapy reduce the number of tumour cells.

(3) The production of tumour-specific effector cells is stimulated by the presence of
tumour cells (immunogenicity of the tumour).

(4) There is a loss of effector cells due to degradation, consumption by fighting the
tumour, and chemotherapy.

(5) Higher chemotherapy doses result in both higher tumour and effector cell deple-
tion.

The model will be linked to clinical survival data derived from randomised studies,
with the aim to predict and explain data of chemotherapy outcomes. More precisely,
we claim that the model fulfils the following requirements:

(1) heterogeneity of patient outcomes can be traced back to plausible heterogeneity
of certain model parameters,

(2) the estimated parameters and parameter distributions are biologically plausible,

(3) the time scale and variance of time to relapse is consistent with reported event-
free survival curves,

(4) extent of tumour at diagnosis (e.g. stage) emerges as prognostic factor,

(5) observed treatment difference of several clinical trials comparing CHOP and
CHOERP variants are quantitatively reproduced.

In particular, we are interested in exhibiting the possibility of “paradoxic” treat-
ment effects namely that a more intense chemotherapy has not superior, but even
inferior results. This may happen if chemotherapy is not able to completely eradi-
cate the tumour but the immune system is weakened to such an extent that it cannot
control residual tumour cells.

2 The ODE-Model for Immunogenic Lymphoma

As basic model of an immunogenic tumour we adapt a model of Kuznetsov et al.
(1994) originally developed for leukaemia in mice. For this purpose, we simplify
model equations, retrieve parameters valid for humans and take into account that
lymphoma grow in compact nodes. Some of the model parameters are determined
on the basis of biological reasoning. Others may vary between patients. The distri-
bution describing this heterogeneity will be estimated later using clinical survival
data (Sect. 3). For qualitative model analysis, we used the parameters proposed by
Kuznetsov et al. (1994) (Sect. 2.1).

Additionally, the effect of chemotherapy is added as transient depletion of cell
counts following a first order kinetic (i.e. a fixed percentage of cells survive) both for
tumour and for immune effector cells. Corresponding parameters require estimation,
also (Sect. 3).
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2.1 Kuznetsov’s Model for Immunogenic Tumours

The ODE-model introduced by Kuznetsov is based on a system of two ordinary dif-
ferential equations describing the kinetics of growth and regression of an immuno-
genic tumour and the interaction with tumour-specific effector cells of the immune
system. The model exhibits two major phenomena that were observed in experiments
with BCL|-mice: Firstly, tumour growth stimulates the production of new cytotoxic
T-lymphocytes; secondly immune cells destroy tumour cells. Depending on param-
eter settings, possible stable outcomes of the models are extinction or (saturated)
permanent growth of the tumour or persistence of a residual tumour controlled by the
immune system. This model meets all of our assumptions and requirements made in
Sect. 1.2 except for the incorporation of chemotherapy.

In the following, let T be the number of tumour cells and E be the number of
tumour-specific effector cells. The system of differential equations of the model in
Kuznetsov et al. (1994) reads

dE pET

— =0+ ———uET —JE,

dt n+T )
ar T -p8T) ET

—_— = — —V .

dt ¢

The parameters have the following biological interpretations:

o: tumour-independent production rate of effector cells,

p: tumour-induced rate of effector cell stimulation,

n: the number of tumour cells where the stimulation of effector cells is half-maximal
(smaller n means more rapid increase of effector cell stimulation),

w: tumour-induced rate of effector cell inactivation,

8: rate of tumour-independent effector cell inactivation,

o: maximal rate of tumour growth,

B: inverse of tumour carrying capacity,

v: rate of tumour cell elimination induced by effector cells.

Kuznetsov estimated the parameters of the model on the basis of experimental data
in mice (Kuznetsov et al. 1994, pp. 302-303, see Table 1). For this set of parameters,
the ODE system has four steady states:

(A T=0,E= % ~3.2-10° (tumour-free effector cell population).
(B) T~4.6-10%, E~1.6-10° (large tumour).

(C) T~8-10° E ~ 1.6 - 10° (“dormant” tumour).

(D) T~25-10%, E~8-10°.

The steady state (D) is a saddle node on a curve, the separatrix, which divides the
phase space into two domains: Initial conditions at one domain result in uncontrolled
tumour growth (stable steady state (B)) while at the second domain the tumour is
eventually controlled by the immune system (stable steady state (C)). Steady state
(A) is an unstable fixed point and expresses a tumour-free effector cell population.
The number of fixed points as well as their stability depend on the parameter setting.
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Modelling Lymphoma Therapy and Outcome 407

Kuznetsov’s model is designed to express the interactions of tumour cells and
immune cells in leukaemia for mice. We adapt this ODE-system to model tumour
growth and therapy in human diffuse large B-cell lymphoma (DLBCL).

2.2 ODE-Model for Immunogenic Diffuse Large B-Cell Lymphoma in Humans

In Kuznetsov’s model, the terms representing interaction of effector and tumour cells
are linear in both. This is not adequate for large cell lymphoma as the contact of
tumour and immune system is limited mainly to the tumour surface. Thus, the in-
teraction of effector cells and tumour is proportional to the tumour surface which
is proportional to T%/3 by the following considerations: We treat the tumour as a
sphere. Then the number of cells T is proportional to its volume: T o 3 where r
denotes the radius of the tumour. The tumour surface is proportional to 2 oc T2/3.
As B-cell-lymphomas grow in multiple tumour nodes, we set the exponent slightly
larger than % In the following, we denote it as ¢ and set ¢ = 0.75 (see also Table 1):

ExT¢ ¢=0.75.

Kuznetsov defines % =5-108 for the carrying capacity of the tumour. The human

body comprises a cell number of the order of 10'* (Alberts et al. 2002). Thus, we
estimate that Human B-cell lymphomas cannot exceed a size of 10'#, resulting in
B~ 10714, However, in order to estimate relapse times after therapy, the simulation
of our model is stopped if a tumour cell number of about 10'3 is exceeded. Since
saturation is not achieved at this cell count, we can assume 8 =~ 0 for the purpose of
treatment evaluation. This assumption implies an exponential tumour growth in the
absence of immune controls. It appears to be justified for tumours in humans at time
of diagnosis (see, e.g. Norton and Simon 1979; Mackillop 1990).

