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Visual blur is a common problem that causes difficulty in
pattern recognition for normally sighted people under
degraded viewing conditions (e.g., near the acuity limit,
when defocused, or in fog) and also for people with
impaired vision. For reliable identification, the spatial
frequency content of an object needs to extend up to or
exceed a minimum value in units of cycles per object,
referred to as the critical spatial frequency. In this study,
we investigated the critical spatial frequency for
alphabet and Chinese characters, and examined the
effect of pattern complexity. The stimuli were divided
into seven categories based on their perimetric
complexity, including the lowercase and uppercase
alphabet letters, and five groups of Chinese characters.
We found that the critical spatial frequency significantly
increased with complexity, from 1.01 cycles per
character for the simplest group to 2.00 cycles per
character for the most complex group of Chinese
characters. A second goal of the study was to test a
space-bandwidth invariance hypothesis that would
represent a tradeoff between the critical spatial
frequency and the number of adjacent patterns that can
be recognized at one time. We tested this hypothesis by
comparing the critical spatial frequencies in cycles per
character from the current study and visual-span sizes in
number of characters (measured by Wang, He, & Legge,
2014) for sets of characters with different complexities.
For the character size (1.28) we used in the study, we
found an invariant product of approximately 10 cycles,
which may represent a capacity limitation on visual
pattern recognition.

Introduction

Character recognition is a prerequisite for reading
and is typically a fast and accurate visual process. It
becomes difficult under degraded visual conditions,
such as reading small symbols at a long distance or with
optical defocus, and is especially difficult in patients
with severe low vision. The spatial-frequency properties
of letter recognition have been widely explored.
Previous studies show that the visual system utilizes a
spatial frequency of 1–3 cycles per letter (CPL) for
reliable identification (Alexander, Xie, & Derlacki,
1994; Chung, Legge, & Tjan, 2002; Ginsburg, 1978;
Gold, Bennett, & Sekuler, 1999; Legge, Pelli, Rubin, &
Schleske, 1985; Parish & Sperling, 1991; Solomon &
Pelli, 1994), with the optimal spatial frequency de-
pending somewhat on the angular size of letters (Majaj,
Pelli, Kurshan, & Palomares, 2002). Kwon and Legge
(2011) reported that accurate letter identification is
possible with letters containing spatial frequencies only
up to 0.9 CPL. These authors applied low pass filters to
images of letters and faces and obtained psychometric
functions showing recognition performance (percent
correct) as a function of the cutoff frequency of the
filters. They referred to the minimal spatial-frequency
requirement for pattern recognition (with 80% accura-
cy) as the critical spatial frequency.

Chinese characters differ from alphabetic characters
in having a wider range of pattern complexities.
Studying Chinese character recognition may elucidate
the connection between pattern recognition and pattern
complexity. The goal of our study was to determine the
critical-frequency requirements for Chinese characters,
and to examine the effect of pattern complexity.
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Critical cutoff frequencies can be expressed in both
retinal spatial frequency (cycles per degree) or image-
based spatial-frequency (cycles per character; CPC). In
this paper, we will usually refer to spatial frequencies
(including cutoff frequencies) in cycles per character.
An exception will be our consideration of the effects of
the contrast sensitivity function (CSF) in the Discus-
sion.

Previous studies have shown that the acuity limit for
recognizing Chinese characters with more strokes
requires larger size (Cai, Chi, & You, 2001; Chi, Cai, &
You, 2003; Huang & Hsu, 2005). Chinese characters
with more strokes also have higher contrast thresholds
(Yen & Liu, 1972) and longer response times (Yu &
Cao, 1992). However, reports on the spatial frequency
properties of Chinese character recognition are scarce.
Chen, Yeh, and Lin (2001) adopted the critical-band–
masking paradigm used by Solomon and Pelli (1994) to
investigate the best central frequencies for Chinese
characters. They tested Chinese characters with 3 to 21
strokes, and reported an average spatial frequency of
approximately 8 CPC. The study however, did not take
the variation of complexities into account, and did not
investigate the minimal spatial-frequency requirements
for Chinese character recognition.

In this study, we explored the critical spatial-
frequency requirements for alphabet and Chinese
characters, and examined the effect of complexity on
these requirements. As the more complex characters
have broader spatial-frequency spectra than the simple
characters, they may require higher spatial frequency
for character recognition. We divided alphabet char-
acters and Chinese characters into categories, based on
ranges of complexity values, using the perimetric
complexity metric (Arnoult & Attneave, 1956; Pelli,
Burns, Farell, & Moore-Page, 2006). The perimetric
complexity of a symbol is defined as its perimeter
squared divided by its ‘‘ink’’ area. We showed
previously (Wang et al., 2014) that the perimetric
complexity metric has high correlation with other
complexity metrics, such as the number of strokes, the
stroke frequency (Majaj et al., 2002; Zhang, Zhang,
Xue, Liu, & Yu, 2007) and the skeleton method
(Bernard & Chung, 2011). For each complexity
category, we measured recognition performance for
sets of 26 characters as a function of the cutoff
frequency of low-pass filters.

