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In Brief
Mass spectrometry-based
(phospho)proteomics identified a
prominent hub associated with
collagens, receptor tyrosine ki-
nase discoidin domain-contain-
ing receptor 2 (DDR2), and lysyl
oxidase-like 2 (LOXL2) from pa-
tient-matched cancer-associated
fibroblasts (CAF) and non-malig-
nant prostate fibroblasts (NPF).
The functional role of LOXL2 in
regulating ECM organization and
migration of both CAF and co-
cultured prostate cancer cells
was validated with LOXL2 inhibi-
tors. Our data provide the first
demonstration that prostate
CAF-dependent LOXL2 produc-
tion controls prostate tumor cell
motility, highlighting LOXL2 as
an attractive therapeutic target.
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Highlights
● Quantitative (phoshpo)proteome of primary cell cultures of patient-matched prostate CAF and NPF.
● Key CAF-associated proteins validated using orthogonal methodologies.
● LOXL2 inhibitors D-penicillamine and PXS-S2A impaired CAF migration and ECM alignment.
● Pre-treatment with LOXL2 inhibitors impaired migratory capacity of RWPE-2 cells in co-culture.
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In prostate cancer, cancer-associated fibroblasts (CAF)
exhibit contrasting biological properties to non-malignant
prostate fibroblasts (NPF) and promote tumorigenesis.
Resolving intercellular signaling pathways between CAF
and prostate tumor epithelium may offer novel opportu-
nities for research translation. To this end, the proteome
and phosphoproteome of four pairs of patient-matched
CAF and NPF were characterized to identify discriminat-
ing proteomic signatures. Samples were analyzed by liq-
uid chromatography-tandem mass spectrometry (LC-MS/
MS) with a hyper reaction monitoring data-independent
acquisition (HRM-DIA) workflow. Proteins that exhibited a
significant increase in CAF versus NPF were enriched for
the functional categories “cell adhesion” and the “extra-
cellular matrix.” The CAF phosphoproteome exhibited en-
hanced phosphorylation of proteins associated with the
“spliceosome” and “actin binding.” STRING analysis of
the CAF proteome revealed a prominent interaction hub
associated with collagen synthesis, modification, and sig-
naling. It contained multiple collagens, including the fibril-
lar types COL1A1/2 and COL5A1; the receptor tyrosine
kinase discoidin domain-containing receptor 2 (DDR2), a
receptor for fibrillar collagens; and lysyl oxidase-like 2
(LOXL2), an enzyme that promotes collagen crosslinking.
Increased activity and/or expression of LOXL2 and DDR2
in CAF were confirmed by enzymatic assays and Western
blotting analyses. Pharmacological inhibition of CAF-de-
rived LOXL2 perturbed extracellular matrix (ECM) organi-
zation and decreased CAF migration in a wound healing

assay. Further, it significantly impaired the motility of co-
cultured RWPE-2 prostate tumor epithelial cells. These
results indicate that CAF-derived LOXL2 is an important
mediator of intercellular communication within the pros-
tate tumor microenvironment and is a potential therapeu-
tic target. Molecular & Cellular Proteomics 18: 1410–
1427, 2019. DOI: 10.1074/mcp.RA119.001496.

Although initially considered cell-autonomous, both the de-
velopment and progression of solid tumors are now known to
be markedly influenced by the stromal microenvironment (1).
In the normal prostate, stromal cells tightly regulate epithelial
development and differentiation (2, 3). However, during ma-
lignant progression, the transformed epithelium invades the
surrounding stroma and activates the tumor-stromal niche (4).
Alterations in the morphology and cellular composition of
prostate cancer-associated stroma, as well as corresponding
gene and protein expression profiles, correlate with tumor
grade and prognosis which highlights an active role for tumor-
stroma in disease progression (5–7).

The transition from normal to cancer-associated fibroblasts
(CAF)1 is initiated in the early stages of tumorigenesis after
which CAF co-evolve with tumor cells, influencing their patho-
genesis and progression (8). CAF regulate multiple facets of
the tumor microenvironment including growth factor and cy-
tokine production, immune modulation, angiogenesis and ex-
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tracellular matrix (ECM) deposition and remodeling (9). Pri-
mary cell cultures of patient-matched CAF and non-malignant
prostate fibroblasts (NPF) can be derived following radical
prostatectomy (RP) from malignant and benign regions of
prostate tissue, respectively. Subsequent characterization
has revealed that CAF have distinct alterations in their phe-
notype and function (10–13), with recent work indicating that
this is encoded by differences in DNA methylation (14). More-
over, tissue recombination experiments identified that pros-
tatic CAF retain the ability to promote tumorigenesis of “initi-
ated” prostate epithelial cells in vivo (15, 16), and can enhance
tumorigenic potential and invasiveness of prostate cancer
cells in vitro (10, 17–21).

Several candidate mechanisms for intercellular communi-
cation between CAF and prostate epithelial cells have been
identified. For example, several paracrine mediators exhibit
enhanced expression in CAF, which include SFRP1, CXCL12,
TGF�1, HSP90, and FGF10 (22–26) whereas production of
Hedgehog (Hh) ligands by the epithelial cells may initiate
reciprocal signaling with CAF (27). In addition, gene set en-
richment analysis of the differentially expressed genes be-
tween CAF and NPF revealed enrichment of functional cate-
gories for extracellular matrix, basal lamina and basement
membrane (20). This is notable, because changes to the ar-
chitecture and biophysical properties of the ECM influence
tumor progression (28–31), and are prognostic biomarkers in
multiple cancers (9). Yet, the reciprocal signaling that occurs
between prostate epithelial cells, CAF and their ECM is still
poorly understood. The prostate tumor microenvironment is
likely to contain additional candidate biomarkers and thera-
peutic targets.

To address this knowledge gap, we have undertaken unbi-
ased proteomic and phosphoproteomic profiling of patient-
matched prostate CAF and NPF. This revealed important
differences present in CAF, including changes in the ECM
signaling network that collectively contribute to a protumori-
genic microenvironment.

EXPERIMENTAL PROCEDURES

Isolation of Nonmalignant Prostate Fibroblasts (NPF) and Cancer-
associated Fibroblasts (CAF) from Primary Prostate Tissue—Human
prostate specimens were obtained following radical prostatectomy

(RP) with the following human research ethics committee approvals:
Cabrini Institute (03-14-04-08), Epworth HealthCare (34306 and
53611) and Monash University (2004/145).