The modified differential equation (1) of interaction between effector and tumour
cells now reads

dE pET¢ ¢
E=a+ +TC—MET —0F,
n
(2
dT ¢
—=aT —VvET".
dt

According to Skipper et al. (1970), we assume that a specific percentage of tu-
mour is destroyed in each therapy cycle. We constructed biomathematical models of
haematopoiesis under chemotherapy in the past showing that the loss of effector cells
can also be explained by the destruction of a specific percentage of these cells in each
chemotherapy cycle (Scholz et al. 2005). Hence, we added a first order loss term in
our ODE model equations for the duration of one day after chemotherapy. The mag-
nitude of reduction can be controlled by the parameters k7 for tumour cells and kg
for effector cells:

dE _ L PET"  pre _sE_kpE1
dE _ _ g ,
7 e M eElcr
AT

— =aT —vET® —krT1cr,
a7 rllcr
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Lor e 1, for one day after chemotherapy application,
cr-= 0, else.

For the percentage of tumour cells pr respectively effector cells pg that were
killed one day after chemotherapy, one obtains

pr=1—e1, pE=1—e"

kE .

The quantities p7 and pg were used to illustrate the loss of cells due to single
chemotherapy applications. Since the system is dominated by the direct cell kills
shortly after chemotherapy application, the interaction between tumour and immune
system can be neglected for estimating pr and pg.

The right-hand side of model equations is Lipschitz continuous only for T
bounded away from zero. On the other hand, we are interested in solutions only for
T > 1. If T becomes smaller than 1, we consider the tumour as extinct. Application
of chemotherapy introduces jump discontinuities at discrete time points. But Lips-
chitz continuity is guaranteed at the time intervals between applications. This implies
that the overall solution is piecewise smooth.

2.2.1 The Principle of Dose Intensification

We need to determine the strength of dose intensified therapies in relation to a stan-
dard therapy. In order to keep the model simple, we make the following assumptions:
CHORP is set as standard therapy. The chemosensitivity k7 and effector toxicity kg of
any other therapy are determined by a non-linear dose-toxicity-relation:

k%ptenmﬁed CHOP _ k%HOP . DT,

3

kgltenmﬁed CHOP — kgHOP . D°E.

D denotes the relative total dose standardised to CHOP. The total dose of a
chemotherapy regimen is calculated as a weighted sum of the single drug doses
employed. In Hasenclever et al. (2001), we described a method to estimate relative
weights of cytotoxic agents based on a meta-regression analysis of chemotherapy
comparing randomised clinical trials. Using this approach, we obtain D = 1.34 for
CHOEP-therapy. The parameters er and eg describe the strength of toxicity increase
by intensified doses for tumour cells and effector cells respectively. Values of er and
er unequal to 1 express a non-linear dose-toxicity-curve as observed for haemato-
toxicity (Scholz et al. 2005).

2.3 Parameters for Human Diffuse Large B-Cell Lymphoma

We aim to parameterise our model for humans. Since direct measurements of param-
eters are hardly available, it is necessary to determine parameters using biological
knowledge and heuristic “up-scaling” of parameters identified for mice. This will
require some simplifications and assumptions. Only a few parameters were later de-
termined by fitting model predictions to clinical data.
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Assuming that the biological mechanisms of the immune system do not differ
substantially between mice and humans, we adopt the values from Kuznetsov et al.
(1994) for the tumour-induced inactivation rate of effector cells tmouse = Mhuman =
3.422-1079day ! cells~! and the effector-induced elimination rate of tumour cells
Vmouse = Vhuman = 1.101 - 1077 day_l cells™!. We assess the remaining parameters
either by reasonable transformation of the values from Kuznetsov et al. (1994) or by
taking values from other references.

The effector cell inactivation rate is reported as Smouse = 0.3743 day_l in
Kuznetsov et al. (1994) which corresponds to a half life of % = 16 days. The
half life of different human CD8+ cell populations is in the order of 100 days (Ladell
et al. 2008). Hence, we set Shuman = ‘e &~ 0.007 day ™.

The production of effector cells o is obtained by 0 = Eequhuman - § Where
Eequ human is the number of specific effector cells for humans in equilibrium, i.e.
absence of tumour. From Alanio et al. (2010) and Coulie et al. (2002), we get an es-
timate of Eequhuman &~ 2 - 107 cells. Hence, 0 = Eequ human - 8 = 2 - 10° - 0.007 =
1400 cells-day~!. We obtain similar values by another reasoning: The human
body volume is estimated as around 1000 times the murine volume, and thereby
Eequ human = Eequ mouse - 1000 cells. With a murine tumour-free equilibrium state of
Eequi mouse &~ 200 cells (Blattman et al. 2002; Kedzierska et al. 2006; Moon et al.
2007), we finally obtain Eequ human = 200 - 1000 =2 - 10° cells. Note that Eequ mouse
is markedly different from that originally assumed by Kuznetsov.

Interestingly, the ratio of the number of cells per clone to the number of clones
specific for one antigen is different for mice and humans. It is 10/20 for mice and
5/40000 for humans (Alanio et al. 2010; Blattman et al. 2002). Thus, mice clones
appear to have a lower specificity regarding antigens compared to humans. Hence, we
assume that the increase of effector cells due to stimulation by tumour cells is more
rapid in humans than in mice and that the saturation limit of effector cell turnover is
reached earlier, i.e. Nhuman = Pmouse * 0.01 =2 - 107 cells.

Some parameters are considered to be heterogeneous depending on the medical
conditions of the patient or the dose intensity of the therapy. We only assess ranges
for these parameters and fit distributions of them based on clinical data later (Sect. 3).
Parameters assumed to be heterogeneous are the tumour growth rate o, the immuno-
genicity p, the tumour size at diagnosis Tyiae and the effect of therapy on tumour
cells k7 as well as on effector cells k. Later, this heterogeneity reflects the patient
heterogeneity with respect to therapy outcome.

The tumour doubling time for malignant lymphoma is reported as around 29
days in Tubiana (1989). We fix an interval between 1.4 and 70 days for DL-
BCL corresponding to a tumour growth rate o between 0.01 and 0.5 day~!
(¢ = In(2)/(tumour doubling time in days)). The immunogenicity p is assumed as
0.1245 day’1 in Kuznetsov et al. (1994). We choose p € [0.01, 0.21] to cover a large
range of possible parameters. We choose an elimination rate pr between 0.01 and
0.9999 per dose application to describe the observed spectrum of highly sensitive tu-
mours as well as therapy-resistant tumours: pr € [0.01,0.9999] < k7 € [0.01, 9.21].
The toxicity of effector cells kg is assumed to be lower as the chemosensitivity k7,
so we assume pg € [0.01,0.80] < kg € [0.01, 1.6].