A second goal of this study was to test an empirical
hypothesis of a tradeoff between the critical frequency
for character recognition and the visual span for
character recognition; we term this the space-band-
width invariance hypothesis. The visual span is the
number of characters that can be recognized without
moving the eyes. We have examined the size of the
visual span for alphabet letters and Chinese characters,
and discovered that the visual span size decreases as

complexity increases (Wang et al., 2014). If critical
frequencies are found to increase with complexity, it is
possible that the product of critical frequency and
visual-span size may be constant, representing a form
of capacity limitation on visual pattern recognition. In
the context of this paper, we refer to the bandwidth of
the low-pass filter as the range from zero to the critical
frequency. For simplicity, we used the term bandwidth
instead of the critical frequency in our hypothesis.

The study of character recognition has important
practical implications for reading performance. It is
known that a critical frequency is required for
uncompromised reading speed in alphabet reading
(Kwon & Legge, 2012). Therefore, studying the spatial-
frequency requirements for Chinese characters may be
relevant to Chinese reading under low-resolution
conditions including low vision. It may also have
practical applications in designing reading material for
difficult viewing conditions.

Methods

Subjects

Six college students (three men, three women) with
normal or corrected-to-normal vision participated in
the experiments. They were all native Chinese speakers,
originally educated in the simplified Chinese script
system, and all had more than 10 years education in
English. The subjects signed an Internal Review Board
(IRB) approved consent form before the experiments.

Stimulus sets

The stimulus characters were lowercase (LL) and
uppercase (UL) alphabet letters in the Arial font, and
simplified Chinese characters in the Heiti font in which
all the strokes have the same width.

The 700 most frequently used Chinese characters
(State Language Work Committee, 1992) were divided
into five nonoverlapping groups based on their
perimetric complexity values (Pelli et al., 2006).
Twenty-six characters whose complexity values were
close to the mean of the group were selected to form
five sets of symbols (C1–C5). Characters with very high
or low similarity were excluded from the stimulus sets.
A measure of similarity for the characters in each set
was computed using a normalized Euclidean distance
method (Wang et al., 2014).

To determine whether subjects’ familiarity with the
characters affected their performance, we included a
group of Chinese characters with lower usage frequency
in text but comparable in complexity with characters in
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the group C3. We did this by identifying the next 700
most frequent Chinese characters and divided them
into five complexity groups as well, based on the same
complexity metric. Twenty-six characters were selected
to comprise a comparison group (C30), which had
comparable complexity with C3 but lower frequency
and presumably lower familiarity. The pattern com-
plexity in the 1,400 most frequently used characters
covers most of the complexity range across all
simplified Chinese characters. Remaining characters
with even higher complexities are rarely used in
ordinary reading. Five representative characters from
each stimulus set are shown in Figure 1. Statistics of the
perimetric complexity values for each stimulus set are
given in Table 1.

Low-pass filtering

A black character was generated on a gray back-
ground and stored as a grayscale image. The size of the
image was 250 3 250 pixels, and the size of the
characters (height of Chinese characters and x-height of
alphabet letters) subtended 1.28 visual angle at a
viewing distance of 40 cm. The image was blurred
through a third order Butterworth low-pass filter (f)
given by the following equation:

f ¼ 1

1þ r
c

� �2n ð1Þ

where r is the radius of the components in the
frequency domain, c is the radius of the cutoff
frequency, and n is the order of the filter. Figure 2A
demonstrates the response function of the low-pass
filter in the spatial-frequency domain.

To test the recognition accuracy as a function of
blurring levels, six cutoff frequencies were selected for
each stimulus set while character size remained
constant. A demonstration of the characters with and
without low-pass filtering is shown in Figure 2. The sets
of filter cutoffs used for the eight complexity groups
were chosen based on recognition performance in pilot
runs. We ensured that the cutoffs were selected so that
recognition accuracy spanned a wide range, and the
psychometric function exhibited a clear transition from
low to high performance accuracy. The cutoffs used for
each stimulus set are summarized in Table 2.

Image display

The stimuli were displayed on a 19 in. CRT monitor
(refresh rate: 75 Hz, resolution: 1280 3 960). The
luminance of the blurred images on the screen was
mapped onto 256 gray levels. The background of the
image was set to the gray level 127, corresponding to a
mean luminance of 40 cd/m2. Luminance of the display
monitor was made linear using an 8-bit lookup table in
conjunction with photometric readings from a Konica
Minolta CS-100 Chroma Meter (Konica Minolta
Sensing Americas, Inc., Ramsey, NJ). The image
luminance values were mapped onto the values stored
in the lookup table for the display. The character image
was displayed at the center of the screen. The stimulus
symbol was created and controlled using MATLAB
(MathWorks, Natick, MA) and Psychophysics Tool-
box extensions (Brainard, 1997; Pelli, 1997; Kleiner et
al., 2007), running on a Mac Pro computer (Apple,
Cupertino, CA).

