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a b s t r a c t 

The tephra layers known with eruption ages play an impor- 

tant role in an investigation of tsunami history and archae- 

ology in addition to volcanic history in Hokkaido, Japan. We 

investigated the event and tephra layers of the Late Holocene 

in the Pacific coast of western Hokkaido, where the stratig- 

raphy of the Late Holocene has not been clarified. Surveys in 

coastal peatlands, mostly undisturbed deposits, have allowed 

for the discovery of thin tephra layers. The newly discovered 

tephra layers at the unexplored site were used to describe fa- 

cies, observation under a polarization microscope, refractive 

index measurement of volcanic glasses, and chemical anal- 

ysis, and correlated with the reported widespread tephras. 

We conducted wide-area field surveys and succeeded in re- 

vealing a wider distribution of tephra layers than previously 

known. The distribution of volcanic ash in the coastal area 

will contribute to the investigations of future volcanic and 

coastal hazards. 
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Subject Stratigraphy; Tephrochronology 

Specific subject area Volcanology; Geochemistry 

Type of data Tables and figures 

How data were acquired Geological fieldwork (sampling procedure) 

JEOL JXA 8900R (Electron Probe Micro Analyzer: EPMA). 

JEOL JSM-T330A, Link ISIS300 (Energy Dispersive X-ray Spectrometer: 

EDS) 

RIMS 20 0 0 (Refractive Index Measuring System) 

Data format Raw 

Parameters for data collection The refractive index of volcanic glass was measured by dehydrating the 

samples so that the variation due to hydration was reduced. The 

chemical analysis of volcanic glass by EPMA and EDS was carried out by 

adjusting the current value and beam diameter to prevent the ionization 

of light elements. 

Description of data collection Layer thickness and stratigraphy were described from sampling core and 

coastal outcrops. The core samples were collected at several nearby sites 

and checked for variability. 

Data source location Samples were analyzed at the University of Tokyo, Kashiwa, Japan and 

Hokkaido University of Education, Sapporo, Japan. Sampling locations 

are listed in Fig. 1 and Tables 2. 

Data accessibility All the data sets are available with this article. 

alue of the Data 

• Tephra distribution data are commonly used as chronological markers in Hokkaido. 

• These data can contribute to reconstruct the magnitude and intensity of past explosive erup-

tion in Hokkaido, Japan, and to model possible future eruptive scenarios for hazard assess-

ment. 

• The data can be used to constrain better the chronology of past coastal hazards (i.e., tsunami,

storm) to assist archeological investigations for temporal evolution. 

. Data Description 

Fig. 1 shows the study area and selected stratigraphic columns. Each volcanic ash layer was

omprehensively correlated by comparing the layer facies (stratigraphic sequence, grain size, and

oloration), mineral compositions, refractive index, and chemical composition of volcanic glass

ith those reported in Hokkaido [1–3] . The tephras widely distributed along the Pacific coast of

estern Hokkaido (Hidaka, Iburi, Uchiura bay, and Kameda Penisula) correspond to Komagatake

2 tephra (Ko-c2: AD1694), Tarumae b tephra (Ta-b: AD1667), Usu b tephra (Us-b: AD1663),

omagatake d tephra (Ko-d: AD1640), Baegdusan Tomakomai tephra (B-Tm: AD946), and Taru-

ae c2 tephra (Ta-c2: approximately BC400). The Us-b tephra is subdivided into units. The dis-

ribution is different between the Plinian eruption deposits (unit B) and the phreatomagmatic

eposits (units A, C, E, F, and G: [ 1 , 4 ]). Fig. 2 shows photographs of representative cores and

utcrops in each region. Table 1 shows the chemical composition of the confirmed tephra, and

ig. 3 shows the percentage of constituent minerals and the histogram of the refractive index.

he scatter plots of K 2 O and TiO 2 , which are useful for the identification of volcanic ash [ 1–3 ,

 ], are presented as one of the premises on which we correlated unknown tephras of known

ge. 