Furthermore, we assume heterogeneity of the tumour size at diagnosis Tgjag as we
want to model different stages of disease. We get an idea about the cell counts in an
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average large tumour by roughly estimating the number of tumour cells of a 200 ml
sized tumour. The diameter of lymphocytes is reported in Abbas and Lichtman (2003)
as about 10 um

tumour volume 200 ml 0.21

= = = 2 . 1011.
cell volume (10um)3 10121

number of tumour cells =

We thus suppose that 7Tgiag is in the order of 10! cells and varies between 100
and 10'3 cells. The same scale is valid for relapse sizes. However, relapse size can
be assumed to have smaller variances due to closer surveillance after therapy. For
simplicity, we set a fixed tumour size of 10'! cells for relapse.

Table 1 presents a summary of the values and meanings of all model parameters
and quantities.

2.4 Qualitative Behaviour of the Model

We analyse the qualitative behaviour of the system without chemotherapy for the
human parameters chosen in Table 1, i.e. we refer to parameters o to c. Parame-
ters Tyiag to kg refer to chemotherapy modelling only considered in Sect. 2.2. We
analyse the steady states of the model described by Eq. (2). The steady states are
determined by the nullclines dE/dt = 0,dT /dt = 0. Just like in model (1) there is
asteady stateat 7T =0, E = %, which can be described as the tumour-free equilib-
rium state of effector cells. This is also a special case as the first equation of (2) is
not differentiable in 7 = 0. It is not possible to examine the stability of this steady
state directly by determining the eigenvalues for the linearised system. However, we
can deduce stability asymptotically. A steady state is stable if the Jacobian matrix J
of the linearised system has a negative trace and a positive determinant. The sign of
disc(J) := trace(J)? — 4 - det(J) determines whether the point is a node or a spiral.
The Jacobian matrix for the linearised system (2) reads

T P -1
JE, T)= ("1 42) = g ~HTC =8 (e —WeETTT
’ a;  ax —nT¢ o —vcET¢!

For T — 0 and p > nu, it follows
ayg — =6, app — 00, ay; — 0, ay) — —oo.
With
trace(J) = a1 +axpp — —o0, and det(J) =ajiaxn — appax —> 0o,
we conclude that the steady state is stable and no saddle node. It holds that trace(J) =

—veET 4+ o(T¢™Y) and det(J) = SvcET ! — o(T¢~1) where o is the Landau
order symbol. This leads to

disc(J) = (—trace(_]))2 —4-det(J) = (WeE)2 T2 2 — o(T22) > 0.

@ Springer



Modelling Lymphoma Therapy and Outcome 411

It follows that this steady state is a stable node. Note that the tumour-free equilibrium
state is always stable here, while in Kuznetsov et al. (1994) the stability of this fixed
point depends on the parameters.

Furthermore, we obtain the nullcline of 7 from the second equation of the sys-
tem (2)

E=27!-c @
v
and therefore
log(E) =log(ee/v) + (1 —¢)log(T). )

All remaining fixed points are located on a straight line with slope 1 — ¢ on the log-
arithmic scale which intersects the log(E)-axis at log(c/v). An increase of « shifts
this straight line in log(E)-direction.

The nullcline of E is

oo o (T +1n)
uT% 4 (un+8—p)T¢+8n

6)

The curves of the nullclines are shown in Fig. 2.
Substituting (4) into the first equation of (2) yields the fixed-point equation for 7'

0=Co+CiTC + CoT 4+ C3THH 4 ¢, 719, (7
where
o
Co=on, Ci=o, C2=;(0—M7l—5),
o o
C3:__Ma C4=__6n'
V v

Substitution of Z = T'1 , for c =0.75 we obtain a polynomial of degree 7:
0= C3Z7 + C224 + C123 + C4Z + Cy.

By applying Descartes’ rule of signs (Anderson et al. 1998), we are able to make
statements regarding the number of positive roots. With

sgn(Co) =1, sgn(Cy) =1, sgn(Ca) = +£1,
sgn(Cs3) = —1, sgn(Cy) = —1,

it follows that there are three changes of signs among the coefficients. This implies the
existence of one or three positive roots. However, it is not possible to find an analytical
solution of the real roots for general parameter values tumour growth rate o« and
immunogenicity p. Steady states were determined numerically using the statistical
software package R (www.r-project.org, function “uniroot” in package “stats”). The
function is based on the algorithm given in Brent (1973).

To illustrate model behaviour, we chose o = 0.18 and p = 0.1245 according to
Kuznetsov et al. (1994). The qualitative behaviour of the model is the same for the
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Table 2 Numerical fix point analysis for o € [0.01, 0.5], p € [0.01, 0.21]. eig(J) denotes the eigenvalues
of the Jacobian matrix, sgn(eig(J)) denotes the sign of the real parts of the eigenvalues

FP min(E) max(E) min(7) max(T) eig(J) sgn(eig(J)) class

A 2.00-10° 2.00-10° 3.78-107% 2.37-10' real alternating  saddle node

B 1.66-10° 3.63-10% 1.11-10° 4.09-107 real & complex positive unstable node/focus
C 1.84-107 3.82-10% 1.62-10° 4.98-10'! real alternating  saddle node

range of possible values for « and p (not shown). Precise information about the num-
ber of distinct positive roots is given by Sturm’s method (Stoer 1989). There are four
sign changes of the Sturm sequence for Z = 0 and one sign change for Z — oo. It
follows that there are three distinct real roots in [0, 00).

We get three numerical solutions for the steady states of Eq. (7) witha =0.18, p =
0.1245:

A= (E,T)=(2-10°,2-107%), ®)
B = (Ez, T») = (3.74 - 107,2.74 - 10°), ©
C:=(E3, T3) = (1.14-10°,2.4 - 10'). (10)

The nature of the equilibria can be determined by linearisation of the system. The
steady states are characterised as follows:

A: saddle node, B: unstable node or focus, C: saddle node.

The system exhibits three steady states. Table 2 lists all steady states A, B, and C
and corresponding ranges of E and T. Linearisation shows that the first steady state
and the third steady state are always a saddle node and the second steady state is
either an unstable node or an unstable focus.

The phase diagram of ODE (2) with the parameter values from Table 1 is illus-
trated in Fig. 2. It can be divided into two domains.

Tumour overgrows immune system: An initially small tumour population stimu-
lates the immune system by increasing the effector cell population. By reaching a
size large enough to weaken the immune system, the tumour depletes the effector
cell population to O.

Tumour eventually becomes extinct: There are two distinct dynamics here: Either
a small tumour population becomes extinct immediately. Or, after an initial growth
of both tumour cells and effector cells, the tumour is eliminated by the effector cells.