Procedure

Each subject participated in three test sessions on
three days. One session consisted of eight blocks: seven
blocks with varied complexity levels (LL, UL, C1–C5),

Figure 1. Representative characters from the eight stimulus sets

(LL, UL, C1–C5, and C30). The complexity gradually increases in

the first seven rows (from LL to C5). The bottom row (C30)

shows a group with comparable complexity to C3, but lower

familiarity.

Group LL UL C1 C2 C3 C4 C5 C30

Complexity mean (SD) 48.6 (11.7) 66.5 (17.9) 98.0 (6.3) 136.9 (2.3) 176.6 (4.3) 216.2 (5.0) 280.1 (33.7) 182.0 (5.2)

Table 1. Perimetric complexity measures for the stimulus sets. Note: LL, lowercase letter; UL, uppercase letter; C1–C5, five sets of
Chinese characters from the simplest to the most complex; C30, Chinese character group of comparable complexity with C3 but less
familiarity.
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and one block with complexity equivalent to C3 but
lower character familiarity (C30). In each block, there
were 25 trials for each of six cutoffs forming a total of
150 trials. The stimulus symbol was randomly selected
from the 26-character set, and the order of the cutoff
frequencies presented was shuffled. The resulting
psychometric functions for a given complexity category
were therefore based on 450 trials (six cutoff frequen-
cies and 75 trials per cutoff frequency). The orders of
the blocks were counterbalanced between sessions and
subjects.

The subject was shown the 26 unfiltered symbols on
a hard copy page before the start of a block and urged
to restrict responses to the stimulus set. During test
trials, the subject was directed to fixate on a cross at the

center of the screen. In each trial, a character was
presented for 200 ms at fixation. After that, the display
became uniform at the background level of 40 cd/m2,
and the subject was asked to report the character. The
experimenter recorded the responses, and the subject
clicked the mouse to start the next trial. A reference
page was available, showing the 26 symbols in the
current category, if the subject had trouble recalling the
characters in the set. Subjects rarely responded with
characters outside of the stimulus category (,1% of
trials.) The 26 unfiltered characters were tested at the
end of every block in order to evaluate the baseline
performance for recognition. Performance on the
unfiltered stimuli was at the ceiling value of 100%.

A chin rest was used during the test to reduce head
movements and to maintain the viewing distance.
Practice trials, including all the stimulus sets and the
filter cutoffs, were provided at the beginning of the test.

Data analysis

The character recognition accuracy was plotted
against the cutoff frequencies for each stimulus set.
Cumulative Gaussian functions (Wichmann & Hill,
2001) were used to fit the plots with the least-square
criterion. The critical spatial frequency was estimated
from the psychometric function, and defined as the
cutoff frequency yielding 80% correct responses. It is
noted that the guessing level of the psychometric
functions is 1/26 ¼ 3.85% for all the groups, because
there are 26 stimuli in each complexity set. Figure 3

Figure 2. (A) The response function of the third-order Butterworth filter in the spatial frequency domain. The arrow indicates a cutoff

frequency of 1.5 cycles per character (CPC) for a 18 letter size. The filter’s cutoff is defined as the frequency at half amplitude. (B)

Demonstration of low-pass filtered Chinese characters from the five complexity categories. The right column shows the unfiltered

character.

Group f1 f2 f3 f4 f5 f6

LL 0.78 1.02 1.27 1.49 1.80 2.16

UL 0.78 1.02 1.27 1.49 1.80 2.16

C1 0.78 1.02 1.27 1.49 1.80 2.16

C2 0.92 1.18 1.42 1.63 1.94 2.34

C3/C3 0 1.08 1.32 1.57 1.79 2.1 2.52

C4 1.24 1.44 1.73 1.94 2.28 2.66

C5 1.30 1.54 1.87 2.09 2.46 2.82

Table 2. Butterworth filter cutoff frequencies (in cycles per
character; CPC) used for recognition tests with the seven
complexity categories. Note: LL, lowercase letter; UL, uppercase
letter; C1–C5, five sets of Chinese characters from the simplest
to the most complex; C30, Chinese character group of
comparable complexity with C3 but less familiarity.

Journal of Vision (2018) 18(1):1, 1–13 Wang & Legge 4



demonstrates the data plot and the critical spatial-
frequency estimation for stimulus set C3 in one
subject. The fitting parameters (mean ¼ alpha,
variance ¼ beta) of the underlying Gaussian function
represent the x-axis location and the steepness of the
psychometric function, respectively. One-way repeat-
ed measures ANOVA tests were performed to
investigate the effect of pattern complexity on the
critical cutoff frequency, and fitting parameters alpha
and beta, respectively.

