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Deep learning methods have shown their great capability of extracting high-level features
from image and have been used for effective medical imaging classification recently.
However, training samples of medical images are restricted by the amount of patients
as well as medical ethics issues, making it hard to train the neural networks. In this
paper, we propose a novel end-to-end three-dimensional (3D) attention-based residual
neural network (ResNet) architecture to classify different subtypes of subcortical vascular
cognitive impairment (SVCI) with single-shot T2-weighted fluid-attenuated inversion
recovery (FLAIR) sequence. Our aim is to develop a convolutional neural network to
provide a convenient and effective way to assist doctors in the diagnosis and early
treatment of the different subtypes of SVCI. The experiment data in this paper are
collected from 242 patients from the Neurology Department of Renji Hospital, including
78 amnestic mild cognitive impairment (a-MCI), 70 nonamnestic MCI (na-MCI), and 94
no cognitive impairment (NCI). The accuracy of our proposed model has reached 98.6%
on a training set and 97.3% on a validation set. The test accuracy on an untrained testing
set reaches 93.8% with robustness. Our proposed method can provide a convenient
and effective way to assist doctors in the diagnosis and early treatment.

Keywords: subcortical ischemic vascular disease, convolutional neural network, deep learning, magnetic
resonance imaging, cognitive impairment

INTRODUCTION

Vascular cognitive impairment (VCI) is a broad term that includes a group of cognitive disorders
with various degrees of severity, from mild to severe attributable to pathological damage of the
cerebral vascular system (Barbay et al., 2017). Vascular dementia developed from VCI is the
second most common cause of dementia after Alzheimer’s disease (AD) (Barbay et al., 2017).
Recently, VCI, especially its most common form subcortical VCI (SVCI), has been getting increased
attention, for there is increasing evidence that impaired vascular structure and function are
also important in the development of AD (Lucy et al., 2017). SVCI is defined as a clinical
continuum of cognitive impairments due to cerebral small vessel disease (Olivia et al., 2018).
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Lacunar infarct and white matter hyperintensities (WMHs)
(also termed white matter lesions or leukoaraiosis), which
are located subcortically or deeply), are the main type of
lesions. Prominent perivascular spaces, cerebral microbleeds, and
atrophy are the other common signs shown in conventional
MRI sequences that are associated with SVCI (Jee and Lee,
2014). Nowadays, with the development of neuroimaging studies,
we have gradually found that conventional MRI characteristics
cannot fully explain the variable clinical manifestations of SVCI.
For example, although voxel-based morphometry and lesion-
symptom mapping studies have shown extensive brain damages
in SVCI patients, the relationship between these damages
and clinical cognitive impairments is still controversial among
different studies (Marco et al., 2011; Biesbroek et al., 2013, 2017).
The International Society for Vascular Behavior and Cognitive
Disorders suggested that a strategic infarct or hemorrhage,
multiple lacunes, one large infarct or hemorrhage, and extensive
and confluent WMH of vascular origin may be helpful in the
diagnosis of SVCI (Perminder et al., 2014). However, as there is
little validation of these thresholds, the exact clinical relevance
patterns for individual patients remain to be discussed. So by
now, the diagnosis of SVCI still relies on scrupulous clinical
assessment such as detailed medical history enquiry, physical
and neurobiological exams, and neuropsychological evaluation,
which are costly, are time-consuming, are subjectively dependent,
and may even be traumatic. More effective methods to classify
and evaluate the cognitive impairments of SVCI are needed.

