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Background: Hypoadiponectinemia has been associated with various cardiometabolic
disease states. Previous studies in adults have shown that adiponectin levels were
regulated by specific genetic and behavioral or lifestyle factors. However, little is known
about the influence of these factors on adiponectin levels in children, particularly as
mitigated by pubertal development.

Methods:We performed a cross-sectional analysis of data from 3,402 children aged 6-18
years from the Beijing Child and Adolescent Metabolic Syndrome (BCAMS) study. Pubertal
progress was classified as prepubertal, midpuberty, and postpuberty. Six relevant single
nucleotide polymorphisms (SNPs) were selected from previous genome-wide association
studies of adiponectin in East Asians. Individual SNPs and two weighted genetic
predisposition scores, as well as their interactions with 14 lifestyle factors, were analyzed
to investigate their influence on adiponectin levels across puberty. The effect of these factors
on adiponectin was analyzed using general linear models adjusted for age, sex, and BMI.

Results: After adjustment for age, sex, and BMI, the associations between adiponectin
levels and diet items, and diet score were significant at prepuberty or postpuberty, while
the effect of exercise on adiponectin levels was more prominent at mid- and postpuberty.
Walking to school was found to be associated with increased adiponectin levels
throughout puberty. Meanwhile, the effect of WDR11-FGFR2-rs3943077 was stronger
at midpuberty (P = 0.002), and ADIPOQ-rs6773957 was more effective at postpuberty
(P = 0.005), while CDH13-rs4783244 showed the strongest association with adiponectin
levels at all pubertal stages (all P < 3.24 × 10-15). We further found that effects of diet score
(P interaction = 0.022) and exercise (P interaction = 0.049) were stronger in children with higher
genetic risk of hypoadiponectinemia, while higher diet score and exercise frequency
attenuated the differences in adiponectin levels among children with different genetic risks.
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Conclusions: Our study confirmed puberty modulates the associations between
adiponectin, and genetic variants, lifestyle factors, and gene-by-lifestyle interactions.
These findings provide new insight into puberty-specific lifestyle suggestions, especially
in genetically susceptible individuals.
Keywords: adiponectin, puberty, diet items, genetic variants, gene-by-lifestyle interaction
INTRODUCTION

Childhood obesity has emerged as a global public health problem,
in part due to its association with cardiometabolic disease (1). In
China, overweight and obesity have increased rapidly over the
past four decades, and the prevalence of overweight and obesity
among children aged 6-17 and under 6 is 19% and 10.4%
respectively, which has become a major challenge for the
country’s healthcare system (2, 3). Yet, the mechanisms
responsible for obesity’s contribution to cardiometabolic risk,
like adipocyte metabolic dysregulation, remain unclear (4).
Adipose tissue, as an endocrine organ, secretes many peptide
hormones, termed “adipokines”, that affect systemic metabolism
(5). Among the most abundant adipokines, adiponectin is
specifically expressed in differentiated adipocytes and exhibits
anti-atherogenic, anti-inflammatory and anti-diabetic properties
(6). Low adiponectin levels, known as hypoadiponectinemia, and
a marker of adipose tissue dysfunction, and the condition that is
common in obesity (7), have been robustly associated with an
increased risk of insulin resistance, diabetes, cardiovascular
diseases, and certain kinds of cancer (8, 9). As a result,
adiponectin is regarded as a protective molecule and a
potentially novel therapeutic target for diabetes and related
diseases (10). Some diabetes drugs, such as rosiglitazone,
operate partially by increasing circulating adiponectin levels (11).