We can study the characteristics of the system by examining the nullclines (Egs. (4)
and (6)) in Fig. 2:

— T-nullcline (green line in Fig. 2): the tumour size increases for effector cell popula-
tions lying on the left of this straight line and decreases for effector cell populations
lying on the right side of it.

— E-nullcline (blue curve in Fig. 2): the effector cell population increases in between
the two blue curves. It decreases above the upper curve and below the lower curve.
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10"k @ steady state B

nulicline of tumour cells T
— nulicline of effector cells E
10"+ trajectory with initial values E, = 2 10°, T, = 10* g

tumour cells T

100 V| ! i L !
10* 10° 10° 10" 10
effector cells E

9 10

10

Fig. 2 Phase diagram on the logarithmic scale for tumour growth rate o = 0.18, immunogenicity
p = 0.1245 with nullclines and steady states. Steady state A is not shown. Also not shown is the tu-
mour-free fixed point at 7 =0 and E =0/5§ =2 10, Except for the latter one, all steady states are
unstable

Figure 3 illustrates the influence of the tumour growth rate @ and the immuno-
genicity p on the system behaviour. Decreasing o respectively increasing p enlarges
the domain where the tumour eventually is eliminated. Additionally the quantity of
immunogenicity p determines the steepness of the effector cell curve: a higher p
implies a steeper peak. Note that similar phase diagrams can be obtained by either in-
creasing tumour growth velocity « or decreasing immunogenicity p. In the first case,
the immune system has not enough time to react against the fast growing tumour,
while in the second case the immune system is insufficiently stimulated.

3 Linking the Model to Clinical Data

In this section, we describe how the model is linked to clinical data in order to esti-
mate unknown parameters of the model (see Sect. 2.3). The biological heterogeneity
of patient populations is described by a joint distribution of five relevant model pa-
rameters: tumour growth velocity «, immunogenicity of the tumour p, size of the
tumour 7giag, and chemosensitivity of tumour k7 as well as effector cells kg. We
aim to estimate this multi-dimensional distribution from survival data of randomised
chemotherapy trials.

For this purpose, the ODE system is solved on a multi-dimensional hyper-cube
parameter grid. Each grid point represents a constellation of the model parameters
that were assumed to be heterogeneous in a patient population. For each grid point
we determine whether the tumour growth reaches diagnosis volume and whether the
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Fig.3 We study dependence of qualitative model behaviour on settings of the parameters tumour growth
rate o and immunogenicity p. Settings used by Kuznetsov et al. served as a basis (¢ = 0.18, p = 0.1245).
Phase diagrams for larger or smaller values are presented. Large tumour growth rate « as well as small
immunogenicity p result in smaller areas of attraction for tumour elimination. Large p results in a steeper
peak of E

tumour would be cured by the chemotherapy given. We also calculate the time of
relapse if applicable.

Distributions on the parameter grid will be chosen by the maximum entropy con-
dition with a few moment constraints on means or variances (Jaynes 1957). The con-
straints comprise expectation and variance of immunogenicity p, tumour volume at
diagnosis Tyiag and chemosensitivity k7 as well as expectation of tumour growth rate
o (see Table 4 below). A specific distribution of parameters implies a survival curve.
An evolutionary algorithm is then used to fit the model prediction to data.

In summary, we parameterised the model by the following steps:

(1) Simulation of all therapies on the discrete grid of parameter combinations.

(2) Specification of moment constrains of distributions on the grid.

(3) Determination of Maximum-Entropy probability distribution on the parameter
grid fulfilling the moment constrains.

(4) Determination of time-to-progression curves for specified therapies given the
probability distribution on the parameter grid.

(5) Optimisation of moment constrains to minimise differences between study data
and survival curves predicted by the model.
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Table 3 Clinical study overview

Study Name Age Study arms and 3-year EFS rates
NHL-B2 61-75 6xCHOP-21 6xCHOP-14 6xCHOEP-21 6xCHOEP-14
41.3 54.2 45.5 46.0
RICOVER-60 61-80 6xCHOP-14 8xCHOP-14
472 53.0

3.1 DLBCL Chemotherapy Studies Used for Model Calibration

Table 3 lists the studies used for model calibration with corresponding regimes, event-
free survival rates (EFS), and some prognostic factors of the patient populations. EFS
was defined as the time from the beginning of therapy to either disease progression,
relapse, or death. The long-term standard chemotherapy for diffuse large B-cell lym-
phoma was 6xCHOP-21 which consists of six times cyclophosphamide, doxorubicin,
vincristine, and prednisone, given every 3 weeks (Fisher et al. 1993). In the NHL-
B2 study (Pfreundschuh et al. 2004a,b), the effectiveness of two-weekly CHOP and
intensified CHOP with etoposide relative to standard CHOP was investigated. The
patient population comprised 689 patients aging between 61 and 75. It is observed in
NHL-B?2 that both, addition of etoposide and time intensification results in a better
outcome, but that these factors are not additive. Moreover, CHOEP-14 is worse than
CHOP-14, an effect considered as paradoxic here (see Fig. 1).

The RICOVER-60 trial was designed to compare six versus eight cycles of bi-
weekly CHOP-14 with or without Rituximab (Pfreundschuh et al. 2008). 1,222 pa-
tients between 61 and 80 years were randomised. Since the effect of Rituximab is
not modelled here, we only consider the six and eight cycles CHOP-14 EFS-curves
of the treatment arms without Rituximab. Eight cycles of CHOP-14 result in a better
outcome than six cycles of CHOP-14 (see Fig. 4).

3.2 Adjusting Different Studies with Similar Patients

Patient characteristics are rather similar for RICOVER-60 and NHL-B2 after re-
stricting the age range to 61-75 years. Thus, we assume the same parameter set for
these two different studies. However, the EFS curves of six cycles of CHOP-14 dif-
fer slightly between the studies, probably due to differences in recruitment practice.
To avoid estimation of a completely new parameter set for RICOVER-60, we ad-
just for this (random) study effect by introducing a parameter [hr that adapts the
survival rates of NHL-B2 to RICOVER-60 assuming proportional hazard. This pa-
rameter needs to be fitted, also.

3.3 Modelling Patient-, Therapy-, and Study-Specific Heterogeneity of Parameters

Some parameters are considered as patient-, therapy-, or study-specific (see Table 4),
defined as follows:

Patient-specific: These parameters differ between patients. A population distribu-
tion is assumed for these kind of parameters.
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Fig. 4 Event-free survival in
months for patients between 61
and 75 years from
RICOVER-60. n and e indicate
the number of patients and the
number of events
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Therapy-specific: The parameter value depends on the applied chemotherapeutic
drugs and drug doses.

Study-specific: The parameter value varies for different studies with similar patient
populations.