RWPE-2 cells (American Type Culture Collection, Dublin, IRL) were
maintained in keratinocyte serum free medium (KSF-M; Gibco) sup-
plemented with 5 ng/ml epidermal growth factor (EGF; Gibco), 50
mg/ml bovine pituitary extract (BPE; Gibco), and 100 U/ml penicillin
and 100 mg/ml streptomycin (P/S; Sigma-Aldrich, St. Louis, MS) at
37 °C, 5% CO2, with media changes every 2–3 days. CAF and NPF
were directly isolated from patient tissue as previously described (11).
Briefly, benign and tumor regions were identified and excised by a
trained pathologist. Whole tissue was enzymatically digested to re-
lease cells into suspension and cultured in fibroblast media (RPMI
1640 (School of Biomedical Sciences, Media and Prep Services,
Monash University)) supplemented with phenol red, 5% heat inacti-
vated HyClone fetal bovine serum (HI-FBS; GE Healthcare), 1 nM

testosterone (Sigma-Aldrich), 10 ng/ml basic fibroblast growth factor
(bFGF; Merck Millipore, Burlington, MA) and P/S. Cells were main-
tained at 37 °C in 5% CO2, 5% O2 atmosphere, with media changes
every 2–3 days. Matched CAF and NPF cell lines were established
from cancer and benign tissue pieces respectively and verified via
IHC at passage 4 to show homogenous expression of the fibroblast
markers vimentin and �-smooth muscle actin and the absence of
epithelial cytokeratins (20). Before use in this study, most (5/6)
matched CAF and NPF pairs were validated using in vivo tissue
recombination experiments whereby CAF, but not NPF, promoted
tumorigenicity of initiated prostate epithelial cells as previously de-
scribed (11). All patient information can be found in supplemental
Table S1. Given that CAF and NPF are a primary, patient-derived line,
early passage (3–8) CAF and NPF were used in this study unless
otherwise stated.

Protein Preparation—Primary fibroblast cells were cultured in a 15
cm Petri dish until 80% confluent. Three biological replicates from
each CAF or NPF line (Patients 1–4) were obtained from three sepa-
rate passages. To harvest protein for mass spectrometry (MS) anal-
ysis, dishes were placed on a bed of ice and the cells were first
washed twice with ice cold phosphate-buffered saline (PBS). Cells
were lysed directly in the dish using 500 �l lysis buffer (8 M Urea, 20
mM HEPES, 2.5 mM sodium-pyrophosphate, 2.5 mM �-glycerol phos-
phate, 1 mM sodium orthovanadate, Roche protease inhibitors (1
tablet per 50 ml)). After scraping the lysed cells and transferring to a
1 ml Eppendorf tube, the samples were vortexed, sonicated and
precipitated overnight with 4� volume of an ice-cold acetone solution
(80% acetone, 10 mM NaCl). After this, samples were centrifuged at
3500 RPM for 15 mins. The supernatant was discarded, and the
remaining cell pellet was stored at �80 °C until trypsin digestion.
Total protein was measured using the Bicinchoninic acid protein
assay (Bio-Rad, Hercules, CA). Protein extracts (100 �g) were dena-
tured with 6 M urea in 25 mM ammonium bicarbonate before reduction
with 5 mM TCEP at 37 °C for 1 h and alkylation with 32 mM iodoac-
etamide in the dark for 1 h. Alkylation was stopped by addition of 27
mM DTT. PNGase F (5000 U) was added to the sample mixture and
incubated at 37 °C for 1 h. The samples were then diluted 1:10 with
ammonium bicarbonate and digested with a 1:50 modified trypsin
(Promega, Madison, WI) to protein weight at 37 °C for 18 h. Tryptic
digests were acidified with 10% TFA to pH 2–3, desalted with a C18
column (Thermo Fisher Scientific, Waltham, MA) and eluted with 0.1%
trifluoroacetic acid (TFA)/40% acetonitrile (ACN). Peptides were dried
with a SpeedVac and re-suspended in 2% ACN/0.1% formic acid (FA)
before mass spectrometry (MS) analysis.

Phosphopeptide Enrichment—For phosphopeptide enrichment,
following desalting, 2 mg of peptides were enriched for 1 h with 2.5
mg of TiO2 (GL Science, Japan). Phosphopeptides were eluted with
150 �l of 0.3 M NH4OH, acidified with TFA to pH 2–3, and desalted

1 The abbreviations used are: CAF, cancer-associated fibroblasts;
ACN, acetonitrile; AGC, automatic gain control; bFGF, basic fibro-
blast growth factor; DDA, data-dependent acquisition; DDR2, discoi-
din domain-containing receptor 2; DFS, disease-free survival; DIA,
data-independent acquisition; DPEN, D-penicillamine; ECM, extracel-
lular matrix; EMT, epithelial-to-mesenchymal transition; FA, formic
acid; HI-FBS, heat inactivated fetal bovine serum; HRM, hyper-reac-
tion monitoring; iRT, indexed Retention Time; IT, ion trap; LOX, lysyl
oxidase; LOXL2, lysyl oxidase-like 2; LC-MS/MS, liquid chromatog-
raphy-tandem mass spectrometry; NPF, non-malignant prostate
fibroblast; PCA, principal component analysis; TFA, trifluoroacetic
acid; RP, radical prostatectomy; RPMI, roswell park memorial
institute.
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immediately with a C18 column. Phosphopeptides were eluted man-
ually with 50 �l of 0.1% FA/80% ACN and evaporated to dryness in
a SpeedVac. The dried peptides were reconstituted in 2%
ACN/0.5% FA.

Mass Spectrometry Analysis—Samples were analyzed on an Ulti-
Mate 3000 RSLC nano LC system (Thermo Fisher Scientific) coupled
to an LTQ-Orbitrap mass spectrometer (LTQ-Orbitrap, Thermo Fisher
Scientific). Peptides were loaded via an Acclaim PepMap 100 trap
column (100 �m � 2 cm, nanoViper, C18, 5 �m, 100 Å, Thermo Fisher
Scientific) and subsequent peptide separation was on an Acclaim
PepMap RSLC analytical column (75 �m � 50 cm, nanoViper, C18, 2
�m, 100 Å, Thermo Fisher Scientific). For each liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS) analysis, 1 �g of pep-
tides as measured by a nanodrop 1000 spectrophotometer (Thermo
Fisher Scientific) was loaded on the pre-column with microliter
pickup. Peptides were eluted using a 2 h linear gradient of 80%
ACN/0.1% FA flowing at 250 nL/min using a mobile phase gradient of
2.5–42.5% ACN. The eluting peptides were interrogated with an
Orbitrap mass spectrometer. The HRM DIA method consisted of a
survey scan (MS1) at 35,000 resolution (automatic gain control target
5e6 and maximum injection time of 120 ms) from 400 to 1,220 m/z
followed by tandem MS/MS scans (MS2) through 19 overlapping DIA
windows increasing from 30 to 222 Da. MS/MS scans were acquired at
35,000 resolution (automatic gain control target 3e6 and auto for injec-
tion time). Stepped collision energy was 22.5%, 25%, 27.5%, and a 30
m/z isolation window. The spectra were recorded in profile type.