Recently, several genetic (12, 13) and environmental factors
(14–17) that influence adiponectin levels have been reported in
adult populations; however, the understanding of these
relationships in children, especially during puberty, is still quite
limited (18). Since many adult diseases have their origins in
childhood (19), it is important to identify the factors that
influence adiponectin levels during pediatric development. As
puberty is a period through which the body changes physically,
being a physiological process leading to the maturation of
children (20) and sex differences of adiponectin seem to
develop during the development of puberty (21), we propose
that the influences which genetic and environmental factors (as
well as gene-environment interactions) exert upon adiponectin
levels are mitigated by pubertal stage and that this modulating
effect of puberty is mediated through adipose tissue
development. Therefore, leveraging the large cohort within the
nd Adolescent Metabolic Syndrome;
MI, Body mass index; MS, Metabolic
lycerides; FBG, Fasting blood glucose;
gle nucleotide polymorphism; GPS,
eighted genetic predisposition score;
VA, Analysis of covariance; CI,

n.org 2
Beijing Child and Adolescent Metabolic Syndrome (BCAMS)
study (22), we aimed to examine the effect of pubertal stage upon
adiponectin’s association with specific gene variants, lifestyle
influences, and gene-environment interactions.
MATERIALS AND METHODS

Subjects
The BCAMS study, which has been described in detail elsewhere
(22, 23), is an ongoing cohort study of obesity and related metabolic
abnormalities in a representative sample of school-age children
(n = 19,593, aged 6-18 y, 50% boys) recruited from the Beijing area
between April and October 2004. Within this cohort, 4,500 subjects
were identified as being at risk of metabolic syndrome (MS), based
on at least one of the following criteria: 1) overweight, as defined by
body mass index (BMI) percentile; 2) increased total cholesterol
(TC) ≥ 5.2 mmol/L; 3) triglycerides (TG) ≥ 1.7 mmol/L; and
4) fasting blood glucose (FBG) ≥ 5.6 mmol/L based on finger
capillary blood tests. Next, all children at risk of MS, together with
a parallel normal sample of 1,024 schoolchildren, were invited
to participate in a further medical examination including
venipuncture-based blood tests. In total, 3,506 subjects, including
2,525 subjects with MS risk, ultimately completed the further
clinical examination. Thus, the presence of pediatric MS based
on clinical examination was defined by the presence of three or
more of the following five components (22, 23) (1): central obesity
defined as ≥90th percentile for age and gender (2); elevated systolic
and/or diastolic blood pressure ≥90th percentile for age, sex and
height (3); hypertriglyceridemia defined as TG ≥1.24 mmol/L (4);
low high-density lipoprotein (HDL) cholesterol defined as <1.03
mmol/L; and (5) hyperglycemia defined as FBG ≥ 5.6 mmol/L.
Accordingly, in the current study, we used the cross-sectional data
of 3,402 participants (including 2,112 subjects with MS risk and
1,290 subjects without MS risk based on clinical evaluation), who
completed the examination of adiponectin levels, genotype, and
lifestyle factors in 2004 (Supplementary Figure S1 and
Supplementary Table S1).

Anthropometric Measurements and
Pubertal Stages
The subjects’ height and weight were measured according to our
standard protocol (22, 24). Height in centimeters was measured
without shoes to the nearest 0.1 cm. Bodyweight was measured to
the nearest 0.1 kg (light indoor clothing, without shoes) using a
calibrated electronic scale. BMI was calculated as weight (kg)
divided by height squared (m2). Age- and sex-specific BMI
percentiles were used to define overweight (85th) and obesity
December 2021 | Volume 12 | Article 737459
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(95th) following the Working Group for Obesity in China (25).
Puberty stages were assessed by two pediatricians of the same
gender, based on Tanner’s stages of breast development in girls
and testicular volume in boys, in line with Marshall and Tanner
(26). The categories of puberty were defined as pre-puberty
(Tanner stage I), mid-puberty (Tanner stage II-III), and post-
puberty (Tanner stage ≥ IV) (26).

