improved mucociliary clearance and mucous viscosity induced by
losartan will enhance infection resolution.

The question remains: is blocking CFTR function the perfect
setting for the preclinical development of losartan? If not, what
model really reproduces a reasonable, cost-effective means by
which to explore specific therapies in the context of consistent and
reproducible complexities of CF lung disease? Kim and colleagues’
manuscript introduces the potential of losartan as a CF therapeutic
and also highlights innovations in model development used for
open-minded investigations and for the systematic development of
novel therapeutics for CF. Innovation here is the key.

Author disclosures are available with the text of this article at
www.atsjournals.org.
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3 Improving Pulmonary Immunity to Bacterial Pathogens through
Streptococcus pneumoniae Colonization of the Nasopharynx

Streptococcus pneumoniae is a common cause of bacterial
pneumonia, especially in the elderly and patients with
significant comorbidities, and is also frequently associated with
exacerbations of chronic obstructive pulmonary disease (1, 2).
Existing S. pneumoniae vaccines have partial strain coverage,
may lack efficacy in high-risk groups, and generally seem to have
poorer efficacy against pulmonary infection than against
systemic infection (3, 4). Hence, alternative strategies to
conventional vaccines may be required to prevent the persistent
high morbidity and mortality caused by S. pneumoniae lung
infections.

8This article is open access and distributed under the terms of the Creative
Commons Attribution Non-Commercial No Derivatives License 4.0
(http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage
and reprints, please contact Diane Gern (dgern@thoracic.org).
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Mitsi and colleagues present data obtained using the
experimental human pneumococcal colonization (EHPC) model
that suggest one such alternative strategy for preventing pneumonia
caused by multiple bacterial pathogens, including S. pneumoniae.
Repeated episodes of S. pneumoniae colonization throughout life
induce and repeatedly boost protective antibody to both capsular
and multiple protein antigens, as well as poorly defined cellular
immunity (5-8). In a study presented in this issue of the Journal,
Mitsi and colleagues (pp. 335-347) used the EHPC model to
investigate the effects of S. pneumoniae colonization on alveolar
macrophage (AM) function in healthy volunteers and identified a
novel mechanism by which successful colonization improves lung
immunity to multiple bacterial pathogens (9). The phagocytic
capacity of S. pneumoniae AMs (recovered by BAL) improved from
69% in uncolonized EHPC subjects to 80.4% in EHPC subjects who
were successfully colonized. This was a convincing change that was
strengthened by a significant correlation to the density of S.
pneumoniae colonization of the nasopharynx. Matched pre- and
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Figure 1. Mechanisms by which nasopharyngeal colonization by Streptococcus pneumoniae may improve protection against pneumonia. Colonization
boosts preexisting cellular (protein antigen—dependent T-helper cell type 1 [Th1], Th2, and Th17 CD4) and humoral (antibody to both protein and capsular
antigens) adaptive immunity to S. pneumoniae (A) (5-8). Mitsi and colleagues (9) show that colonization leads to improved alveolar macrophage (AM)
phagocytic capacity (B), potentially mediated by Th1 cellular immune responses (C) or by an antigen-independent trained immunity response (D). In
addition, improved antibody responses could increase AM phagocytic capacity by improving S. pneumoniae opsonization (E). Improved phagocytic
capacity increases the clearance of bacterial pathogens that reach the lung, potentially shifting the outcome of early bacterial/host interactions toward
prevention of pneumonia (F). Mitsi and colleagues also show S. pneumoniae persistence within the lungs, which could contribute to improved immune
responses (G) or could be a source of bacteria that develop into active infection (H) if bacterial numbers are poorly controlled. COPD = chronic obstructive

pulmonary disease.

postcolonization data from each subject would clearly provide
stronger evidence that successful S. pneumoniae nasopharyngeal
colonization was responsible for the differences in AM
phenotypes; however, obtaining such data would be
logistically difficult because it would require each volunteer

to undergo two bronchoscopies, and the first bronchoscopy
could also affect the function of AMs recovered by the second
bronchoscopy.