Results

Critical spatial frequencies for alphabet and
Chinese characters

Figure 4 shows psychometric functions (percent
correct vs. filter cutoff frequency) for the six subjects
and the group mean. Each panel shows functions for
the seven complexity categories. For high cutoff
frequencies, performance was at ceiling (100%). As the
cutoff frequency decreased, a value was reached where
performance declined rapidly.

As shown in the mean group data as well as the
individual data, the filter cutoff frequency at which the
response accuracy started to fall shifted to the right on
the spatial-frequency axis as the complexity increased.
Therefore, reliable identification of more complex
characters requires inclusion of higher frequency
components. Identification of the lowercase alphabet
letters showed the largest tolerance to blur, followed by
the uppercase letters, while Chinese character group C5
had the highest spatial-frequency requirement. The
slope of the psychometric function was comparable
among LL, UL, and C1–C3; however, it was lower in
C4 and C5, implying that recognition improvement
with higher frequency components is more gradual in
complex characters.

We fitted each psychometric function with a
cumulative Gaussian curve and estimated the critical
spatial frequency for each stimulus set based on a
criterion level of 80% correct. We found that the critical
cutoffs increased with complexity (Figure 5), from 1.01
CPC for lowercase letters (LL) to 2.00 CPC for the
most complex Chinese characters (C5). The critical

Figure 3. A sample psychometric function showing the

recognition accuracy versus cutoff frequency (CPC) for C3 in one

subject (black dots), and the cumulative Gaussian fit (red line).

The critical spatial frequency is defined as the cutoff frequency

yielding 80% correct responses.

Figure 4. Psychometric functions. Plots of recognition accuracy (percent correct) versus cutoff frequency (cycles per character [CPC])

for the seven complexity groups (left: group mean; right: the individual data).
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cutoff frequency for C30 (1.67 CPC) was similar to that
for C3 (1.60 CPC). To investigate the effect of character
familiarity, we conducted an analysis of covariance on
the critical frequencies of C3 and C30, while using the
perimetric complexity as a covariate because the
complexity values for the two groups were not exactly
equivalent and thus might confound the statistical test.
The result indicated that character familiarity (within
the range tested) did not play a significant role in
determining the minimal spatial-frequency requirement
for character recognition (F ¼ 2.15, p ¼ 0.18).

The one-way repeated measure ANOVA showed
that there was a significant effect of complexity on the
critical frequency, F(6, 41)¼ 53.77, p , 0.001,
indicating that the critical cutoffs were significantly
different among complexity groups. Further multiple
comparison analysis indicated that the critical cutoff
significantly increased between LL, C1, C3, and C5,
and between UL, C2, and C4.

The location of the critical cutoffs on the psycho-
metric functions can be influenced by two factors: a
lateral shift of the curve along the spatial frequency axis
(alpha), and/or a change in steepness of the curve
(beta). Parameter estimation indicated that the major
effects of complexity on the psychometric functions
came from a shift along the spatial-frequency axis. The
mean value (alpha) of the underlying Gaussian
function gradually increased with complexity. A one-
way ANOVA showed that there was a main effect of
the complexity on alpha values, F(6, 41) ¼ 61.63, p ,
0.001. Multiple comparisons between groups revealed
similar patterns as those for critical cutoffs. The alpha
values were significantly different between LL, C1, C3,
and C5, and also between UL, C2, and C4. A one-way
ANOVA showed that there was also a main effect of
the complexity on beta values, F(6, 41)¼ 12.95, p ,
0.001. However, the beta value changed very little until
the complexity levels became high. The beta values of
C4 and C5 were significantly greater than the other less
complex groups. The critical spatial frequencies and
alpha and beta values for each stimulus set are
summarized in Table 3 and the significance test results
between groups are summarized in Table 4.

Test of the space–bandwidth invariance
hypothesis

We used our data on critical frequencies for different
complexity groups together with data from Wang et al.
(2014) on visual spans for different complexity groups
to test our space-bandwidth invariance hypothesis.
According to this hypothesis, the product of critical
spatial frequency (in units of cycles per character) and
size of the visual span (in number of characters) should
be invariant across changes in complexity.

Wang et al. (2014) measured visual spans with a
trigram paradigm, three characters side by side, in four
complexity groups LL, C1, C3, and C5. On each trial, a

Figure 5. The critical spatial frequency (defined as the cutoff

frequency at which recognition accuracy is 80% correct) for the

seven complexity groups (LL, UL, C1–C5), and one group with

lower character familiarity (C30). Error bar: standard error (SE).