Noticeably, a small number of studies have made an
effort to resolve the dilemma by traditional machine learning
(ML) based on neuroimaging data. Using hierarchical fully
convolutional network (H-FCN), Lian et al. (2020) automatically
identified discriminative atrophy local patches and regions in
brain structural MRI (sMRI) and achieve state-of-the-art AD
versus normal control (NC) and progressive mild cognitive
impairment (pMCI) versus stable MCI (sMCI) classification
performance. By combining diffusion tensor imaging (DTI) and
brain morphometry parameters, Stefano et al. (2015) successfully
discriminated healthy controls from patients with vascular
dementia and vascular MCI (VaMCI) by ML techniques. Stefano
et al. (2016) adopted a support vector machine (SVM)-based
ML strategy for discrimination SVCI patients with different
cognitive performances on the basis of predefined feature vectors
extracted from DTI data. The sensitivity, specificity, and accuracy
of the classification model were 72.7–89.5%, 71.4–83.3%, and
77.5–80.0%, respectively. Finally, except for not being sensitive
enough, extracting those features on the basis of such large data
volume of neuroimaging needs human experts, which are often
costly, time-consuming, and burdensome. Deep learning (DL) is
a rapidly developing ML algorithm for directly extracting high-
throughput features from the images without the engagement
of human experts. In particular, quite a lot of studies focus on
the application of DL-based diagnosis assistance system. Duan
et al. (2019) have researched the visual attention analysis of
children with autism spectrum disorder (ASD). Liu et al. (2019)
focused on the AD diagnosis and used deep multi-task multi-
channel learning to achieve state-of-the-art classification results.
Yang et al. (2020b) fused deep spatial and temporal features from

adaptive dynamic functional connectivity (dFC) and achieved
great classification accuracy of 87.7%, which is 5.5% higher than
that of the state-of-the-art methods. Liu et al. (2018) proposed
a deep multi-instance convolutional neural network (CNN) to
automatically learn both local and global representations for MR
images and achieve superior performance over state-of-the-art
approaches. In particular, in MCI classification problems, Yang
et al. (2014, 2020a) have proposed effective sparse functional
connectivity networks and sparse multivariate autoregressive
modeling methods for MCI classification. In our previous study
(Yao et al., 2019), we trained a CNN to classify different cognitive
performances in patients with subcortical ischemic vascular
disease (SIVD) on the basis of T2-weighted fluid-attenuated
inversion recovery (FLAIR) data. For the three-dimensional
(3D)-based model, the accuracy of a training set and a testing
set reached 99.7 and 96.9%, respectively. This previous study
suggests us that DL, especially 3D-CNN, is a powerful and
convenient method for classification of SVCI by single-shot T2-
weighted FLAIR sequence. By focusing on the sparse regression
of blood oxygenation level dependent (BOLD) MRI and arterial
spin labeling (ASL) MRI as well as the brain connectivity
network inferred from the MR image, Li et al. (2019) and
Yang et al. (2019) proposed novel state-of-the-art methods on
MCI classification.

With the successful use of 3D-CNN in classifying different
stages of cognitive impairment in SVCI, we decided to further
our study and refine the model for classifying different subtypes
of VaMCI on the basis of the single-shot FLAIR sequence. VaMCI
is an intermediate and reversible state between normal cognitive
status and vascular dementia. The definition of MCI according
to criteria proposed by a multidisciplinary and international
experts group includes four clinical subtypes: amnestic MCI
(a-MCI; single or multiple domain) and nonamnestic MCI
(na-MCI; single or multiple domain) (Winblad et al., 2004).
Different VaMCI subtypes might subtend different etiologies:
a-MCI (single or multiple domains) was considered to have a
degenerative etiology, and multidomain MCI (either amnestic or
not) was considered to have a vascular etiology (Emilia et al.,
2016). The subtypes of VaMCI are important for clinical care and
targeted treatment and might be associated with prognosis. David
et al. (2015) found that dementia risks were higher for a MCI than
for na-MCI, and for multidomain compared with single-domain
MCI.Liesbeth et al. (2017) found that the relevance of reversion
for progression risk depends on the MCI subtype. The risk of
dementia in participants with MCI who did not revert, especially
in amnestic subtype, was higher than in reverters. Neuroimaging
studies showed some signs in differentiating a-MCI and na-MCI.
Yukako et al. (2019) found that medial temporal lobe atrophy
and lower educational history are quick indicators of amnestic
cognitive impairment after stroke. Another study showed that
medial temporal lobe atrophy was more frequent in multidomain
compared with single domain (Emilia et al., 2016). Hosseini et al.
(2017) compared different subtypes of VCI on the basis of DTI
and FLAIR data. Results showed that higher medial temporal
lobe atrophy and left hippocampal mean diffusivity contributed
to amnestic VCI and that higher ischemic burden contributed to
nonamnestic VCI.
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Considering the importance of VaMCI subtypes for clinical
decision, and the possibility for image classification suggested
by limited neuroimaging studies, we constructed an efficient 3D-
CNN model to achieve accurate classification of VaMCI subtypes.
To our knowledge, no similar studies have been reported.