HRM-DIA Data Analysis—The DIA data were analyzed with Spec-
tronaut 8, a mass spectrometer vendor-independent software from
Biognosys. The default settings were used for the Spectronaut
search. Retention time prediction type was set to dynamic indexed
Retention Time (iRT; correction factor for window 1). Decoy genera-
tion was set to scrambled (no decoy limit). Interference correction on
MS2 level was enabled. The false discovery rate (FDR) was set to 1%
at peptide level. A peptide identification required at least 3 transitions
in quantification. Quantification was based on the top 3 proteotypic
peptides for each protein, normalized with the default settings, and
exported as an excel file with Spectronaut 8 software (32). For gen-
eration of the spectral libraries, DDA measurements of each sample
were performed. The DDA spectra were analyzed with the MaxQuant
Version 1.5.2.8 analysis software using default settings. Enzyme
specificity was set to Trypsin/P, minimal peptide length of 6, and up
to 3 missed cleavages were allowed. Search criteria included carb-
amidomethylation of cysteine as a fixed modification; oxidation of
methionine; acetyl (protein N terminus); and phosphorylation of ser-
ine, threonine, and tyrosine as variable modifications. The mass tol-
erance for the precursor was 4.5 ppm and for the fragment ions was
20 ppm. The DDA files were searched against the human UniProt
fasta database (v2015–08, 20,210 entries) and the Biognosys HRM
calibration peptides. The identifications were filtered to satisfy FDR of
1% on peptide and protein level. The spectral library was generated
in Spectronaut and normalized to iRT peptides.

Mass Spectrometry Statistical Analysis—Log2 intensities of the
peptides were summarized across all the samples in a linear mixed
model implemented in the R package MSstats (33) for pairwise com-
parison for each protein or phosphopeptide. The p values were ad-
justed for multiple testing using the Benjamini-Horchberg method (34)
with an FDR �0.05 and a fold change of �1.5 was required for
differential expression.

Functional Annotation Analysis—Functional annotation of the CAF
and NPF proteomes and phosphoproteomes was conducted using
database for annotation, visualization, and integrated discovery
(DAVID) software (35). Overrepresented functional categories among
proteins enriched in each sample population was relative to a back-
ground of all identified proteins. Criteria for reported functional en-

richment required a fold enrichment �1.5, FDR �0.05, and adjusted
p value �0.05. Experimentally verified and published protein-protein
interactions from several resources including STRING (36) and the
Matrisome Project (37) were assessed.

Western Blot Analysis—Primary fibroblast cells were cultured in a
15 cm Petri dish until 80% confluent. To harvest protein for Western
blotting, dishes were placed on a bed of ice and the cells were first
washed twice with ice-cold PBS. Cells were lysed directly in the dish
using 200 �l of radioimmune precipitation assay buffer (RIPA; Milli-
pore) with protease and phosphatase inhibitors (1 mM phenylmethyl-
sulfonyl fluoride, 10 �g/ml aprotinin, 10 �g/ml leupeptin, 1 mM sodium
fluoride and 1 mM sodium orthovanadate). After scraping the lysed
cells and transferring to a 1 ml Eppendorf tube, the samples were
briefly vortexed. After this, the samples were centrifuged at 10,000
RPM for 10 min at 4 °C. Protein concentrations in the resulting su-
pernatant were determined using a reducing agent and detergent
compatible (RC DC) protein assay kit (Bio-Rad). Equal amounts of
protein (between 10 and 30 �g per lane) were separated by SDS-
PAGE on an 8 or 10% gel and transferred to PVDF membranes
(Millipore, Minneapolis, MN). Antibodies detecting LOXL2 (#55470;
Abcam, Cambridge, UK; 1:2000), DDR2 (#AF2538; R&D Systems,
Minneapolis, MN; 1:4000), FAK (#610088; BD Biosciences, Franklin
Lakes, NJ; 1:1000), phospho-FAK 925 (#3284; Cell Signaling Tech-
nology, Danvers, MA; 1:1000) and �-tubulin (#T5168; Sigma-Aldrich;
1:5000) were incubated overnight at the indicated dilutions at 4 °C.
�-actin (#a5441; Sigma-Aldrich; 1:200,000) was incubated for 30 min
at 4 °C. After washing, the blots were incubated with either polyclonal
goat �-rabbit immunoglobulins/HRP, polyclonal goat �-mouse immu-
noglobulins/HRP or polyclonal rabbit �-goat immunoglobulins/HRP
(all 1:10,000, Dako, Santa Clara, CA) in 5% (w/v) skimmed milk
powder � 0.05% (v/v) Tween 20 (TBST) blocking solution for 1 h at
room temperature. Detection was by enhanced chemiluminescence
and utilized ChemiDoc Touch Imaging system (Bio-Rad). Signals
were quantitated using Image Lab (Bio-Rad) or ImageJ (NIH). Statis-
tical analyses were performed using GraphPad Prism 7 software
(GraphPad Software Inc.). Pooled densitometry values (n � 6) were
subjected to a paired, one-tailed Wilcoxon test (p value �0.05) to
determine statistical significance. Uncropped western blots are
shown in supplemental Figs. S4–S5.

Flow Cytometry—Two million patient-matched CAF or NPF were
co-stained with FITC mouse anti-human CD90 (clone 5E10; BD Biosci-
ences, San Diego, CA) and PE anti-human CD166 (clone 3A6; Bioleg-
end) for 20 min on ice in FACS Buffer (PBS containing 10% HI-FBS and
5 mM EDTA). Cells were washed with PBS and re-suspended in 200 �l
of FACS buffer containing 1 �g/ml propidium iodide (PI) to label dead
cells. 3 � 105 live cell events were collected on the LSR II flow cytometer
(BD Biosciences) and analyzed using FlowJo software v10 (BD Biosci-
ences). Statistical significance was determined using a Mann-Whitney U
test (p value �0.05).