Group

Human subject: Mean (SE) Model observer

Critical cutoff (CPC) Alpha Beta Critical cutoff (CPC) Alpha Beta

LL 1.01 (0.03) 0.80 (0.02) 0.25 (0.02) 0.91 0.71 0.24

UL 1.16 (0.02) 0.92 (0.03) 0.28 (0.02) 1.17 0.91 0.31

C1 1.31 (0.03) 1.08 (0.02) 0.27 (0.01) 1.44 1.10 0.40

C2 1.48 (0.02) 1.21 (0.01) 0.33 (0.01) 1.60 1.23 0.43

C3 1.60 (0.04) 1.32 (0.03) 0.33 (0.02) 1.64 1.27 0.44

C4 1.91 (0.07) 1.51 (0.04) 0.48 (0.03) 1.87 1.47 0.48

C5 2.00 (0.08) 1.56 (0.04) 0.52 (0.04) 2.01 1.52 0.58

C30 1.67 (0.05) 1.39 (0.03) 0.34 (0.02) 1.69 1.33 0.43

Table 3. Critical spatial frequency and the fitting parameters for psychometric functions of human subjects and noise-limited human
contrast sensitivity function model. Note: LL, lowercase letter; UL, uppercase letter; C1–C5, five sets of Chinese characters from the
simplest to the most complex; C30, Chinese character group of comparable complexity with C3 but less familiarity.
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trigram was briefly presented at one of 17 locations left
or right of fixation, and the subject was asked to report
the three characters in the trigram. A visual span profile
was constructed, showing percent correct character

recognition as a function of character position relative
to fixation. The size of the visual span was defined as
the width (number of characters) of the profile at a
criterion accuracy of 80% correct. It was found that the
visual-span size significantly decreased with complexity,
from 10.5 characters for LL, to 4.5 characters for C5.

There were three subjects who participated in both
the visual span study (Wang et al., 2014) and the
current study. We used the two sets of data—visual-
span size and critical frequency—from these three
subjects to test the space-bandwidth invariance hy-
pothesis. The analysis was based on data from
complexity groups LL, C1, C3, and C5 because these
were the stimulus categories for which both critical
frequencies and visual-span measurements were avail-
able. Figure 6A shows the product of the visual-span
size and the critical spatial frequency at the four
complexity levels for individual subjects and their
group mean. The plots were nearly flat across
complexity, indicating the presence of an invariant
space-bandwidth product. The average product was 9.9
cycles across the four complexity groups. A one-way
repeated measure ANOVA showed that the products
were not significantly different among the four
complexity groups, F(3, 11) ¼ 0.45, p ¼ 0.72.

Wang et al. (2014) also estimated the size of visual
spans for their subjects when mislocation errors were
discounted. Mislocations occur when subjects report
the correct identity of characters in trigrams, but in the
wrong spatial order. When mislocations are discount-
ed, the primary constraint determining the size of the
visual span is crowding, and the resulting visual-span
size is larger (Wang et al., 2014; He et al., 2015). Figure
6B shows the space-bandwidth results for the three
subjects when these modified visual-span sizes were
used. In this case, the products yield an average of 11.6

LL UL C1 C2 C3 C4 C5

LL – * * * * *

– * * * * *

– – – – * *

UL – – * * * *

– – * * * *

– – – – * *

C1 * – – * * *

* – – * * *

– – – – * *

C2 * * – – * *

* * – – * *

– – – – * *

C3 * * * – – *

* * * – – *

– – – – * *

C4 * * * * – –

* * * * – –

* * * * * –

C5 * * * * * –

* * * * * –

* * * * * –

Table 4. Multiple comparisons between groups for critical
spatial frequency and fitting parameters of the psychometric
function (alpha and beta). Note: * represents a significant
difference and – represents no significant difference. In each
cell, Row 1 represents the result for critical spatial frequency,
Row 2 for alpha, and Row 3 for beta. Note: LL, lowercase letter;
UL, uppercase letter; C1–C5, five sets of Chinese characters
from the simplest to the most complex; C30, Chinese character
group of comparable complexity with C3 but less familiarity.

Figure 6. Plots of the space-bandwidth product for three subjects and the group mean at four complexity levels (LL, C1, C3, and C5).

Space refers to the number of characters in the visual span and bandwidth refers to the critical cutoff spatial frequency (80% correct

criterion) in cycles per character (CPC). (A) The visual-span size was computed without allowing mislocation errors. (B) The visual-span

size was computed allowing mislocation errors.
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cycles across the complexity groups. Similar to Figure
6A, we observed nearly flat plots for all three subjects
and the mean data. The one-way repeated measure
ANOVA indicated that the products were not signif-
icantly different among the four complexities, F(3, 11)
¼ 0.25, p ¼ 0.86.

Noise-limited contrast sensitivity function
model for estimating the critical spatial
frequency

We used a noise-limited contrast sensitivity function
(CSF) model, described by Kwon and Legge (2011), to
simulate the recognition process for both alphabet and
Chinese characters. Briefly, a low-pass filtered image
entered the model as an input, passed through a CSF
filter with additive white noise, and then reached an
optimal classifier for a decision. The decision rule
maximized the recognition accuracy, based on maxi-
mum a posteriori probability of the input being a
particular target (Green & Swets, 1966; Tanner &
Birdsall, 1958). The input images were passed through
the same filters and cutoff frequencies as used in the
human task. The CSF filter was a linear filter fitted to a
human CSF at the fovea (Chung & Tjan, 2009). The
filtering was conducted with image frequencies ex-
pressed in cycles per degree (rather than cycles per
character) so that the CSF filter would weight the
spectral components of the stimuli according to the
contrast sensitivity at different retinal spatial frequen-
cies for human foveal vision. Gaussian luminance white
noise (zero mean) was added to the output of the CSF-
filtered stimulus. The standard deviation of the noise

was fixed at 0.45, which was a relative value assuming
the image contrast of unfiltered characters was 1. We
tuned the standard deviation of noise for each
complexity group first to match human performance,
and used the mean standard deviation from the seven
complexity groups as a fixed noise level to input to the
model.