MATERIALS AND METHODS

Participants
A total of 242 subjects with SIVD were recruited from patients
admitted to the Neurology Department of Renji Hospital from
July 2012 to January 2018. SIVD is defined as subcortical WMH
on T2-weighted images with at least one lacunar infarct, in
accordance with the criteria suggested by Galluzzi (Samantha
et al., 2005). All participants received baseline evaluation,
including complete collection of sociodemographic and clinical
(cognitive, behavioral, neurological, functional, and physical)
data. Patient histories were collected from knowledgeable
informants, usually from their spouses. All patients underwent
laboratory examinations and conventional MRI for routine
investigation (Yao et al., 2019).

The exclusion criteria (Yao et al., 2019) were cerebral
hemorrhages, cortical and/or corticosubcortical non-lacunar
territorial infarcts and watershed infarcts, specific causes of
white matter lesions (e.g., multiple sclerosis, sarcoidosis, and
brain irradiation), neurodegenerative disease (including AD and
Parkinson’s disease), and signs of normal pressure hydrocephalus
or alcoholic encephalopathy. Patients with low education level
(<6 years), severe depression [Hamilton Depression Rating
Scale (HDRS) ≥ 18], other psychiatric comorbidities or severe
cognitive impairment (inability to perform neuropsychological
tests), severe claustrophobia, and contraindications to MRI (e.g.,
pacemaker and metallic foreign bodies) were also excluded.
All the participants had lacunar infarcts, small white matter
hyperintensities, and slight atrophy.

Finally, all SIVD patients recruited were subdivided based
on cognitive status into subcortical vascular disease with no
cognitive impairment (NCI) group (n = 94) and VaMCI group
(n = 148). All the participants were right-handed.

The current study was approved by the Research Ethics
Committee of Renji Hospital, School of Medicine, Shanghai Jiao
Tong University, China. Written informed consent was obtained
from each patient.

Neuropsychological Assessment
Neuropsychological assessments (Yao et al., 2019) were
performed within 2 weeks of the MRI. All subjects did not
suffer a new clinical stroke or TIA between the MRI and
assessment. A comprehensive battery of neuropsychological tests
was designed based on a review of relevant published reports.
These tests are as follows: Trail-Making Tests A and B, Stroop
color–word test, verbal fluency (category) test, auditory verbal
learning test (short and long delayed free recall), Rey–Osterrieth
Complex Figure Test (delayed recall), Boston Naming Test (30
words), Rey–Osterrieth Complex Figure Test (copy), Lawton

and Brody’s Activities of Daily Living (ADL) Scale Test, Barthel
index (BI), HDRS, and the Neuropsychiatric Inventory.

To assess the cognitive status of subjects, the scores for
each measure of normal-aged patients in Shanghai, China,
were used as the normal baseline (norms) (Yao et al.,
2019). Cognitive dysfunction was defined as −1.5 SD in
at least one neuropsychological test. According to the AHA
Statement on Vascular Contributions to Cognitive Impairment
and Dementia (Philip et al., 2011), VaD diagnosis was based
on a decline in cognitive function from a prior baseline
and a deficit in performance in ≥2 cognitive domains that
were of sufficient severity to affect the subject’s activities of
daily living, which were independent of the motor/sensory
sequelae of the vascular event. VaMCI diagnosis was based
on the following criteria: (1) ADL could be normal or mildly
impaired, (2) does not meet criteria for dementia, and (3)
mild quantifiable cognitive impairment within one or more
domains (i.e., attention, executive function, memory, language,
and visuospatial function). Functional ability was assessed using
BI and Lawton and Brody’s ADL scales. However, because
most patients with cognitive impairment due to cerebrovascular
disease have some degree of disability, the study carefully
excluded those with disability due to cognitive damage and
motor sequelae using cognitive impairment history and clinical
judgment. The definition of subtypes of MCI according to criteria
proposed by a multidisciplinary and international experts group
includes a-MCI and na-MCI (Winblad et al., 2004). NCI was
defined as subcortical vascular disease with NCI, which means
their scores in all neuropsychological tests were within the
normal range (<-1.5 SD).