Tumour growth rate «, immunogenicity p and tumour volume at diagnosis
Tyiag are patient-specific while chemosensitivity k7 is patient- and therapy-specific.
Chemotherapy toxicity to immune cells kg is considered to be therapy-specific, but
not patient-specific. Finally, the correction factor of hazard rates /hr between studies
of the same population is study-specific. Plausible ranges of parameters were deter-
mined in Sect. 2.3. The standard deviation for tumour size at diagnose Tgiyg calcu-
lates to SD(Tgjag) = 0.042 - E(Tyiag). This is based on a variation coefficient of 0.042
retrieved from log tumour volume data of the EuroNet-PHL-C1 study (personal com-
munication D. Hasenclever).

3.3.1 Simulation of Chemotherapy

We simulate the application of chemotherapy for an arbitrary parameter combination
in two steps: At first we determine if these parameters are admissible, i.e. we check
whether a tumour grows to the diagnosable size of Tyae for a specific parameter
combination (o, o, Tgiag) Or whether it is suppressed by the immune system before
it is clinically apparent. The parameter distribution to be estimated is restricted to
this admissible set. We start with an initial condition of 7 = 10* and E = 0/ =
2 - 10, which describes the immune equilibrium state. The exact choice of T (0)
is unimportant for model behaviour as long as one starts with a sufficiently small
tumour, i.e. as long as the loss of effector cells due to presence of tumour represented
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Table 4 Overview of fitted parameters and distributions for NHL-B2 and RICOVER-60. The hetero-
geneity of the parameters is either on a patient-level, therapy-level, or study-level (see text). The standard
deviation for tumour growth rate « distribution is not explicitly specified but is a result of the maximum
entropy condition

Fitted parameter ~ Heterogeneity Distribution parameters ~ Fitted  5/95 %-Percentile Remark
distribution prescribed (constraints value
for max. ent.)

Tumour growth  patient specific expectation 0.118 [0.039,0.216] fitted

rate o standard deviation 0.054 result of
max.
entr.
cond.

Immunogenicity — patient specific expectation 0.078 [0.022,0.145] fitted

p standard deviation 0.038 fitted

log10(tumour patient specific expectation 11.31 [10.5,12] fitted

volume Tiiag) standard deviation 0.47 est. from
data

Chemosensitivity —patient & therapy expectation 2.36  [1.86,3.0] fitted

kr specific standard deviation 0.31 fitted

Effector tox kg therapy specific  single parameter 0.48 fitted

dose exponent therapy specific ~ single parameter 0.80 fitted

tum. cells er

Dose exponent therapy specific  single parameter 2.44 fitted

eff. cells eg

Prop. hazard study specific single parameter 0.164 fitted

factor lhr

by parameter u can be neglected compared to the natural degradation of effector
cells represented by parameter §. In case of a growing tumour, we determine the
effector cell population Egjg if T = Tyjag is reached for the first time. In the second
step, we simulate the therapy by starting at the initial condition (Tgiag, Ediag) for each
parameter combination (&, o, Tdiag, k7, k). Therapy regimes vary in the number of
cycles (6 or 8), time between dose application (e.g. 2 or 3 weeks), and chemotherapy
dose expressed by the dose-dependence of k7 and kg (see Eq. (3)). For each therapy,
we determine if and when relapse occurs. Thus, we obtain therapy results in form of
time to event data.

3.4 Parametrisation of the Model

3.4.1 Discretisation of the Parameter Space

We discretise the ranges of the parameters by introducing grid points. Therapy simu-
lation is performed on the grid for each parameter combination (e, o, Tdiag, k1, kE).

Altogether we consider S1(a) - 35(p) - 7(Tdiag) - 41(k7) - 31(kg) grid points in the
five-dimensional space. For instance, we used the seven grid points {1010+/2 ; =
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0,...,6} as possible tumour sizes at diagnose Tgi,g. Density of the grid is chosen
in dependence on the corresponding parameter sensitivity of the fitness function. If
small changes of a parameter results in large differences of the fitness function, the
grid was chosen finer to achieve a better approximation.

We implemented the simulation algorithm in MATLAB. The exact simulation set-
tings are available on request.

3.4.2 Calculating the Maximum Entropy Probability Distribution

A four-dimensional distribution is assumed for the patient-specific tumour growth
rate o, the immunogenicity p, the tumour size at diagnose Tyj,z and the chemosensi-
tivity k7. Thus, we assign a probability distribution to the four-dimensional simula-
tion grid since kg only depends on therapy.

We use the maximum entropy principle (Jaynes 1957; Kullback 1959) to deter-
mine probability distributions on the four-dimensional parameter grid. We specify
certain moments (means, variances, see Table 4) and determine the unique probabil-
ity distribution, which fulfils these constraints and has maximum entropy. Given our
parameter ranges and data, the maximum entropy condition implies unimodal dis-
tributions on the parameter grid. This appears to be biologically plausible because
sub-groups of patients with largely different biology are not described so far. We
used the package minxent of R (Kapur and Kesavan 1992) to solve this variational
problem.

3.4.3 Computation of the Fitness Value

The fitness value measures the agreement of model and data as a function of the cor-
responding parameter distribution. To determine the fitness value, we use the time
to event data and the probability of each parameter combination for any therapy to
compute event-free survival rates. We obtain an EFS curve for each therapy by linear
interpolation of the EFS-rates. We compare it to observed Kaplan—Meier estimates by
computing the Euclidean distance for time points with a distance of 25 days between
day 200 and 725. Time points earlier than 6 months after start of therapy were not
considered due to reporting bias and toxic side effects during therapy. Time points
greater than 25 months after start of therapy are influenced by late relapses not cov-
ered by our model. The fitness value is the sum of all of the above mentioned distances
of the therapies considered.

3.4.4 Optimisation by Evolutionary Principle

An evolutionary algorithm is used to fit the model. The idea of evolutionary algo-
rithms is based on the generation of new parameter sets by random variation of an
existing parameter set with adapted step size and selection of a set with better fitness.
Here, we estimate a parameter combination, which consists of moment constraints
such as expectations and variances of the model parameters; see Table 4. A (1 4 5)-
ES (Evolutionary Strategy) is used which means that 5 mutant parameter combina-
tions are generated, which compete with their parent. For details about the concept
of evolutionary algorithm, see e.g. Ashlock (2006), Schwefel (1984). The algorithm
was implemented in R.
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Fig. 5 Parameter setting where 10'® . . . .
moderate intensification of 6-CHOP-21: k = 2.312, k_ = 0.47612.