We describe the correlation of each tephra for each region where the combination of tephra

ayers is similar. In Kameda Peninsula and western Uchiura bay region, volcanic ash layers of

omagatake and B-Tm were identified. B-Tm was easily determined from the unique chemical

omposition (high potassium) and fine and good sorting grain at all sites. Komagatake tephras

Ko-d and Ko-c2) at Sites 2 and 3, which were difficult to identify from the stratigraphy and

ineral compositions, were identified by the scattered plots of SiO 2 , K 2 O, and CaO [8] . From

estern Iburi to eastern Uchiura Bay, we identified B-Tm, Us-b: fine-grained phreatomagmatic
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Fig. 1. Upper: The topographic map (ASTER GDEM Version 3 [12] ) of the survey site and the location of the stratigraphic 

columns. The inset shows the overall map of the study area and the location of Mt. Baegdusan. The solid black lines 

show the isopach of Baegdusan Tomakomai tephra (B-Tm). Lower: The typical example of stratigraphic columns of each 

region. The stratigraphic column of Sites 6 and 17 are based on Nakanishi and Okamura [6] . The stratigraphic column of 

Site 39 is based on Nakanishi et al. [7] . 
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Fig. 2. Photographs of cores and the outcrop at Sites 2, 17, 34, and 39. 
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P  
nits, Ko-c2 as coarse-grain and mafic minerals are widely observed. Ko-d tephra is occasionally

ound in patches below Us-b. Tokui [2] and Nakamura et al. [9] described in detail the stratigra-

hy of the eastern part of Iburi to the northern part of Hidaka; thus, we do not report here the

etails of the stratigraphy of this area. In the southern part of Hidaka, we identified Ta-c2, B-Tm,

s-b, Ta-b, and Ko-c2. Ta-c2 was found below B-Tm as dark orange and fine-grain volcanic ash.

eat layers rarely separate the three tephras deposited in the 17th century are rarely separated

ecause of gaps of only a few years to a few decades. However, they can be distinguished based

n the combination since unit B of Us-b is mainly pumice and Ta-b is fine-grain in contrast. The

dentification supported by the K 2 O-TiO 2 diagrams is plotted in different areas due to the differ-

nt source volcanoes of each tephra. Fig. 4 and Table 2 show the layer thickness distribution of

ephras at each study site. 

. Experimental Design, Materials and Methods 

.1. Field survey 

A total of 431 samples from cores and outcrops were obtained at the 42 sites along the

acific coast by using a handy Geoslicer and a Peat Sampler (diameter of 7 cm) with lengths
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Table 1 

Major element analyses of volcaniclastic glass. The result for each oxide is shown as the mean and deviation of normalized weight% and, N is a number of analyzed glass shards. 

Normalized average (%) Standard deviation 
Sample 

ID Site 

Tephra 

name SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O 

Raw 

total N SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O 

Raw 

total 

Analysis 

equip- 

ment 

AT AT 78.65 0.12 11.90 1.26 0.03 0.13 1.10 3.47 3.33 93.0 10 0.07 0.00 0.03 0.03 0.00 0.00 0.01 0.06 0.02 0.66 EPMA 

a 2 Ko-d 75.86 0.41 12.55 2.47 0.09 0.55 2.63 3.69 1.75 97.7 11 0.52 0.01 0.25 0.12 0.01 0.08 0.18 0.05 0.04 0.14 EPMA 

b 3 Ko-c2 77.19 0.44 12.03 2.39 0.10 0.49 2.33 3.23 1.80 95.3 10 0.15 0.01 0.07 0.04 0.01 0.01 0.03 0.21 0.04 0.06 EPMA 

c 3 B-Tm 70.06 0.34 13.49 4.69 0.13 0.10 0.90 5.07 5.22 96.5 12 0.98 0.02 0.52 0.11 0.01 0.01 0.11 0.22 0.15 0.24 EPMA 