MRI Protocol
MRI was performed with the SignaHDxt 3T MRI scanner (GE
Healthcare, United States). An eight-channel standard head
coil with foam padding was used to restrict head motion.
Besides conventional brain MRI plain scanning, T2-weighted
FLAIR sequences with high resolution were acquired as follows:
TE = 150 ms, TR = 9,075 ms, TI = 2,250 ms, field of
view (FOV) = 256 × 256 mm2, matrix = 128 × 128, slice
thickness = 2 mm, number of slices = 66.

MRI Data Preprocessing Pipeline
In this section, we propose an end-to-end data pipeline for
MR image data processing. The data pipeline contains data
preprocessing and model training. Our raw data are T2-weighted
FLAIR MR image collected from 242 patients including 78
a-MCI, 70 na-MCI, and 94 NCI. We split the total dataset to three
parts including a training set, a validation set, and a testing set
with percentage of 60, 20, and 20%, respectively. Figure 1 shows
our proposed MRI data processing pipeline. First, we process the
raw data using our data preprocessing method and get trainable
data as the input of CNN. Then we feed these processed data
into our proposed 3D deep residual network to extract higher-
level features and carry out the classification procedure. In the
following two sections, we will introduce the pipeline in detail.
processing pipeline.
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FIGURE 1 | MRI data processing pipeline.

Data Preprocessing
Space Conversion
The MRI data are acquired by tomography. It always takes
a long time to complete the acquisition of MR images from
a patient, and the patient will inevitably move during such a
long acquisition procedure. These collected raw tomographic
MRI data may not be mapped one by one when aligned
and cannot be connected between different slices for effective
analysis. Thus, we first process the MRI data into the same
data coordination to map different slice layers into standard
space. In this paper, we use SPM software and MRIcro software
in Matlab toolkit to process these raw MR image data. The
specific steps include format conversion, slice timing, head
movement realignment, image matching, brain segmentation,
spatial standardization, and so forth.

Brain Separation Using FSL-BET
Traditional sMRI data contain the total brain scanning data
including the skull and other non-brain parts, which is
meaningless for convolutional networks to extract features. In
this case, the skull and non-brain parts act as random noise,
and we need to separate them from brain data. In the specific
preprocessing process, we used FSL-BET tool to extract the brain
structure. We set the fractional intensity threshold to 0.3 and the
vertical gradient in fractional intensity threshold to 0.2. The skull
separation processing result diagram is shown in Figure 2.

Brain Region of Interest Segmentation
We transform the DICOM FLAIR image into mat format
in MATLAB with the shape of l × w × d × c equaling

FIGURE 2 | Top view of MR image: the left one is before separation; the right
one after separation.

to 256 × 256 × 66 × 1, where l, w, d, and c represent
the length, width, depth, and color channels of the image,
respectively. Considering that there are still lots of meaningless
zeros surrounding the brain region, we define the nonzero brain
region as our region of interest (ROI) and use contour finding
algorithm to find the maximum ROI part in all slices of samples.
We then cut the brain ROI into the size of 159 × 141 × 66.
By cutting the ROI, we can focus more on the useful brain
region. We can also effectively reduce the number of convolution
network parameters, which can speed up the training process as
well as reduce the risk of overfitting.

Image Smoothing
Noise cannot be completely avoided under any circumstances,
and it is similar for medical images. The main noise sources
of MR images are thermal/electrical noise and random noise.
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The most common preprocessing method is to filter the image.
In this paper, we use smoothing method in SPM software. We
use Gaussian filtered convolution kernel function to convolve
the spatial domain of the MR image, so as to remove the high-
frequency noise part of the image, leaving the corresponding
low-frequency blood oxygen level and other signals in the MR
image. Through image smoothing, differential errors in the
signal caused by the image capacity and structure of different
subjects are eliminated.