CHOP-21 (CHOP-14) leads to 6-CHOP-14: k = 2.312, k_ = 0.47612.

cure, but stronger intensification 10" ——— 6-CHOEP-14: k, = 2.8711, k_ = 0.9611. 1

results in relapse (CHOEP-14).
The black trajectory describes
tumour growth prior to therapy.
Coloured trajectories
correspond to different therapy
regimens
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4 Results
4.1 Qualitative and Quantitative Model Results

We estimated the parameters of Table 4 with the method presented in Sect. 3. We
assumed the same parameter set for the patients of NHL-B2 and RICOVER-60 except
for the log hazard factor used to adjust the differing survival curves.

The model gives a possible explanation of therapy effects observed in NHL-B2 as
illustrated in Fig. 5. The course of 6 cycles CHOP-14/21 and CHOEP-14 is shown
in the phase space of effector and tumour cells for a typical parameter combination.
Here, standard 6 cycles CHOP-21 is insufficient to eliminate the tumour. Time reduc-
tion between dose application pushes the course below the separatrix and results in
complete elimination of tumour cells. Both time and dose intensification results in an
even smaller number of tumour and effector cells. However, it is above the separatrix,
and thus finally results in relapse.

Marginal distributions of the parameters are shown in Fig. 6. The asymmetric
shape of the distribution is a result of restricting parameters to admissible parameter
sets.

Parameters can be read from Table 5: The expected tumour growth rate o was
estimated to be 0.118, which corresponds to a potential tumour doubling time of
5.88 days. The standard deviation is 0.054. 90 % of values are between 0.039 (dou-
bling time 17.6 days) and 0.216 (doubling time 3.2 days). The immunogenicity p has
an expected value of 0.078. The expected tumour load Tgiag is 11.31 on log10-scale.
The expected chemosensitivity k7 is 2.36, which implies a tumour kill of 90.6 % per
shot. 90 % of values are between 1.86 (84.3 % kill per shot) and 3.00 (95.0 % per
shot). The effector toxicity kg is 0.48 resulting in a kill of 37.9 % effector cells per
shot. These values indicate that the grid is chosen adequately as the values are not
located on the edge of the grid. The toxicity exponent for intensified therapies (see
Eq. (3)) is 0.80 for tumour cells and 2.44 for effector cells leading to an expected
cell kill of 95.0 %, respectively, and 62.2 % for intensified Etoposide therapies. Note
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Fig. 6 Marginal distribution densities of tumour growth rate « (fop left), immunogenicity p (top right),
tumour volume Tgiag (bottom left), and chemosensitivity k- (bottom right)

that it is much higher for effector cells than for tumour cells. Finally, the proportional
hazard factor lhr to adjust the RICOVER-60 survival data to NHL-B2 is 0.164.

Fitted survival curves are shown in Fig. 7. We also displayed the log hazard ratios
of all combinations of treatment arms for each study against the log hazard ratios
of the model-simulated survival curves (Fig. 8). We observed a good agreement of
model and data within the time-frame of validity of the model. The model explains all
therapy contrasts in the sense that the prediction is always in the confidence interval of
the log hazard ratio of the data. In particular, the model reproduces paradoxic therapy
effects: The outcome of CHOEP-14 is worse than that of CHOP-14 in NHL-B2.

It is common practice to distinguish between advanced and low states of the tu-
mour. Figure 9 shows the distributions of tumour size of cured and relapsed patients
populations. We observe as expected that relapsing tumours have higher average ini-
tial sizes than cured tumours (Fig. 9).

The sensitivity of each parameter is examined in Table 5. Parameters are sorted
in descending order in dependence on sensitivity. We observe that parameters repre-
senting distribution means are more sensitive than parameters representing variances.
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Table 5 We calculated univariate confidence intervals for parameter estimates by allowing 10 % deterio-

ration of fitness value

Parameter

Interval

In percent

EXP(log10(tumour volume Tgiag))
EXP(immunogenicity p)
EXP(tumour growth o)
EXP(chemosensitivity k7)
effector toxicity kg

CHOEP exponent eff. tox eg
SD(immunogenicity p)
SD(log10(tumour volume) Tgiag)
CHOEP exponent chemosens et
SD(chemosensitivity k7)

prop. hazard factor [hr

(Tdiag — 0.028; Tgiag +0.023]
[p=5-107% p+6-107%]
[—9-107% a+7-1074]

[kp — 0.022; k7 + 0.025]

kg —2-107% kg + 0.013]

[eg —0.141; e +0.114]

[sd(p) — 0.003; sd(p) + 0.003]
[sd(Tgiag) — 0.041; sd(Tgiag) + 0.030]
[er — 0.061; e + 0.078]

[sd(kz) — 0.069; sd(k7) + 0.048]
[lhr — 0.048; [hr + 0.040]

[=0.3 %; +0.2 %]
[—0.6 %; +0.8 %]
[—=0.8 %; 4+0.7 %]
[—0.9 %; +1.1 %]
[—0.05 %; +2.7 %]
[—5.8 %; +4.7 %]
[—6.9 %; +7.1 %]
[—8.8 %; +6.2 %]
[=7.6 %; +9.8 %]
[—22.5 %; +15.6 %]
[—29.1 %; +24.1 %]
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Fig.7 Comparison of model and data for NHL-B2 (left) and RICOVER-60 (right). Model is fitted within
the range between day 200 and day 725

4.2 Model Predictions

There is ongoing research regarding required number of cycles and the effect of
time intervals between them. By our model, we aim at contributing to this discus-
sion by systematically simulating 2, 4, 6, 8, and 10 cycles of CHOP with varying
cycle duration (7 to 28 days) and predicting corresponding estimates of 2-years sur-
vival (Fig. 10). It turns out that two cycles are clearly insufficient and four cycles
are sub-optimal, also. The gain achieved by more than six cycles is relatively small.
Compared to CHOP-14, we predict only limited improvement of therapy by further
time intensifications. Two-year survival clearly drops if therapy intervals are greater
than 21 days.
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Fig. 8 Pairwise log hazard
ratios of the model vs.
95 %-confidence intervals of log o
hazard ratios of the data 2
2
2 g :
— Qo 2
o I 2
g g 3
g ) 53 x
Be g R
79 B £33
Lo 23 ) R
S} 57 = e
® Tz & i -
= 23 : = °
£ 23 I
S 53 S o
B
o T 1-
5 T ~—
S
o ]
o ]
1 i
5
It
e
? 7 @
1Y
2
:
=
T T T T
-0.2 0.0 0.2 0.4
simulated Ihrs
Fig. 9 Tumour load (Tyjag) o

distributions of relapsed and
cured tumours. A sample of
N = 10000 was drawn from the o
fitted parameter distribution.
Corresponding outcomes of six

cycles CHOP-21 therapy were ® 4 cured tumours
determined. A normal
distribution was fitted to the