We simulated character recognition for the seven
complexity levels (LL, UL, C1–C5) with the goal of
determining the model’s critical cutoff frequency. For
each set of characters in a given complexity category,
the performance was tested with six cutoff frequencies
for the low-pass filters, the same as the human
experiments. There were 700 simulation trials for each
cutoff frequency, for a total of 4,200 trials per
psychometric function.

The recognition accuracy was plotted as a function
of cutoff frequency, and fitted with the same cumula-
tive Gaussian function as used for obtaining the
psychometric function of human observers (Figure 7A).
We estimated the critical spatial frequency using the
same criteria as for the human observers (80%
accuracy). The critical cutoff frequency for the model
observer increased with complexity, from 0.91 CPC for
the simplest group of LL to 1.96 CPC for the most
complex group of C5 (Table 3). The results are very
similar to the critical cutoff frequencies obtained from
human observers: 1.01 CPC for the simplest group of
LL to 2 CPC for the most complex group of C5. To
compare the performance of the noise-limited CSF
model with the human subjects, we fitted the critical
spatial frequency as a function of the perimetric
complexity for both sets and obtained a log-log slope of
0.40 and 0.44, respectively (Figure 7B). The parameters

Figure 7. Critical spatial frequency for the seven complexity groups obtained with the noise-limited CSF model. (A) Psychometric

functions of the model observer (circle) and cumulative Gaussian fitting (solid line). (B) Comparison of the critical spatial frequencies

between human subjects and the model observer. The original data (circle: human subjects; triangle: model observer) and the fitting

for logarithmic critical frequency as a function of logarithmic perimetric complexity (solid line: human subjects; dashed line: model

observer) are shown.
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(alpha and beta) of the cumulative Gaussian fit for the
model observer are shown in Table 3 as a comparison
with those obtained for the human observer. Both the
mean for the location of the performance curve on the
spatial frequency axis and the standard deviation for
the slope of the recognition accuracy show an
agreement between the model observer and the human
observer. Therefore, the noise-limited CSF model
appears to predict the impact of blur on the recognition
of characters with different complexities.

Discussion

In this study, we measured the minimal spatial-
frequency requirements for alphabet and Chinese
character recognition by low-pass filtering the character
images with different cutoff frequencies. We asked
whether the critical spatial frequencies for Chinese
characters are different from those for alphabet letters,
and how pattern complexity influences the critical
spatial-frequency requirements for recognition. We
found that the minimum frequencies for recognizing
Chinese characters were significantly higher than those
for letters, except for the groups of uppercase letters
and the simplest Chinese characters C1. As the
perimetric complexity of characters increased from the
least complex category lowercase letters (LL), to the
most complex category of Chinese characters (C5), the
critical cutoff frequency doubled, from 1.01 cycles per
character (CPC) to 2.00 CPC.

Factors accounting for the dependence of
critical spatial frequency on character
complexity

The increase of critical spatial frequency with
complexity for character recognition is consistent with
both a local feature identification theory (Hubel &
Wiesel, 1962) and a Fourier component theory
(Campbell & Robson, 1968). Characters are repre-
sented by an arrangement of oriented lines and curves
within a defined area. The more complex the characters
are, the higher the density of the features within the
character. Assuming the fine features are required to
distinguish among the characters, the fine features must
remain legible, meaning that the characters are less
tolerant to blur. Similarly, the complex characters have
a broader spectrum in the spatial-frequency domain.
To recover character identity from the blurry images,
higher spatial-frequency components would need to be
retained. As a consequence, we would expect that more
complex characters would require higher critical
frequencies.

The difference in minimal spatial-frequency require-
ments for lowercase and uppercase letters has been
found previously. Kwon and Legge (2011) measured
the critical frequencies for letter recognition by native
English speakers. They reported the critical frequencies
of 0.9 CPL and 1.14 CPL for lowercase and uppercase
letters, respectively, in central vision. In the current
study, the results were similar for bilingual native
Chinese speakers: 1.01 CPC for lowercase and 1.16
CPC for uppercase letters.