Data Augmentation
Because the collection of MR images is cumbersome and involves
medical ethics issues, the total number of samples in our
experiment is 242 and need to be separated into train, validation,
and test datasets during model training. The features learned
by the model may not have extensiveness and may have serious
overfitting problem. In order to solve such problems, this paper
refers to the method of data augmentation, which is commonly
used for natural images, and it adopts specific-augmentation
method for the T2-weighted FLAIR MRI data in this paper. In the
data preprocessing process of DL, traditional data augmentation
methods mainly aim at the samples of two-dimensional (2D)
natural images may have some jitter, noise, and other deviations
during the acquisition process. In order to standardize the image,
they perform geometric transformation such as translation, flip,
rotation, and other augmented transformation. As mentioned
above, patients’ head may have slightly shift or rotation in the
data acquisition process. Thus, in our experiment, image panning
and slight rotation augmentation method are used to augment
samples in the training set.

Convolutional Neural Networks
Medical images are different from traditional natural images
in terms of data dimensions and data representation. With the
continuous improvement of medical image collection methods
and data storage capabilities, the complexity of medical images
at the professional level is also increasing. Previously, medical
images could only be used as an auxiliary tool for the subjective
decision of doctors. Under current situation of increasing density
of medical image data, doctors’ experience and ability to judge
medical images are difficult to keep up with the pace of image
development. However, diagnosis is still based on a traditional
knowledge system nowadays.

These advances in medical image data collection have not
been applied to clinical diagnosis well, and there is redundancy
in medical resources. Thus, it is in great demand to develop
new automated clinical diagnosis methods. Previously, a solution
to this phenomenon was to use ML to perform prediction,
segmentation, diagnosis, and so forth, to realize automated
diagnosis process. However, the learning capabilities and models
of traditional ML methods are often insufficient to handle such a
large number of medical images and high-dimensional data. With
the improvement of DL (Lecun et al., 2015) and CNN (Lawrence
et al., 1997) and the continuous innovation of computer
computing capabilities, a combination of high-performance
computers and DL methods can be used to learn and process

large-scale medical image data extracted from medical image data
and inherent higher-order features of the images.

Network Structure
In natural image processing, CNN generally use 2D kernels to
implement feature extraction because natural images are mostly
2D. However, MR images are continuous between different slices
from the top to bottom. Given that we do not know the exact
lesion area of SVCI disease, we use combination of 3 × 3 × 3
and 7× 7× 7 three-dimensional convolutional kernels instead of
using traditional 2D convolutional kernels to extract 3D features.

Our network uses residual neural network (ResNet)-18 (He
et al., 2016) as backbone, which has the best classification effect
in 2D natural images and change the structure of the convolution
kernel in the model into 3D convolutional kernels so that it can
be used for the classification of 3D MR images.

Considering the high density of MRI data in this experiment,
our network has a larger number of parameters and a smaller
sample size to train this model, which makes it difficult for
convergence during the training process. We are inspired by
the attention mechanism (Vaswani et al., 2017; Jin et al., 2019)
and propose an end-to-end attention-based 3D ResNet model
for classification of different subtypes of SVCI on the basis of
T2-weighted FLAIR MR images.

Attention model in DL simulates the human brain. When
a person is observing a picture, although his or her receptive
field can see the entire area of the image, his or her attention
to the entire image is not balanced. There is a certain weight to
distinguish different regions in human vision, and the effective
area that the eyes focus on is actually a very small part. In
our experiment, high-density MR image will produce more
parameters in neural network. If a model wants to memorize
more information of the input image, it has to increase the
complexity of the network, which will produce more parameters.
This will be a huge burden to our compute capability. Thus,
in this paper, we import attention module into our network to
focus more on the important region to classify different subtypes
of SVCI. In this paper, we use a 3 × 3 × 3 convolution filters
activated by ReLU as a subway after convolution feature maps Fi,c
to produce our attention mask Ai. We then multiply attention
mask Ai to previous feature maps Fi,c, so that we can get the
weighted attention map Mic by the following equation:

Mic = Ai ∗ Fic

The attention mask Ai can be trained and optimized through
model training to focus more on the significant parts. Our
proposed network structure is shown in Figure 3. The network
is composed of convolutional layers, ResNet blocks, attention
blocks, and output classifier. For example, the Conv3D thirty-
two 3 × 3 × 3 strides = 1 layer means 32 convolution filters
with the size of 3 × 3 × 3 and strides equal to 1. Different from
2D convolution filters, these filters can receive data from three
adjacent slices and can extract features between slices. We fed
our preprocessed data with resolution of 159 × 141 × 66 × 1
into the network and go through eight residual blocks. As the
layers go deeper, the numbers of filters will increase from 32 to
256, and the features extracted will be more abstract and complex.
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FIGURE 3 | Network structure.

Correspondingly, the last layers in ResBlock have parameter S
set to 2, which means that we set the strides to 2 × 2 × 2
and downsample the feature maps size by two times. Then
the last output feature maps will be average-pooled and fed
into the classifier.

Experiment Settings
We implement the experiment on two NVIDIA GTX 1080
Ti GPUs. We applied the k-fold cross-validation method in
training. The total dataset are divided into five equal shares; and
for each training process, we use four shares as training and
validation sets and one share as the testing set. The final test
accuracy and other metrics are calculated by the average of five
experiments. The experiment is based on Keras using TensorFlow
as backend. Limited by the computation ability, our batch size
is set to 4. In our network, preprocessed data with the shape
of 159 × 141 × 66 × 1 are fed and are filtered by gradually
increasing filters to extract high-level features. The features are
finally fed into a fully connected (FC) layer activated by softmax
to get the final classification output. We use cross-entropy loss
function and adaptive gradient algorithm (Adagrad) optimizer to
help our model minimize the loss function. Cross-entropy loss
function is shown as follows:

Llog(Y, P) = − log Pr(Y|P)

= −
1
N

N−1∑
i=1

K−1∑
k=0

(yik) log(pik)

where multivariate classification k is the total number of
categories, yik equals to 1 only if the label of the i-th sample
is in category k, the true category label of N samples is an
N × k matrix Y, and the probability of each sample in N samples
predicted by the classifier is an N × k matrix P.

The updated formula of Adagrad is shown below:

θt+1,i = θt,i −
η√

Gt,ii + ε

where g is the gratitude at time θi; in our experiment, we set
η as 0.01. Adagrad can do larger updates for low-frequency
parameters and smaller updates for high-frequency and can solve
the problem that different parameters cannot be updated to
different scales according to the importance of the parameters.

RESULTS

In our experiment, we train the proposed attention-based 3D
ResNet for 50 epochs. Because there are no relative pretrained
models in our classification of different subtypes of SVCI
with FLAIR MR image, we train our model with random
initialization. With proper hyper-parameter tuning, we approach
the best performance on the training set and validation set as
shown in Figure 4.

Because there are no such methods for the classification of
different subtypes of SVCI, our proposed model has significant
clinical value. The accuracy of our proposed model on the testing
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FIGURE 4 | Loss curve and accuracy curve of our model.

set reaches 93.8% with robustness. Thus, our proposed method
can effectively assist doctors in early detailed classification
diagnosis, so as to carry out targeted treatment in time. In
addition to test accuracy, we also consider three other indexes
for comparison. We introduce recall (R), precision (P), and F1
score. Precision is the ratio of true positive samples to predicted
positive samples, and recall is ratio of true positive samples to
actual positive samples. These two indexes can be combined to F1
score as a thorough evaluation of the classification. The formulas
of these three indexes are as shown below:

R =
TP

TP + FP

P =
TP

TP + FN

2
F1
=

1
R
+

1
P

where TP, FP, FN, and TN represent positive samples classified
to positive, negative samples classified to positive, positive
samples classified to negative, and negative samples classified
to negative, respectively. Because our experiment is a three-
category classification problem, we consider one category as
positive samples and the other two as negative samples each time.

The final performance of the model is shown in Table 1:

TABLE 1 | Three other index performance of proposed method under three
subtypes of subcortical vascular cognitive impairment.