The Cancer Genome Atlas Data—Gene expression and clinical
information were derived from the National Cancer Institute GDC Data
Portal (https://portal.gdc.cancer.gov/projects/TCGA-PRAD), contain-
ing 492 patients RNA-seq data. Briefly, patients were stratified to high
and low LOXL2 gene expression using a cut-off of 0.6. Their disease-
free survival (DFS) was plotted using the Kaplan-Meier curve and
differences in DFS were evaluated using the log-rank statistical test
(p value �0.05).

LOX/LOXL2 Enzyme Activity Assay—LOX/LOXL2 function was
measured as previously described (38). The conditioned media from
CAF/NPF from Patients 4, 6, and 7 or media control was collected
following 72 h culture in fibroblast media (phenol red free and 1%
HI-FBS), and concentrated by size filtration (MWCO 10kDa). LOX/
LOXL2 enzymatic activity was assessed using the standard Amplex
Red, based on the production of H2O2 and the substrate putrescine
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as described previously (39, 40). The relative fluorescence units (RFU)
were read every 2.5 min for 30 min at 37 °C, excitation 565 nm and
emission 590 (Optima, BMG labtech, Ortenberg, DEU) and expressed
in RFU/30 min. 100 �M of the LOX/LOXL inhibitor �-aminopropionitrile
(BAPN) and 1 �M of the LOXL2 specific inhibitor PXS-S2A (Pharmaxis,
New South Wales, Australia) were added to reactions to demonstrate
specificity of fluorescent signal (40). The difference between the sig-
nal obtained in the presence or absence of BAPN or PXS-S2A inhib-
itors in CAF/NPF samples was considered specific for LOX/LOXLs or
LOXL2 activity respectively. Statistical significance was determined
using a one-way ANOVA with Sidak’s post-hoc multiple compari-
sons test (p value �0.05).

ECM Orientation Analysis with Drug Treatment—CAF cultures were
treated with either 10 and 50 �M D-penicillamine (DPEN; Sigma-
Aldrich, Australia) or 10 and 100 nM PXS-S2A every 2–3 days until
confluent. MilliQ H2O or DMSO were used as vehicle controls for
DPEN and PXS-S2A, respectively. The orientation of ECM fibers was
analyzed using ImageJ (NIH) plugin OrientationJ as previously de-
scribed (41, 42). Briefly, a representation of the angles of the ECM
fibers was characterized by hue-saturation-brightness (HSB) color
coded images, where the different colors relate to different absolute
angles of orientation. The distribution of orientation angles was as-
sessed by analyzing the orientation and isotropic properties of indi-
vidual pixels that together made up the ECM fibers. A cubic spline
gradient interpolation with a Gaussian window of � � 2 was applied,
which gave quantitative data for the distribution and frequency of
angles from �90° to 90°. After normalization of the orientation peak
distributions, plots were subjected to a Kruskal-Wallis test with
Dunn’s post-hoc multiple comparisons test (p value �0.05) to deter-
mine statistical significance.

CAF Wound Healing Assay with Drug Treatment—Mitomycin C-
treated cells were cultured in 2-well culture inserts (Ibidi) in fibroblast
media until 80% confluent. A manual line (Gap �500 �m) was estab-
lished in CAF cultures by removal of the plastic insert. CAF were then
assessed for their ability to close the physical gap in the presence or
absence of 10 �M and 50 �M LOXL2 inhibitor D-penicillamine (vehicle
control: MilliQ H2O) or 10 nM and100 nM PXS-S2A (vehicle control:
DMSO). Images were acquired every hour for 24 h using a Leica
AF600LX Live cell microscope (Wetzlar, Germany). Images were pro-
cessed using ImageJ software and a border was manually applied to
the gap area from each condition. The percentage gap closure at 24 h
was normalized to vehicle control. Statistical significance was deter-
mined using a one-way ANOVA with Dunnett’s post-hoc multiple
comparisons test (p value �0.05).

CAF/RWPE-2 Migration Assay with Drug Treatment—Patient CAF
were seeded into 24 well tissue culture plates and cultured in fibro-
blast media over �5 d to establish matrix (or until 80% confluent).
Cultures were pre-treated with 10 �M and 50 �M LOXL2 inhibitor
D-penicillamine (vehicle control: MilliQ H2O) or 10 nM and 100 nM

PXS-S2A (vehicle control: DMSO) for 24 h, before drug washout with
PBS and replacement with fresh drug-free fibroblast media. Tumori-
genic RWPE-2 cells (American Type Culture Collection) were labeled
for 30 min with CellTracker (CT) green (Invitrogen, Carlsbad, CA)
before addition to the pretreated CAF cultures and imaged immedi-
ately. Images were acquired every 20 min for 12 h with a Leica
AF600LX Live cell microscope (Wetzlar, Germany). Videos were pro-
cessed to analyze RWPE-2 migration using Imaris software (Bitplane
AG, Switzerland). Statistical significance was determined using a
one-way ANOVA with Dunnett’s post-hoc multiple comparisons test
(p value �0.05).

Immunofluorescence—CT-green labeled RWPE-2 and CAF co-cul-
tures were fixed in 4% paraformaldehyde (Sigma-Aldrich) for 15 min
at room temperature, washed twice with PBS and then permeabilized
for 10 min with 0.1% Triton X-100 (BDH) in PBS. Fixed cells were

blocked for 10 min using 1% bovine serum albumin (BSA; Sigma-
Aldrich) in PBS. To visualize the extracellular matrix, cultures were
stained with mouse anti-human fibronectin (clone HFN 7.1; DSHB)
and/or rabbit polyclonal anti-collagen I (ab34710; Abcam) for 1 h at
room temperature. Secondary labeling was performed with anti-
mouse Alexa Fluor 647 and goat Anti-Rabbit IgG Alexa Fluor 555 (Cell
Signaling Technology), respectively, for 30 mins at room temperature.
F-actin was visualized with Rhodamine Phalloidin (Thermo Fisher
Scientific). Confocal images were acquired on a Nikon C1 Inverted
Eclipse 90i confocal microscope equipped with 20� objective lens
(Nikon) using NIS Elements Software (Nikon).