Another factor that may contribute to the frequency
requirements for character recognition is the pattern
similarity of characters in the eligible set. The pattern
similarity between two images can be defined in terms
of the Euclidean distance between the symbols in
feature space (such as the grayscale values of pixels).
Greater distance indicates less similarity between
symbols. Kwon and Legge (2011) invoked an expla-
nation based on pattern similarity to account for the
small difference in critical frequencies for lowercase and
uppercase alphabet letters. Wang et al. (2014) showed
that pattern similarity of Chinese characters increases
with complexity. In order to distinguish between more
similar patterns, the visual system requires access to the
fine features preserved by high-frequency components
in the spectra of the characters. Therefore, consider-
ation of pattern similarity plausibly predicts a higher
spatial-frequency requirement for identifying more
complex characters.

The minimal spatial frequency is a way to examine
the spatial resolution requirements for pattern recog-
nition, and may relate to visual acuity. We assume that
acuity is limited by fitting the required spatial-
frequency content into the contrast sensitivity curve of
human vision. In our study, the critical spatial
frequencies were measured at much larger size than the
acuity limit. However, if the same critical frequencies
(in cycles per character) apply at the acuity limit, we
would expect that the acuity size of characters would
scale in proportion to the critical spatial-frequency
requirements. For instance, symbols requiring a critical
frequency of 2 CPC should have an acuity size twice
that of symbols requiring 1 CPC. If this is the case, the
size of acuity characters should increase with their
pattern complexity. This expectation is supported by
the legibility studies of Chinese characters. Zhang et al.
(2007) examined the psychometric functions for rec-
ognition of simplified Chinese characters as a function
of angular character size. The characters with 2–18
strokes were divided into six complexity levels, based
on a stroke frequency metric (i.e., the number of
strokes intersected by a line through the letter width).
They found that the critical size linearly increased with
the stroke frequency by a factor of 1.28 from the
simplest to the most complex group. In another study,
Huang and Hsu (2005) assessed the minimal size
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requirements for recognizing traditional Chinese char-
acters. The characters consisting of 3–27 strokes were
divided into five groups based on the number of
strokes. The subjects were asked to read a character
string under normal reading conditions. Huang and
Hsu (2005) estimated the minimal legible sizes for each
complexity group, and found a systematic increase with
character strokes. The relative enlargement of the
acuity sizes reported in the two studies converged to a
factor of approximately 1.3 from the 4-stroke group to
the 15-stroke group. Watson and Ahumada (2008)
described a template model of visual acuity based on an
ideal observer limited by optical filtering, neural
filtering and noise. Using this model, they predicted
that the acuity size for optotypes varied with com-
plexity, and the model showed a good match with
human data in low- and medium-complexity optotypes
(Watson & Ahumada, 2012). In our study, we found a
1.5 times increase of the critical spatial frequency from
the least-complex to the most-complex Chinese char-
acters, which is close to the above-cited scaling factors
in acuity size. Therefore, the critical spatial-frequency
requirements we have found may apply to acuity limits
in recognizing Chinese characters and other complex
symbols.

The minimal spatial-frequency requirement and
the optimal frequency channel for character
recognition

Our study determined the minimum cutoff frequency
of a low-pass filter required for character recognition.
The results should be distinguished from measures of
the optimal frequency band, which is thought to be the
frequency channel people used for symbol recognition.
The optimal frequency studies typically use a band-
limited filter with a noise mask, and optimality is
defined as the center frequency that yields the best
contrast sensitivity or efficiency for recognition (Gold
et al., 1999; Majaj et al., 2002; Solomon & Pelli, 1994).
In letter recognition, the optimal frequency is typically
found to be 1–3 CPC. Lo (2013), in his doctoral
dissertation, used a noise-masking method to estimate
the optimal frequencies for Chinese character recogni-
tion. One hundred and fifty Chinese characters were
selected from a character usage frequency database,
and the characters were divided into three complexity
groups based on the perimetric complexity metric. He
found that the optimal frequencies for the three groups
with increased complexity were 4.2, 4.8, and 5.4 CPC,
respectively. Rather than focusing on measurements of
the optimal frequency, the goal of our study was to
determine the minimal frequency requirements for
character recognition. In most cases, the optimal
frequencies were entirely missing due to the low-pass

filtering. Subjects were forced to rely on information
carried by low frequencies to identify the characters.
We found that visual perception can recover character
identity at surprisingly low frequencies when deprived
of the optimal frequencies for recognition.

Majaj et al. (2002) conducted a systematic investi-
gation of the effect of complexity on the optimal
frequency channels for character recognition, and
reported that for characters with different complexity,
the optimal frequency was related to the stroke
frequency (strokes per degree) by a power law with
exponent 2/3 (i.e., having a log-log slope of 2/3). This
means that the optimal frequency for a character, in
cycles per character, is 1.59 times higher for characters
that are 2 times larger, and for characters with 2 times
more strokes for a given size (i.e., greater complexity).
To determine whether the critical cutoff frequencies in
our study follow a similar law to the optimal
frequencies found by Majaj et al. (2002), we plotted the
critical spatial frequency as a function of the stroke
frequency of our stimuli—the metric used in Majaj et
al. (2002) study. We obtained a log-log slope of 0.59
(Figure 8). This result was similar to the log-log slope
of 2/3 reported by Majaj et al. (2002). This result
indicates that the minimum spatial frequency for
character recognition has a similar dependence on
character complexity as the optimal frequency.