AM phagocytosis of invading pathogens is a major
component of pulmonary innate immunity (10-12). However,
whether a 16% relative increase in AM phagocytic capacity
translates into improved protection against pneumonia is not
at all clear—we simply do not know what degree of improvement
in AM phagocytosis in vitro will result in a reduced risk of
pneumonia. Furthermore, bacteria were opsonized with 1/16
pooled human IgG as well as complement, and these conditions
may not accurately represent the situation in epithelial lining
fluid. Under alternative opsonizing conditions, the strength of
the difference between AMs obtained from colonized and
uncolonized individuals may vary. However, whether bacteria
that reach the lung establish active infection depends on a balance
between host clearance mechanisms (i.e., mucociliary clearance
and epithelial cell- and AM-mediated killing mechanisms)
and pathogen virulence (a combination of replication rate and
efficacy in evading pulmonary immunity) (Figure 1) (10). It is
therefore feasible that even a 16% relative improvement in AM
phagocytosis could tip the balance in favor of the host in a

Editorials

substantial proportion of bacterial invasion events, and
importantly, the duration of this effect was surprisingly long
(up to 120 days). However, it will require carefully designed
animal experiments and eventually clinical trials to demonstrate
whether this improvement in AM function translates to
improved protection against infection. In addition to their role
as phagocytes, AMs act as sentinel cells that initiate inflammation
(11), and it will be important to assess whether the macrophage
inflammatory response to bacterial pathogens is affected by
prior S. pneumoniae colonization, as this may also alter
susceptibility to pneumonia.

Another novel observation made by Mitsi and colleagues was
the detection of S. pneumoniae in BAL by PCR and culture in 41%
of successfully colonized subjects, at a time when they had
already been treated with amoxicillin and had no detectable
nasopharyngeal colonization with S. pneumoniae. Previously it
was believed that S. pneumoniae that reached the lungs by
microaspiration from the nasopharynx were rapidly cleared or
occasionally resulted in pneumonia. These data show that S.
pneumoniae can persist within the lung even after colonization has
been cleared, creating a reservoir of bacteria that could cause
ongoing immune stimulation or even develop into pneumonia at a
later stage. S. pneumoniae could persist in the lung due to
colonization of the bronchial tree, becoming part of the
respiratory microbiome; however, it is also possible that they
survive within AMs in a manner similar to that observed for
Mpycobacterium tuberculosis. S. pneumoniae is classically
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considered a purely extracellular pathogen, yet recent data
suggest that this view is too simplistic. Some S. pneumoniae can
persist within macrophages for many hours (12), and S.
pneumoniae have even been shown to replicate within a specific
subset of marginal zone splenic macrophages (13). Intriguingly,
Mitsi and colleagues identified S. pneumoniae internalized by
AMs, an observation that needs further investigation to
characterize which cellular compartment contains the bacteria,
the viability of the bacteria, and whether a particular subtype of
AMs is involved.

What is the mechanism for improved AM phagocytic capacity
after successful S. pneumoniae nasopharyngeal colonization? The
authors suggest two plausible mechanisms: I) trained immunity,
with exposure to S. pneumoniae stimulating epigenetic changes in
AMs, and 2) release of IFN-y from antigen-stimulated T-helper
cell type 1 (Thl) CD4 cells, resulting in improved AM function. A
Th1 mechanism is supported by the association of successful
colonization with increased numbers of BAL Th1 CD4 cells, and
by the positive correlation between AM phagocytic function and
IFN-vy expression by lung CD4 cells after restimulation with S.
pneumoniae. In addition, NanoString PCR showed that
colonization was associated with a shift in the AM phenotype
toward a Thl-activated pattern, and this also showed some
correlation with improved phagocytosis. It is important to clarify
which mechanism(s) is involved because this may identify how
the findings by Mitsi and colleagues can be exploited to prevent
lung infections. Possible strategies include nasal administration of
live virulence-attenuated S. pneumoniae, S. pneumoniae Thl
antigens, and bacterial components that stimulate trained
immunity in AMs.

The data presented by Mitsi and colleagues both challenge
our preconceptions about S. pneumoniae biology and describe a
novel mechanism that may improve lung immunity to bacterial
pathogens. The results show that the interactions between bacterial
colonization of the respiratory tract and host immunity are highly
complex, and further investigation of these interactions could lead
to novel strategies for preventing bacterial lung infections.

Author disclosures are available with the text of this article at
www.atsjournals.org.
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