Experimental Design and Statistical Rationale—Three biological
replicates from four patient-derived matched CAF and NPF cell lines
(Patients 1–4) were processed in the initial whole proteome analysis;
one patient sample had only two biological replicates because of
sample unavailability. For phosphoproteome analysis, a pool of three
biological replicates for each patient-derived matched CAF and NPF
cell line (Patients 1–4) was processed to obtain 2 mg of peptides
before TiO2 enrichment. Data was analyzed both in data-dependent
acquisition (DDA) mode (to generate a spectral library) and in data-
independent acquisition (DIA) mode. Protein quantification from the
DIA analysis mandated at least three transitions of the top three
proteotypic peptide. Data was normalized with the Spectronaut 8
software and MSstats (version 3.2.2) was implemented to fit an ap-
propriate linear-mixed model for pairwise comparison.

For functional validation, the four patient-derived matched CAF
and NPF cell lines analyzed in the whole proteome and phosphopro-
teome analysis were utilized (Patient 1–4). In addition, a further two
validation lines (Patient 5 and 6) were used where possible. Because
of the finite lifespan of primary cells it was not possible to perform all
assays on every CAF/NPF pair. Validation of proteins CD90 and
CD166 (via flow cytometry) and DDR2, LOXL2, FAK, and pFAK925
expression (via Western blotting) were assessed in Patients 1–6;
LOX/LOXL2 enzymatic function (Patients 4–6); CAF wound healing
assay and the CAF/RWPE-2 co-culture migration assay in the pres-
ence of DPEN (Patients 4–6) or PXS-S2A (Patients 4 and 6). Statis-
tical analysis for each individual assay is reported in the specific
methods section.

RESULTS

Global (phospho)proteomic Analysis of Matched NPF and
CAF—To investigate the functional differences between pros-
tate CAF and NPF, we characterized their respective pro-
teomes and phosphoproteomes by LC-MS/MS with a hyper-
reaction monitoring data-independent acquisition (HRM-DIA)
workflow. We analyzed four patient-matched NPF/CAF pairs
from moderate to high grade prostate cancer (P1-P4; supple-
mental Table S1). First, a DDA workflow was used to generate
a spectral library. This identified 4,586 proteins across all
samples (supplemental Table S2). Most proteins were consis-
tently detected across patients, with 82% of proteins in NPF
and 76% of proteins in CAF detected in cells derived from
three or more patients (Fig. 1A–1D). Consequently, although
there is detectable inter-patient heterogeneity among these
cells, there are also significant similarities. To interrogate in-
ter-patient heterogeneity, functional pathway analysis was
used to compare proteins identified in only one or two pa-
tients compared with proteins identified in at least three cell
lines. There was a significant enrichment of pathways asso-
ciated with mitochondrial translation and poly (A) RNA binding
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among the proteins that were only detected in a minority of
CAF. No specialized pathways were enriched in proteins de-
tected in the minority of NPF lines. Proteins detected in the
majority of CAF and NPF lines were enriched for extracellular
exosome, poly (A) RNA binding, focal and cell-cell adhesion
pathways (supplemental Table S3).

We then used a comprehensive HRM-DIA workflow based
on the generated spectral library to detect and quantify 4075
proteins that are present in all NPF and CAF (supplemental
Table S4). Quantitative data for these proteins are presented
in supplemental Table S5. The coefficients of variation of
protein expression were found to be less than 10.5% across
biological replicates in patient samples for both quantification

approaches (DDA and DIA), except for the CAF replicates
from Patient 1. This demonstrates low variability among
biological replicates for most of the CAF/NPF lines. The
proteomic profile of CAF and NPF was highly similar for the
4075 proteins detected by the DIA workflow (r � 0.971; Fig.
1E). In addition, we used a TiO2-enrichment workflow to
identify 12,209 phosphorylated peptides present in all NPF and
CAF lines, corresponding to 3032 proteins (supplemental Table
S6 and S7). Of the phosphorylated proteins identified by this
approach, 1409 were also identified in the proteome analysis.
The correlation for the phosphoproteomic profile between CAF
and NPF was strong but slightly less than that observed for the
whole proteome (r � 0.813; Fig. 1F).

FIG. 1. Comparison of the proteomes and phosphoproteomes of prostate CAF and NPF. Venn diagrams of overlapping proteins
identified in the spectral library of the (A) CAF proteome and (B) NPF proteome. Bar graphs of common proteins (left axis) and the percentage
of total identified proteins (right axis) in each number of patient cell lines in the spectral library of (C) CAF proteome and (D) NPF proteome.
Scatter plots comparing the average log2 expression of (E) individual proteins and (F) phosphopeptides in matched CAF versus NPF
patient-derived lines (n � 4).
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Identifying Differentially Expressed Proteins Capable of Dis-
criminating CAF and NPF Samples Within An Interpatient
Proteome Landscape—Differential expression analysis of pa-
tient-matched CAF and NPF pairs identified 363 differentially-
expressed proteins between CAF and NPF (raw p value �0.02
and fold change �1.25) (supplemental Table S8). Functional
pathway analysis with DAVID revealed CAF samples were
enriched for proteins involved in cell adhesion and the extra-
cellular matrix, and NPF samples were enriched for proteins
involved in the mitochondrion, the oxidation-reduction proc-
ess and metabolic pathways (Fig. 2). Network analysis using
the STRING database was performed on proteins with signif-
icantly increased abundance in CAF and highlighted a prom-
inent protein-protein interaction hub involved in collagen ex-
pression, regulation and signaling (Fig. 3A). Specifically, this
hub contained multiple collagens, including the fibrillar types
COL1A1/2 and COL5A1, LOXL2/LOXL3, which are copper-
dependent amine oxidases that promote collagen crosslink-
ing (43), and the receptor tyrosine kinase DDR2 that acts as a

receptor for fibrillar collagens (44) (Fig. 3A). In addition, sev-
eral non-fibrillar collagens were more abundant including
COL6A1, COL7A1, COL12A1, and COL15A1. We note that
collagens function as members of heterotrimeric assemblies,
and for Type I collagen, all members of the complex (i.e.
COL1A1 and COL1A2) met our threshold for increased ex-
pression in CAF. In the case of other collagen types, such as
Type V and VI, certain members met the threshold (e.g.
COL5A1 and COL6A1) whereas their partners either showed a
trend that did not meet the cut-off (e.g. COL5A2, COL6A2) or
did not change (e.g. COL6A3). Two enzymes involved in col-
lagen modification and folding (PLOD2 and P4HA2) (45, 46)
were also present. These data are consistent with enrichment
for the functional terms “cell adhesion,” “collagen trimer,” and
“extracellular matrix” in CAF (Fig. 2). Also of interest were two
hubs involved in cytoskeletal organization centered on the
actin binding protein ACTN4 and the serine/threonine kinase
PAK2 (Fig. 3A). Network analysis of proteins with decreased
expression in CAF identified several hubs involved in cellular
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extracellular matrix