d 12 Ko-d 76.34 0.43 12.34 2.43 0.10 0.48 2.48 3.65 1.75 97.2 10 0.15 0.01 0.13 0.05 0.01 0.02 0.06 0.06 0.02 0.06 EPMA 

e 24 Ko-d 76.41 0.43 12.25 2.48 0.09 0.52 2.43 3.69 1.71 97.3 11 0.05 0.01 0.03 0.02 0.01 0.01 0.03 0.07 0.03 0.03 EPMA 

f 31 Us-b (B) 77.35 0.13 12.89 2.00 0.14 0.25 1.81 4.27 1.15 95.5 10 0.48 0.00 0.17 0.05 0.01 0.01 0.03 0.14 0.02 0.67 EPMA 

g 31 B-Tm 73.03 0.28 11.88 4.07 0.10 0.09 0.72 5.39 4.43 95.8 10 0.84 0.03 0.66 0.27 0.01 0.04 0.19 0.21 0.38 1.08 EPMA 

h 32 Ko-c2 76.82 0.41 12.16 2.30 0.09 0.45 2.30 3.63 1.84 97.1 10 0.20 0.01 0.10 0.04 0.00 0.01 0.09 0.04 0.03 0.06 EPMA 

i 32 Ta-b 77.29 0.25 12.36 1.95 0.10 0.34 1.94 3.82 1.95 94.0 10 0.65 0.04 0.09 0.08 0.02 0.03 0.11 0.11 0.16 0.68 EPMA 

j 32 Us-b (B) 77.17 0.12 12.96 1.92 0.16 0.25 1.85 4.41 1.17 94.9 10 0.71 0.00 0.12 0.01 0.01 0.00 0.02 0.10 0.01 0.93 EPMA 

k 34 Ko-c2 76.44 0.44 12.41 2.48 0.10 0.49 2.50 3.35 1.79 97.0 10 0.54 0.01 0.26 0.08 0.01 0.02 0.17 0.17 0.04 0.14 EPMA 

l 34 Ko-f? 75.05 0.54 12.56 2.83 0.11 0.62 2.63 3.91 1.75 97.4 11 0.09 0.01 0.05 0.03 0.01 0.01 0.04 0.07 0.02 0.04 EPMA 

m 34 Ko-g? 74.32 0.55 13.03 2.95 0.11 0.66 3.03 3.69 1.67 97.5 11 0.27 0.01 0.22 0.06 0.00 0.01 0.12 0.05 0.04 0.09 EPMA 

n 42 Us-b 75.31 0.15 14.43 1.67 0.12 0.26 2.54 4.50 1.02 95.8 10 0.72 0.04 0.52 0.16 0.01 0.06 0.24 0.13 0.06 0.21 EPMA 

o 42 B-Tm 66.41 0.37 12.67 4.40 0.11 0.17 1.01 5.04 4.75 95.0 10 1.15 0.07 0.64 0.17 0.01 0.10 0.24 0.27 0.16 1.20 EPMA 

p 42 Ta-c2 76.37 0.30 12.50 2.02 0.06 0.36 2.45 3.73 2.21 95.6 10 0.83 0.02 0.31 0.06 0.01 0.02 0.22 0.08 0.06 0.71 EPMA 

q 2 B-Tm 71.77 0.36 14.13 4.15 0.06 0.10 1.12 3.15 5.07 100.2 10 1.42 0.05 0.72 0.42 0.04 0.04 0.36 0.32 0.41 0.42 EDS 

r 9 Ko-d 75.81 0.50 13.47 2.38 0.15 0.49 2.47 2.74 2.00 100.4 9 0.14 0.04 0.16 0.08 0.06 0.03 0.10 0.13 0.03 0.08 EDS 