2

initial tumour loads of cured and g S relapsed tumours
relapsed patients, respectively ©

<

3

o

8

o |

o

10.0 10.5 11.0 11.5 12.0 125 13.0
log10(tumour volume Tjag)

Although there is uncertainty in model parameters, we observed that 2-year sur-
vival rates are robust against changing model parameters. This is illustrated by the
therapies 6xXCHOP-14, 6xCHOP-12 and 4xCHOP-14 simulated for upper and lower
confidence limits of parameter predictions (Table 6).
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Table 6 Effect of parameter uncertainty on model predictions, we used upper and lower confidence
bounds of parameters as presented in Table 5 and calculated maximal deviations from predicted 2-year-
EFS

Study comparison 2-years-EFS Min(2-years-EFS) Max(2-years-EFS)
4-CHOP-14 0.53 0.52 0.54
6-CHOP-12 0.63 0.62 0.64
6-CHOP-14 0.61 0.60 0.62

5 Discussion

Models of tumour growth and chemotherapy induced tumour cell kill are typically
incompatible with the notion that more intense therapy can be less effective. The
NHL-B trial provides such an example. Therefore, we investigated the idea that the
immune system is important to control remaining tumour cells. Paradoxical treatment
outcomes can occur when intensive chemotherapy shuts down the immune system in
the critical time window at the end of therapy.

Figure 5 illustrates that the simple ODE-system described here features paradox-
ical treatment effects. In addition, we linked our ODE-model to clinical data by
describing latent patient heterogeneity by a distribution of specific model parame-
ters. This distribution can be estimated from clinical trial data using an innovative
method. Our model can be made quantitatively consistent with progression-free sur-
vival curves (Fig. 7) and observed treatment effects (Fig. 8) from several trials. The
respective parameter estimates appear plausible.

Our approach relies on a number of simplifications and has some limitations,
which we discuss in the following:
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5.1 Alternative Models of Tumour and Immune Response

The model of tumour and immune system interaction in mice proposed by Kuznetsov
et al. (1994) served as a backbone of our modelling. We use a modified and simplified
version of it as a minimal model to address tumour growth and immune response. Nu-
merous more complicated models were proposed. Gatach (2003) modified the model
of Kuznetsov et al. (1994) by replacing the Michaelis—Menten form of the tumour in-
duced immune stimulation term with a Lotka—Volterra term. An effect of time delay
of the immune response was also introduced. Recently, the model was extended by
Letellier et al. (2013). de Vladar and Gonzélez (2004) assume a Gompertzian growth
of the tumour population. The stimulation and loss of the immune system is mod-
elled in a different way. However, model behaviour is similar to Kuznetsov’s model.
Sotolongo-Costa et al. (2003) proposed a model of periodical immunotherapy with
cytokines on the basis of the model of Kuznetsov.

de Pillis et al. proposed much more detailed models of immune response differ-
entiating between Natural Killer cells (NK cells), CD8+ cytotoxic T-cells and other
lymphocytes (de Pillis et al. 2005, 2006; de Pillis and Radunskaya 2000). This results
in ODE models with several equations modelling the dynamics of tumour cells, NK
cells, CD8+T cells, other lymphocytic cells, immunotherapy drug concentration and
chemotherapy drug concentration. Another detailed model of immune response con-
sidering the interactions of cancer cells, NK-cells, lymphokine-activated killer cells,
cytotoxic T-cells, helper T-cells and B-cells was presented by Szymariska (2003).
Kirschner and Panetta (1998) modelled the dynamics between tumours cells, effector
cells, and the cytokine interleukin-2 (IL-2), which serves as a modulator of the im-
mune stimulus. Arciero et al. (2004) extended this model by considering the tumour
escape effect induced by TGF-g and corresponding siRNA treatment.

Page and Uhr (2005) proposed different models of tumour dormancy by explicitly
modelling the dormant cell population. They neglected the effect of antigen-specific
T-cells, but modelled the immune response by an equation describing the effect of
antibodies in murine BCL1 lymphoma. A complex model with 10 ODEs and 3 ad-
ditional equations describing several players of the immune response is given by De
Boer and Hogeweg (1986). This model also covers all phenomena from uncontrolled
tumour growth to tumour regression due to immune response.

So far, none of the models are designed to explain data of patients under
chemotherapy. Dynamics of tumour load are not assessable for humans. Therefore,
patient survival data are the only source for parameterising models for the human
situation. Since these data are much less informative, we intentionally chose the sim-
plistic version of Kuznetsov et al. (1994) as a basis of our modelling. This model is
characterised by a single surrogate effect of the immune system, which best fits to the
CD8+ cytotoxic T-cell population (Kuznetsov et al. 1994).

5.2 Modifications of the Kuznetsov Model
Instead of a logistic growth, we assumed an exponential growth term of the tumour
since simulations of our model were usually stopped if a certain tumour amount is

exceeded (relapse). At this volume, the growth is far below saturation, and thus, our
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simplification is reasonable (Norton and Simon 1979). We assumed a “fractal” tu-
mour dimension by applying an exponent c to the tumour load for terms describing
the interaction of tumour and immune system. This is based on the observation that
lymphoma grow in several lesions rather than in one compact node. The constant c is
in between 2/3 for single node tumours and 1 for disseminated disease. For simplic-
ity, we assumed ¢ = 0.75.

The modified model has a different attractor landscape as compared to Kuznetsov
et al. (1994) for relevant parameter settings. It turns out that there are only two attrac-
tors, namely the tumour grows to infinity while the immune system becomes extinct
or the tumour is eliminated and the immune system reaches its steady state. The
latter one has the drawback that small amounts of tumour cells are automatically
eliminated under specific parameter constellations. Thus, the model does not explain
the development of a tumour in an early phase. Our ODE representation is more suit-
able for describing the effects at larger cell numbers neglecting stochastic effects of
small cell numbers. The latter one would require a completely different approach,
i.e. by constructing agent based models. For the same reason, with our model we
cannot explain late relapses (after more than 2 years), which are probably caused by
awaking dormant tumour cells not considered here. The original Kuznetsov model
comprise parameter constellations for which there is a stable steady state of small tu-
mour amounts controlled by a stimulated immune system. A possibility to cover this
behaviour in our model would be to increase the exponent ¢ to 1 for small tumours in

Eq. (2).
5.3 Incorporating the Effects of Chemotherapy

Chemotherapy is introduced by a transient first-order loss of both tumour and immune
cells for the duration of one day after chemotherapy application. The dependence of
corresponding toxicity parameters on the drug or drug concentration was modelled
by a simple power function of the effective dose of a drug introduced in Hasenclever
et al. (2001). Alternatively, one has to model each single drug of a polychemotherapy
system, which would increase the number of free parameters. Blood cell toxicity is
also modelled by first-order loss and a power law dependence on drug concentration.
Both assumptions proved adequate in models of haematopoiesis under chemotherapy
(Scholz et al. 2005, 2006). We also considered alternative approaches to model the
effect of chemotherapy on the immune system by assuming reductions of the pro-
duction rate of effector cells o or the rate of effector cell stimulation by the tumour
p. However, in our hands, these scenarios do not result in paradoxic therapy effects
(results not shown).