focal adhesion
proteinaceous extracellular matrix

basement membrane
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FIG. 2. Functional analysis of differentially abundant proteins in prostate CAF compared with NPF. The plot shows functional categories
that are over-represented relative to all identified proteins using a permutation-based false discovery rate (FDR) analysis.
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FIG. 3. STRING network analysis of differentially abundant proteins. Networks formed by proteins with (A) increased abundance and (B)
decreased abundance in CAF versus NPF.
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metabolism and reprogramming and mitochondrial function
including IDH3A (47), IDH3G, UQCRH, MRPL4 and ACADSB,
as well as cellular redox regulation (GSR) (Fig. 3B), explaining
enrichment for the functional terms “mitochondrion,” “meta-
bolic pathways,” and “oxidation-reduction process” in the
NPF group (Fig. 2).

We refined the list of proteins using a more stringent crite-
rion (adjusted p value �0.05 and fold change �1.5) and
identified 67 proteins that were differentially expressed be-
tween patient-matched CAF and NPF (supplemental Table
S8). Unbiased hierarchical clustering of these proteins con-
firmed complete segregation of CAF and NPF (Fig. 4). The two
proteins with the highest increase in expression in CAF were
the THY1 cell surface antigen (adjusted p value 2.57E�04) and
Transgelin (TAGLN; adjusted p value 1.14E�02). Other ECM

proteins, such as Laminin B2 along with its binding partner �1
(LAMC1) and Lysyl Oxidase 2 (LOXL2), were also increased in
CAF compared with NPF. Another Laminin B2 interactor,
Laminin subunit �2 (LAMA2) was increased in CAF compared
with NPF but did not meet our cut-off threshold.

Identifying Phosphosites that Exhibit Contrasting Abun-
dance in CAF and NPF—To identify differences in phospho-
rylation-based signaling between CAF and NPF, we used TiO2

enrichment coupled with mass spectrometry analysis (supple-
mental Table S6). We identified 161 phosphopeptides that
differed in abundance between CAF and NPF (raw p value
�0.01, FC �1.5). These phosphopeptides mapped to 138
proteins (supplemental Table S9). We did detect some ECM-
affiliated phosphopeptides (45/12,209 phosphopeptides). The
most abundant from this limited list were p2384-FN1, p45-

FIG. 4. Unsupervised hierarchical clustering of samples using proteins enriched in prostate CAF or NPF. Clustering was undertaken
using differentially abundant proteins selected using a stringent cut-off of adjusted p value �0.05 and fold change �1.5. The positive or
negative CAF weight indicates the degree of significance relative to NPF.
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MGP, p192 p201-IGFBP3, p72-TNC, p52 p53 p116 p118
p132 p133 p267-MFAP1, p258-COL16A1, p70-CRELD2, and
p942 p943-COL20A1. However, the majority of phosphopep-
tides that significantly differed in abundance between CAF
and NPFs were not ECM-related (supplemental Tables S6 and
S9).

Functional analysis of proteins exhibiting increased phos-
phosite abundance in CAF showed enrichment for categories
associated with RNA metabolism and the actin cytoskeleton
(Fig. 5A). Network analysis using STRING revealed prominent
interaction hubs involving mRNA processing (TRA2B) and the
actin cytoskeleton (SPTBN1) (Fig. 5B). Interestingly, STRING
analysis for proteins exhibiting decreased phosphosite
abundance in CAF revealed an interaction hub associated
with chromatin remodeling and transcriptional regulation
(SMARCA2) (Fig. 5C). supplemental Fig. S1 contains the
complete interaction network of differentially phosphoryl-
ated proteins. These data complement the proteomic anal-
ysis, confirming the actin cytoskeleton as a subcellular
compartment with significant differences in composition
and regulation between CAF and NPF. Further, regulatory
mechanisms governing gene expression were identified that
likely underpin functional differences between the two cell
types.

Validation of CAF-associated Proteins—Where possible,
protein validation was performed on the four patient-matched
NPF/CAF pairs (Patient 1–4) used in the original (phospho)

proteomic analysis, as well as two additional validation pa-
tients (Patient 5 and 6). Elevated THY1 (CD90) expression has
previously been reported within prostate tumor stroma, but
ALCAM (CD166) has not been previously investigated (10, 48).
Flow cytometric analysis confirmed a significant increase in
the expression of both CD90 and CD166 surface antigens on
CAF versus NPF in the majority of patients (Fig. 6A–6B and
supplemental Fig. S2).

We also verified components of the LOXL2/collagen/DDR2
signaling axis, highlighted by network analysis, using Western
blot analysis of Patients 1–6 (P1–6). The expression of both
LOXL2 (Fig. 6C, 6F and supplemental Fig. S3A–S3B) and
DDR2 (Fig. 6D and 6G) was significantly increased in primary
CAF lines compared with NPF. Previous work has shown that
LOXL2 indirectly activates FAK/SRC signaling via enhanced
ECM stiffness (49, 50). In addition, phosphorylation at Y925 is
required for FAK-dependent cell protrusion, migration and
invasion (50–52). Western blot analysis showed a similar level
of total FAK protein between CAF and NPF, however in-
creased phosphorylation at Y925 relative to total FAK was
observed in CAF (Fig. 6E, 6H and supplemental Fig. S3C).
Collectively, these data validate the upregulation of LOXL2
and DDR2 in prostate CAF and further reveal increased phos-
phorylation of FAK at Y925.