Subtypes Recall/% Precision/% F1 score/%

A-MCI 93.2 91.9 92.6

NA-MCI 94.3 94.3 94.3

NCI 93.8 94.7 94.2

DISCUSSION

Using 3D convolutional kernels, we successfully trained an
efficient CNN model that could accurately classify different
subtypes of VaMCI (a-MCI and na-MCI) as well as NCI by
extracting 3D features from raw T2-weighted FLAIR brain scans.
The accuracy of the training set and the testing set reached
98.9 and 97.3% after 50 epochs, respectively. It furthered our
previous work of classifying different cognitive performances in
SIVD, which is also based on single FLAIR sequence (Yao et al.,
2019). These two studies together proved that the method of 3D
CNN combined with high-resolution sMRI was worth applying
in clinical evaluation of small vessel disease in the elderly. FLAIR
sequence was used in our study because it could maximally reflect
the imaging features of SVCI such as lacunar infarct and WMH,
and the result finally verified the validity of the sequence.

Nowadays, neuroimaging examination has become an
indispensable part of clinical evaluation in SVCI, especially
MRI with a variety of advanced sequences such as DTI,
susceptibility-weighted imaging (SWI), functional MRI, and
perfusion-weighted imaging. However, as a result of the
imbalance of patients’ benefits from the expensive and time-
consuming MRI examination, there is still a lack of methods
worthy of promotion for the accurate diagnosis and evaluation
of patients. DL offered us an opportunity to obtain high clinical
diagnostic accuracy with even one single sequence, for it can take
full advantage of spatial contextual information in MRI volumes
to extract more representative high-level feathers. It could greatly
shorten the MRI examination time, reduce the patient’s stress
caused by the long-time examination, avoid the use of a large
number of expensive advanced MRI sequences, and simplify the
complex and time-consuming postprocessing. It is important
to note that in order to get high-quality image information,
we collected high-resolution FLAIR images, which cost 6 min
30 s. Whether thick-layer images as a clinical diagnosis most
often used could achieve similar accuracy needs further research.
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Considering that high-resolution MR imaging data consist
of numerous slices that have a continuous spatial positional
relationship, we applied a 3D-based CNN model rather than a
2D-based network, which has been proved to be more efficient
in our previous study (Yao et al., 2019). Finally, we got a high
accuracy of subclassifying VaMCI into a-MCI and na-MCI.

The subclassification of MCI has clinical significance, because
different MCI subtypes may subtend different etiologies. a-MCI
may indicate a degenerative etiology and has higher dementia
risks than has na-MCI, whereas na-MCI may indicate a vascular
etiology that needs more treatment to improve vascular function
and cerebral perfusion (Liu et al., 2018, 2019; Yang et al.,
2020b). On the basis of single high-resolution FLAIR images,
we proved that 3D-CNN can classify not only different cognitive
impairment stages in SIVD but also subtypes in MCI stage. This
method can greatly improve the efficiency and accuracy of clinical
diagnosis of SVCI and is beneficial to clinical targeted treatment
at the early stage of cognitive impairment.

Although we have achieved an appealing performance with
a high accuracy in this study, there are still several limitations.
First, this is a retrospective study with a relatively small
sample size. Large-scale multicenter and perspective studies are
needed to fully assess the generalization ability of the model.
Second, more detailed clinical groups such as single domain
and multidomain cognitive groups with or without amnesia
based on sufficient sample size can further test this 3D-CNN
model and enrich its clinical application. Third, the clinical or
pathological interpretation of the association between the high-
level features and the cognitive performances remain challenging.
Further studies are needed to establish a rationale to explain
the correlation between deep imaging features and cognitive
performances, which might hint at the underlying pathological
mechanisms of SVCI.

CONCLUSION

In this paper, we proposed an end-to-end attention-based 3D
ResNet model for classification of different subtypes of SVCI
with T2-weighted FLAIR MR images. End to end means doctors
do not need to perform complicated data preprocessing; they
can simply input the single MRI scanning image of patients
to the model and get the output of SVCI classification. Then

they can further get the diagnostic decision results according
to the auxiliary diagnosis results of our proposed methods. Our
proposed method provides a convenient and effective way to
assist doctors in the diagnosis and early treatment.
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