The minimal spatial-frequency requirements for
character recognition are relevant to reading perfor-
mance. In alphabet reading with low-pass filtered texts,
reading speed rapidly drops after the filter frequency
decreases below a certain value, referred to as the

Figure 8. The relationship between critical spatial frequency

(CPC) and stroke frequency (strokes per degree) defined by

Majaj et al. (2002) for all the complexity groups (LL, UL, and C1–

C5). The fitting shows a log-log slope of 0.59 (solid line). Mean

data values from the current study are plotted as circles.
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critical frequency for reading (Kwon & Legge, 2012;
Legge et al., 1985). Similar constraints may apply to
Chinese reading. A complicating factor is that charac-
ter complexity varies substantially within sentences in
Chinese text. The critical frequency for reading Chinese
text under blur might be determined by the most
complex characters in the text; however, it may also
depend on the context such as, for instance, the
position of the complex characters in the sentence.
Future investigations are needed to determine the
spatial-frequency requirements for reading Chinese text
and their relationship to character recognition.

The space-bandwidth invariance hypothesis

Finally, our data support the hypothesis of a form of
space-bandwidth product invariance. In this case,
bandwidth refers to the range from zero to the minimum
cutoff of low-pass frequencies required for a criterion
level of character recognition, for which we have used
the term critical frequency in units of cycles per
character (CPC). Space refers to the size of the visual
span for character recognition; that is, the number of
adjacent characters that can be recognized above a
criterion level of accuracy without moving the eyes. The
invariance refers to the empirical observation that as
the perimetric complexity of sets of characters in-
creases, the critical frequencies increase and the visual
spans decrease, but their product (critical frequency in
CPC 3 visual span in number of characters) remains
constant. We acknowledge that our evidence is limited
to a particular character size and three bilingual
Chinese subjects for whom we have data on both
critical frequencies and visual-span size for groups of
characters with a wide range of complexity. However,
data from the three subjects consistently support a
constant space-bandwidth product of 9.9 cycles (or 11.6
cycles when mislocations were discounted in the visual-
span measurements) across alphabet and Chinese
scripts for the character size we used in the two studies.

This invariance might be expected to hold over a
range of character sizes. Majaj et al. (2002) found that
the optimal channel frequency (CPC) remained con-
stant across size for band-limited (blurry) characters.
Similarly, Legge et al. (1985) found that the minimal
spatial frequency (CPC) for reading was size-indepen-
dent over a wide range. Given that critical frequencies
for character recognition are closely related to critical
frequencies for reading (Kwon & Legge, 2012), we
expect the critical frequencies for character recognition,
measured as CPC, to remain constant over a wide
range of character sizes. It is also known that the
visual-span size (measured as the number of recogniz-
able characters) is invariant over a wide range of
character sizes for alphabet characters (Legge et al.,

2007). It seems likely, therefore, that the product of
critical frequency and visual span—our space-band-
width product—would also remain constant over a
wide range of character sizes.

The invariance of the space-bandwidth product may
indicate a capacity limitation on visual pattern
recognition in one fixation. Template matching theories
of pattern recognition rely on comparisons between the
input sensory signals and the stored features in a set of
templates. We speculate that there may be an upper
bound on the number of features that can be perceived
and processed simultaneously. As the complexity of the
symbols increases, a higher frequency bandwidth is
required, with fewer characters recognized before the
maximum feature limit is reached.

It is possible that the space-bandwidth constraint we
have observed is related to an information processing
constraint early in the visual pathway. Marcelja (1980)
pointed out the relevance of Gabor’s (1946) theoretical
analysis to human vision. Gabor (1946) showed that for
a time-varying signal, the product of sample duration
and frequency resolution has a lower bound. This is an
uncertainty constraint on information. Gabor showed
that Gabor functions (Gaussian-windowed sign waves)
optimize this tradeoff by meeting the criterion of
maximum information transmitted (minimal uncer-
tainty) for a signal. Marcelja (1980) followed by
Daugman (1985) extended Gabor’s analysis to spatial
dimensions and applied the analysis to simple-cell
receptive fields in the visual cortex. They argued that
sampling of visual signals by Gabor-like functions in
receptive fields represent an optimal encoding of visual
information for space and bandwidth; therefore, the
minimal uncertainty criterion is satisfied by simple cells.
The space-bandwidth constraint on pattern recognition
of alphabet and Chinese characters in our studies might
reflect an optimal encoding mechanism in early visual
processing, which satisfies the minimum uncertainty
criterion.

Keywords: pattern recognition, Chinese character,
letter recognition, minimal spatial frequency, pattern
complexity, visual blur, reading
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