LOXL2 Mediates Autocrine and Paracrine Signaling in the
Prostate Cancer Tumor Microenvironment—LOXL2 expres-
sion is up-regulated in prostate cancer compared with normal
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tissue (53) and is associated with poor prognosis in a variety
of cancers (54). To demonstrate clinical relevance of LOXL2
we interrogated the prostate cancer RNA-seq data set (n �

492) of The Cancer Genome Atlas (TCGA) for LOXL2 gene

expression levels in patients with localized prostate cancer.
The results demonstrate that patients expressing higher levels
of LOXL2 had a significant worsening of disease-free survival
(DFS; hazard ratio 1.51; 95% confidence intervals 0.99–2.29;
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FIG. 6. Protein validation in patient-matched
prostate CAF and NPF. A, Representative flow
plots show surface expression of CD90 and
CD166 antigen on NPF and CAF (gated on pro-
pidium iodide-negative live cells). B, Graph
shows the mean percentage (	 S.D.) of CD90
and CD166 double-positive cells in NPF and CAF
from Patient 1–6 (P1–6; supplemental Fig. S2).
*p value �0.05 C, Western blots show LOXL2
protein expression and �-tubulin loading control
in patient-matched NPF and CAF (P1–6); 20 �g
of protein was loaded per lane (10 �g was loaded
for P2). LOXL2 blots on biological replicate sam-
ples are shown in supplemental Fig. S3A–S3B.
D, Western blots show DDR2 and �-actin loading
control in patient-matched NPF and CAF (P1–6);
20 �g of protein was loaded per lane. E, Western
blots of phospho-FAK Y925 and total FAK levels;
�-actin was used a loading control; 15 �g of
protein was loaded per lane. Densitometry of
biological replicate shown in supplemental Fig.
S3C. Quantification of blots by densitometry
shows the average fold-change and patient-
matched expression levels for; F, LOXL2, (G)
DDR2 and (H) pFAK925/total FAK levels in CAF
and NPF from Patients 1–6. FAK and pFAK pro-
tein expression was first quantified relative to
their respective �-actin loading controls. Bars
represent the mean 	 S.E. (n � 6 patients). *p
value �0.05 compared with NPF.
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supplemental Fig. S6). Further, LOXL2 can be targeted by
either small molecule or antibody-based approaches, high-
lighting the potential for rapid research translation (40). These
findings and developments led us to interrogate the functional
role of prostate CAF-dependent LOXL2 production.

Functional assessment of LOX/LOXL enzymatic activity (38)
in conditioned media from patient matched prostate NPF/CAF
pairs revealed increased secretion of active LOX/LOXL family
members in prostate CAF (Fig. 7A). Notably, most of the
enzyme activity was derived specifically from LOXL2 (Fig. 7B).
Primary mesenchymal cells are often sensitive to transfection
protocols, and indeed, our attempts to use siRNA transfection
to interrogate the functional role of LOXL2 resulted in major
cell death. Therefore, to assess the role of LOX/LOXL2 in ECM
organization, we treated CAF and NPF in vitro cultures with
the LOX/LOXL2 inhibitor D-penicillamine (DPEN) (55) or the
small molecule inhibitor, PXS-S2A (40). PXS-S2A is a potent
and highly selective LOXL2 inhibitor that does not exhibit any
auxiliary pharmacology in standard profiling assays and dis-
plays greater than 500-fold selectivity for LOXL2 over other
related human amine oxidases (40). Representative images
demonstrate the disorganized ECM of NPF cell derived mat-
rices based on analysis of fibronectin (Fig. 8A) and collagen I
staining (supplemental Fig. S7), compared with the highly-
aligned ECM fibers produced by prostate CAF. Treatment
with DPEN abrogated ECM fiber alignment in CAF at 10 �M,
and to a greater extent, 50 �M, whereas PXS-S2A abrogated
CAF ECM at 10 and 100 nM concentrations. ECM fiber align-
ment was quantified in primary NPF/CAF cultures from Pa-
tients 4 and 6 and plotted to show the normalized frequency
of fiber orientation. CAF fibers were significantly more orien-
tated than matched NPF samples in both patients. Following
DPEN and PXS-S2A treatment of CAF for 24 h, the ECM
orientation of Patient 4 was perturbed when treated with 50
�M DPEN or 10 nM PXS-S2A, whereas Patient 6 CAF re-

sponded at both 10 and 50 �M DPEN and 10 and 100 nM

PXS-S2A (Fig. 8B–8C, supplemental Fig. S7).
To characterize the role of autocrine LOXL2 signaling in

regulating CAF motility, CAF were subjected to a wound
healing assay (Fig. 9A) in the presence or absence of the
LOX/LOXL2 inhibitor, DPEN or the specific LOXL2 inhibitor
PXS-S2A (Fig. 9). DPEN treatment at 50 �M, but not 10 �M,
significantly impaired CAF migration in all three patients (Fig.
9B) whereas PXS-S2A treatment impaired CAF migration at
both 10 nM and 100 nM concentrations (Figs. 9C). Because
CAF also regulate the migration ability of prostate tumor ep-
ithelium (20), we next assessed the potential paracrine role of
LOX/LOXL2 secreted by CAF. CAF were pre-treated with
DPEN or PXS-S2A, followed by inhibitor wash-out, and then
co-cultured with the transformed prostate epithelial cell line
RWPE-2 (56) for a further 12 h (Fig. 10A). Pre-treatment of
CAF with the LOXL2 inhibitor DPEN significantly impaired
the mean speed and track length of co-cultured RWPE-2
prostate tumor cells in all patients tested (Patient 4–6; Fig.
10B). PSX-S2A-treated CAF (at both 10 and 100 nM con-
centrations) inhibited prostate tumor cell migration in Pa-
tient 6, whereas Patient 4 CAF co-cultures did not show a
response (Fig. 10C). These data indicate a degree of inter-
patient heterogeneity in the functional role of specific LOX/
LOXL enzymes.

Combined, these data indicate that LOX/LOXL2 production
by prostate CAF produces a highly aligned ECM that can
potentiate the migration of CAF themselves, as well as neigh-
boring prostate tumor cells.

DISCUSSION

CAF-derived ECM plays a critical role in promoting cancer
dissemination (57) and represents an emerging therapeutic
target in solid tumors (58). The presence of an “altered” or
reactive stroma is associated with poor patient prognosis in
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prostate (6, 59) and other solid cancers (60, 61); however, the
underlying stromal-epithelial signal networks remain poorly
characterized. Here we applied an HRM-DIA mass spectrom-
etry (MS)-based proteomic strategy combined with primary
human patient-matched prostatic CAF and NPF to resolve
key mediators of intercellular signaling within the tumor
stroma. We present the first data showing that the inhibition of

LOXL2 in prostate CAF can significantly perturb the prostate
tumor microenvironment.