5.4 Identification of Model Parameters

Since Kuznetsov’s model was parameterised for the murine system, it was necessary
to re-parameterise the model for patients. We retrieved parameter estimates or param-
eter ranges from the literature or set parameters to biologically or clinically plausible
values.

To model heterogeneity of patients, we assumed that the parameters tumour
growth velocity o, immunogenicity of tumour p, chemosensitivity of tumour k7, and
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volume at diagnosis Tgiae can vary within a certain parameter range. We estimated the
distribution of these patient specific parameters by fitting the predictions of our model
to clinical survival data. We developed an innovative algorithm to solve this task: At
first, we simulated a discrete grid of parameter values. Then we determined the max-
imum entropy distribution parameterised by certain moment constrains on the grid,
which induces a survival curve. The agreement of survival curve and clinical data is
optimised by evolutionary strategies. Kirkby et al. (2007) used a stochastic approach
to fit their tumour model on clinical survival data. This is performed by drawing pa-
rameter values from assumed distribution families, comparing corresponding model
results with clinical survival data and optimising the agreement with respect to the pa-
rameters of the distribution family. This approach was not feasible for our model in
view of the computational burden induced by solving the differential equation system
multiple times.

Only a few parameters with large impact on survival curves were determined by
fitting model predictions to clinical data, namely expectation and variance of im-
munogenicity o, chemosensitivity of tumour k7, tumour size at diagnosis Tgjag, €X-
pectation of tumour growth velocity «, and the fixed value of chemosensitivity of
immune cells kg. In consequence, there is still considerable uncertainty regarding
model parameters. We extensively analysed the sensitivity of model parameters when
establishing the model. It turned out that baseline production of immune cells (o) and
Michaelis—Menten term (77) have a relatively small impact on model behaviour since
they are only relevant for small tumour sizes. Similarly, for large tumour sizes, the
second term of the first model equation is linear in E so that the fourth term (con-
taining parameter §) simply implies a shift of the distribution of immunogenicity (p).
Rather than the single values, the quotient of the mutual destruction rates w and v
is relevant. It has a larger impact on the quantitative model behaviour but the same
results can be achieved by alternative distributions of the other model parameters (re-
sults not shown). Better data are required to remove the uncertainty of model param-
eters in the future. For example, time series data of different immune cell fractions
and surrogate markers of tumour load would be helpful.

In general, we considered both means and standard deviations as moment con-
strains of our multidimensional parameter distribution. Our sensitivity analysis re-
vealed that our mean estimates are substantially better determined than those of the
standard deviations. We assumed no (prior) correlation between parameters. How-
ever, due to the restriction to admissible parameter sets (compare Sect. 3.3), large
values of immunogenicity p imply large values of tumour growth velocity « (see
Fig. 3). Thus, we decided to drop a moment constraint regarding variance of tumour
growth velocity «. As a biological consequence of these considerations, we predict
that quickly proliferating tumours are better detected by the immune system which
can be explained by a generally higher metabolic activity of tumour cells resulting in
higher production rates of cytokines.

5.5 Parameter Estimates are Biologically Plausible

The mean tumour doubling time was estimated as about 6 days with 90 % of values
between 3 and 18 days. It is well known that aggressive non-Hodgkin’s lymphoma
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are highly proliferating with a tumour doubling time between 24 hours and about
30 days in dependence on the histologic subtype (Frolund et al. 2011; Lang et al.
1980; Tubiana 1989). The standard deviation of tumour growth o 0.054 is rather
large referred to our grid. This is also plausible as the patient collective of NHL-B2 is
heterogeneous (lactate dehydrogenase levels (LDH) normal and greater than normal,
complete range of the International Prognostic Index is covered). The tumour stim-
ulation rate of effector cells p = 0.078 is difficult to interpret as it comprises many
aspects of the immune system. However, it is in the same order of magnitude com-
pared to Kuznetsov’s estimate of 0.1245 for mice. The expected tumour volume at
diagnose Tgisg is 101131 This fits well to our understanding because in this magni-
tude the turnover of effector cells is also high, i.e. the tumour becomes symptomatic.

5.6 Limitations in the Fit to Clinical Outcomes

Within the time-frame used for model fitting, parameter estimates resulted in a good
agreement of model and survival data of the two randomised clinical trials NHL-B2
and RICOVER-60 comprising five different chemotherapy regimens (Pfreundschuh
et al. 2004b, 2008). Predicted hazard ratios between therapy options were in agree-
ment with the observed data, i.e. the paradoxic therapy effects are explained by the
model. On the other hand, we have to acknowledge that our model is invalid dur-
ing therapy possibly due to reporting bias of progresses and toxic side effects under
therapy. Additionally, our model cannot explain late relapses, which probably would
require introducing elements of stochasticity to model dynamics of residual disease.
Note that our equations are only valid for larger cell populations.

5.7 Model Prediction and Outlook

To demonstrate practical use of our model, we performed simulations of modified
CHOP regimens by varying therapy intervals and number of cycles. We predicted for
example that six cycles of CHOP-14 are necessary for reasonable cure rates. There
is only limited potential to improve therapy by further time-intensifications and in-
creasing number of cycles. Results are robust against the uncertainty of our parameter
estimates.

Many more predictions are possible, especially with respect to stratified therapies
in dependence on patient characteristics. We aim to elaborate this issue and possible
clinical consequences in the near future. However, translation of model insights into
clinical practice is challenging since there are no well established correlates of model
parameters with clinical data. One can only speculate at the moment whether for
example LDH is a surrogate marker of tumour growth « and that stage of disease
is a surrogate marker of tumour size Tgiag. We also have to acknowledge that we do
not have a surrogate marker for immunogenicity since detailed immune statuses of
patients are hardly available. A model extension to account for immunotherapy based
on the CD20+ antibody Rituximab is also a work in progress.
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