s 17 Ko-d 75.98 0.55 12.52 2.16 0.10 0.55 2.10 3.13 2.04 98.5 10 0.38 0.05 0.10 0.10 0.05 0.06 0.07 0.19 0.08 0.12 EDS 

t 32 Ta-c2 77.10 0.39 12.61 1.90 0.08 0.29 1.85 3.41 2.37 93.5 9 0.53 0.03 0.23 0.13 0.04 0.04 0.14 0.12 0.05 0.15 EDS 

u 33 B-Tm 70.00 0.32 14.44 3.68 0.11 0.08 0.60 5.46 5.31 95.5 11 1.30 0.10 0.70 0.42 0.03 0.09 0.24 0.39 0.28 0.40 EDS 

v 39 Us-b (B) 77.55 0.18 13.26 1.88 0.12 0.34 1.57 3.83 1.27 96.1 10 1.30 0.04 0.73 0.09 0.04 0.02 0.19 0.44 0.09 0.33 EDS 

w 39 Us-b (B) 76.03 0.19 13.75 1.86 0.18 0.26 1.76 4.29 1.13 99.2 10 0.29 0.04 0.06 0.07 0.04 0.03 0.04 0.15 0.03 0.08 EDS 

x 39 B-Tm 71.75 0.31 13.34 4.13 0.07 0.01 0.69 4.95 4.76 98.7 10 1.49 0.05 0.78 0.54 0.05 0.02 0.36 0.18 0.18 0.41 EDS 

y 39 B-Tm 69.49 0.33 14.87 3.70 −0.03 0.07 0.63 5.90 5.04 96.7 10 1.14 0.05 0.78 0.55 0.03 0.02 0.13 0.66 0.22 0.40 EDS 

z 39 Ta-c2 77.14 0.37 12.50 1.95 0.05 0.38 1.95 3.19 2.48 93.1 10 0.22 0.05 0.22 0.12 0.03 0.04 0.10 0.11 0.08 0.11 EDS 

α 39 Ta-c2 76.49 0.36 13.08 1.63 0.08 0.35 2.35 3.52 2.13 95.5 11 0.59 0.03 0.34 0.13 0.05 0.05 0.23 0.14 0.14 0.19 EDS 
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c  
f either 0.6 m or 2.5 m. Photographs were taken of each core sample, and sedimentary facies

stratigraphic sequence, thickness, and presence of pumice) were described. 

.2. Sample preparation 

To separate volcanic glass and rock-forming minerals from the clay, each sample was vibrated

n an ultrasonic cleaning device and the clay components were removed with water elutriation.

amples were dried at 70 °C. The dried samples were divided into 0.063–0.125 phi and 0.125–

.25 phi using a sieve. Refractive index measurements and microscopic observations were con-

ucted for samples of 0.063–0.125 phi and 0.125–0.25 phi, respectively. The samples measuring

he glass refractive index were dehydrated by annealing at 400 °C for 12 h in an electric furnace

9] . 

.3. Measurement of refractive index and mineral composition 

At least 200 grains were counted under a polarization microscope to examine the mineral

omposition. The refractive index of volcanic glass shards was measured with a Refractive Index
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Table 2 

Latitude and longitude of the sampling site and thickness of the tephra layers. Bold letters indicate that pumice are the 

main component. 