Traditionally, global proteomics has been performed utiliz-
ing data-dependent acquisition (DDA) MS methods for protein
identification and quantification. In DDA, a survey scan (MS1)
selects a subset of peptide precursors for subsequent frag-
mentation acquiring fragment-ion spectra (MS2). Quantitation
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is then mapped back to the MS1 peak. This approach is well
known to be biased and stochastic, with reproducibility be-
coming problematic with complex samples (62, 63). Within the
last decade, combined efforts in the MS community have
pioneered quantification directly from MS2 spectra utilizing
data-independent acquisition (DIA), to bypass the limitations
associated with DDA (64–67). Here, targeted extraction of
quantitative information for peptides is enabled through use of
a reference spectral library. Using a proteomic strategy based
on this concept, our global proteomic analysis of CAF es-
tablished from primary prostate tumors identified a promi-
nent protein-protein interaction hub centered on the DDR2-
collagen-LOXL2 signaling axis, critical for ECM remodeling
and function (62, 68, 69). Although the focus of this study
was not to specifically investigate ECM proteins, an impor-
tant role was evident and further investigation using enrich-
ment for this and other specific subcellular compartments
(70, 71) could refine our dataset and further contribute to
our understanding of the role of matricellular proteins in
tumor progression.

Aberrant collagen deposition, topography and composition
is a cornerstone of solid tumor development (72). In prostate
cancer, microscale biomechanical analyses of tissue biopsies
have revealed that collagen orientation and tissue stiffness are
increasingly dysregulated with increasing tumor grade (73). In
other cancers, fibrillar collagen and its receptor, DDR2, work in
concert to promote a pro-tumorigenic environment via both the

tumor microenvironment and tumor cells (74). For example,

CAF-derived collagen can activate DDR2 signaling in the epi-
thelium, promoting proliferation and invasion by upregulating

regulators of epithelial-to-mesenchymal transition (EMT) such
as SNAI1 (75), leading to metastasis (74). Concurrently, activa-
tion of CAF DDR2 can activate downstream programs that alter
ECM architecture, resulting in a stiffer, desmoplastic, linearized
matrix (74–76). This biomechanically aberrant environment may

in turn promote further migration of cancer epithelial cells (77,
78). Collectively, the up-regulation of CAF-derived collagen and
DDR2 during early prostate cancer may potentiate a pro-tumor-
igenic loop and drive disease progression.
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Although LOXL2 has been implicated in the progression of
multiple solid tumors (54) and is overexpressed in prostate
cancer (53), few studies have reported a specific role for
LOXL2 in prostate CAF function (40, 79). Here we demon-
strate that prostate CAF have significantly higher LOXL2 en-
zymatic activity compared with matched NPF. We also show
a cell-autonomous role of LOX/LOXL, and more specifically,
LOXL2 in promoting CAF motility and ECM organization. We
demonstrate that prostate CAF produce a highly aligned ECM
network compared with NPF, on which prostate tumor epi-
thelium migrated extensively. To further dissect the specific
role of the ECM, and assess whether LOXL2-regulation of the
ECM is sufficient to mediate the biological effects of this
enzyme, we attempted to decellularize our primary prostate

CAF and NPF cultures (80). Unfortunately, inefficient ECM
retention following decellularization of primary human CAF
precluded downstream analyses.

Pharmacological inhibition of LOX/LOXL2 abrogated the
ECM network of CAF and significantly impeded tumor cell
migration, like recent findings of CAF-LOXL2 function in
breast cancer xenografts (81) and human gastric cancer cell
lines (79). Notably, there was some inter-patient variation
observed in protein expression and the functional response to
LOX/LOXL2 inhibition. This is reminiscent of several other
differentially expressed genes in CAF (14) and warrants further
analysis to determine whether LOXL2 levels may be associ-
ated with the clinic-pathologic or genomic features of the
tumor.
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Tumor-secreted LOXL2 activates CAF through FAK signal-
ing (51), and this may occur via enhanced ECM stiffness (54).
Increased phosphorylation of FAK at Y925 was observed
within our prostate CAF compared with patient-matched NPF,
indicating that this may represent a common microenviron-
mental signaling pathway across different solid tumor types
(51, 54). Further, a recent study has shown that FAK is up-
regulated during prostate cancer progression and promotes
resistance to chemotherapy (82), supporting the use of con-
comitant FAK inhibitors with standard-of-care treatment. Sim-
ilarly, next generation LOXL2 inhibitors are effective in pre-
clinical models of gastric (83) and breast cancer (40, 84, 85) as
well as lung and liver fibrosis models (86), with targeted ther-
apeutics against LOXL2 currently undergoing Phase I/II test-
ing (54). It is evident that dysregulation of the DDR2-collagen-
LOXL2 axis in early prostate cancer would therefore provide a
potent and pro-tumorigenic microenvironment, capable of
driving aggressive disease and that this axis can be targeted
with therapeutic interventions. Together our data highlights
the role of prostate CAF in regulating the tumor microenviron-
ment and importantly, identifies an underpinning molecular
mechanism within the ECM.

Contact-mediated signaling complexes enable fibroblasts
to drive cancer cell invasion via the stromal cytoskeleton (87,
88), although little is known of the underlying mechanism. In
our proteomic and phosphoproteomic datasets, there was an
enrichment for cytoskeletal related categories such as “Cell
Adhesion,” “Focal Adhesion,” “Actin Binding,” and “Actin Cy-
toskeleton.” Previous studies have shown that CAF have in-
creased levels of contractile actin as well as stress fibers and
focal adhesions (89, 90). Functionally, this up-regulation can
lead to tissue stiffness, resulting in subsequent pro-tumori-
genic mechano-transduction signaling in the tumor microen-
vironment (91). For the first time in prostate CAF we identified
a prominent hub involving the phosphorylation of serine/thre-
onine kinases: T326-PAK6, S2-PAK2, and S386-MAPK6. Pre-
vious studies have shown that p21-activated kinases (PAKs)
are oncogenic drivers (92) and regulate actin organization in
mammalian cells (93), with MAPK6 having been identified as a
substrate for PAK2 (94). Collectively, our data indicate that the
stromal cytoskeleton may play an important role in cancer
cell-CAF signaling, and facilitate both stromal and epithelial
invasion.

CONCLUSION

The activation of CAF within solid tumors plays an ongoing
role in tumorigenesis and provides an important source of
potential therapeutic targets (74, 95, 96). The autocrine and
paracrine effects induced by LOXL2 that include, but are not
limited to, tumor cell proliferation and invasion, fibroblast
activation, ECM remodeling, increased angiogenesis, and
promotion of EMT renders LOXL2 inhibition an attractive ther-
apeutic strategy that targets both tumor cells and the sur-
rounding stroma. Our data provide significant insight into the

mechanisms underlying stromal function during early prostate
tumorigenesis that can promote aggressive disease.
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