Tephra layer thickness (cm) Number 

of checked 

cores Site Place names Latitude Longitude Ko-c2 Ta-b Us-b B (F) Ko-d B-Tm Ta-c2 

1 Shiriuchi 41.63015 140.42718 2–3 3 

2 Hinohama 41.78051 141.10 0 08 3–4 1–4 10 

3 Todohokke 41.83841 141.13871 4–8 2–4 6 

4 Washimoki 42.12321 140.52544 90 1 

5 Nodaoi 42.21278 140.39756 15 2 

6 Yakumo 42.28111 140.26867 12–15 10 

7 Hanaura 42.30084 140.27149 8–17 2 15 

8 Yamazaki 42.31947 140.27407 3–6 2 5 

9 Nakanosawa 42.48374 140.35288 3–5 patch–1 17 

10 Oshamanbe 42.53681 140.39934 1–3 1 4 

11 Kyoritsu 42.5546 140.4197 2 1 1 

12 Arutori 42.50259 140.79817 (16–50) patch 2 5 

13 Nakamareppu 42.4368 140.88948 (1) 1 

14 Mareppu 42.41995 140.90502 (2–12) 3 

15 Kogane 42.39475 140.91097 (3–4) patch 1 5 

16 Ishikawa 42.38394 140.91697 (1) 1 

17 Wakayama 42.38551 141.07627 2–8 (1–4) patch 1 102 

18 Tomiura 42.44016 141.1509 1–2 4 (6) patch 1 11 

19 Kojohama 42.46612 141.22053 7–25 5 

20 Takeura 42.48162 141.24172 23–52 10 

21 Hagino 42.52094 141.29922 74–126 7 

22 Ishiyama 42.54912 141.34 4 45 104–122 11 

23 Shadai 42.55974 141.37612 2–3 5 30–71 1 33 

24 Tarumai 42.59322 141.45847 1–2 3–6 18–28 patch 7 

25 Atsuma 42.61677 141.7819 68 3 1 6–8 1 

26 Taura 42.58127 141.90511 20 13 3 10 1 

27 Shiomi 42.55456 141.93927 2–4 7–21 38–55 patch–1 3–4 9 

28 Tomikawa 42.49727 142.01894 4 15–51 7 

29 Monbetsu 42.48384 142.04563 patch 2–7 20–35 patch–3 9 

30 Toyosato 42.47317 142.11813 10–17 patch–2 3 

31 Kabari 42.44806 142.19574 16–34 patch–2 patch–3 21 

32 Urawa 42.30936 142.43231 2 patch–2 4–8 patch–3 patch 20 

33 Higashisizunai 42.30414 142.4541 patch 4 patch–2 patch–3 7 

34 Harutachi 42.26573 142.51294 1 patch–1 3 1–2 2 7 

35 Kerimai W 42.22778 142.61414 patch 1–4 1–2 4 

36 Kerimai E 42.21743 142.64155 1–2 1 4 4 

37 Hamahagifushi 42.20869 142.66531 1 2 1 

38 Efue 42.19227 142.72283 patch–1 patch 1–2 2–3 4 

39 Utoma 42.13652 142.85985 patch–2 patch–4 patch–4 30 

40 Nishisamani 42.13736 142.91001 1 2 4 

41 Tomabetsu 41.98969 143.24526 1–4 patch–3 7 

42 Syoya 41.99826 143.25279 patch 2–5 patch 17 

M  

w

2

 

M  

e  

s  

b  

i  

t  

c  

g  
easuring System (RIMS 20 0 0: Kyoto Fission Track Co., Ltd.). This method is possible to measure

ith an overall accuracy of ±2 × 10 −4 and a precision of ±1 × 10 −4 [10] . 

.4. Chemical analysis of volcanic glass 

Chemical analysis of volcanic glass was performed using a JEOL JXA 8900R Electron Probe

icro Analyzer (EPMA) and a JEOL JSM-T330A (Link ISIS300) Energy Dispersive X-ray Spectrom-

ter (EDS). EPMA operating conditions were 15 kV acceleration voltage, 7 nA beam current, beam

canned area of 10 μm, and counting time was 10–60 s at the peak position and 5–30 s at the

ackground-position [11] . EDS operating conditions were 15 kV acceleration voltage, 1.1 nA spec-

men current, and the beam scanned an area of 3 μm. All analysis results were corrected using

he oxide ZAF method. The AT tephra from Aira Caldera was used as an in-house standard to

heck any difference between the reference values [5] . The mean values of approximately 10

rain with a detection analysis values more than 90% by weight, and it was normalized to 100%.
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