Lifestyle Description
Fourteen lifestyle factors (27), including walking to school,
frequency of exercise, duration of habitual sleep, and eleven
dietary habits were selected for examination in this study
(Table 1). And the comparison of lifestyle factors between
subjects with risk of MS and without risk of MS was listed in
Supplementary Table S1. Surveys were conducted retrospectively
and participants were asked how often on average they had
consumed each food in the previous month. Each dietary item
was scored on a 5-point scale according to the frequency categories
from “seldom or never” to “> 5 times per week “, with ascending
values for favorable foods (1 for “seldom or never” and 5 for “> 5
times per week”) and vice versa, according to the direction of their
linear associations with adiponectin levels. The diet score was
generated by summing all the selected item scores, with a higher
diet score indexing predisposition to higher adiponectin levels.
Effective exercise was deemed as exercise lasting longer than 30
minutes for extracurricular physical activities such as cycling,
running, swimming, dancing, and team sports. Transportation
Frontiers in Endocrinology | www.frontiersin.org 3
refers to “walking to school” which was recorded and reclassified
into two modes, ‘walking’ and ‘non-walking’.

Laboratory Measurements
Venous blood samples were collected after 12 h of fasting. The
adiponectin concentration was measured using a monoclonal
antibody-based enzyme-linked immunosorbent assay (28). The
intra- and interassay coefficients of variation were < 5.4% and
8.5%, respectively.

Single Nucleotide Polymorphism Selection
and Genotyping
Genomic DNA was isolated from peripheral white blood cells
using QIAamp DNA blood midikits (Qiagen). Genotyping was
carried out on a Sequenom Mass Array iPLEX genotyping
platform by BioMiao Biological Technology Co., Ltd (29). All
these SNPs had genotyping efficiency >0.95 and were in Hardy-
Weinberg equilibrium with p-value >0.008 (0.05/6). We selected
six SNPs showing strong associations with adiponectin levels in
previous genome-wide association studies (GWASs) (12, 13).
Among them, five SNPs (CDH13-rs4783244, ADIPOQ-
rs10937273, PEPD-rs889140, CMIP-rs2925979, and WDR11-
FGFR2-rs3943077) were identified in an East Asian adult
population (12) to have the five strongest associations with
adiponectin levels (P < 10-10 for each of the five SNPs); while
another SNP, ADIPOQ-rs6773957, was identified in a European
population (13) and was included because it is located at the
TABLE 1 | Comparison of lifestyle factors among the various pubertal stages.

Entire Populationc Prepubertycd Midpubertycd Postpubertycd P-value

N 3402 1092 1076 1234
Age (years) 13 ± 3 9 ± 2 13 ± 2 15 ± 2 <0.001
Sex
Male 1707 755 649 303 <0.001
Female 1695 337 427 931 <0.001
BMI (kg/m2) 21.8 ± 4.9 19.9 ± 4.6 21.9 ± 4.9 23.4 ± 4.7 <0.001
Normal weight, % 47.2 45.1 48.7 47.7 <0.001
Ln-adiponectin (mg/ml) a 1.7 ± 0.6 1.9 ± 0.6 1.6 ± 0.6 1.6 ± 0.6 <0.001
Dietb

Breakfast 4.4 ± 1.3 4.7 ± 1 4.4 ± 1.3 4.1 ± 1.3 <0.001
Bean 2.7 ± 1.4 2.8 ± 1.4 2.8 ± 1.4 2.5 ± 1.4 <0.001
Meat 3.7 ± 1.5 3.7 ± 1.5 3.8 ± 1.4 3.5 ± 1.5 <0.001
Sea food 2.2 ± 1.3 2.5 ± 1.3 2.2 ± 1.3 2.0 ± 1.2 <0.001
Diary 3.8 ± 1.6 4.2 ± 1.4 4.7 ± 1.6 3.5 ± 1.7 <0.001
Vegetable 4.8 ± 0.8 4.7 ± 0.8 4.8 ± 0.8 4.8 ± 0.6 <0.001
Fruit 4.1 ± 1.3 4.1 ± 1.3 4.0 ± 1.4 4.1 ± 1.3 0.341
Fast food 1.4 ± 0.8 1.5 ± 0.9 1.4 ± 0.8 1.4 ± 0.7 <0.001
Soft drink 2.5 ± 1.5 2.3 ± 1.4 2.6 ± 1.5 2.6 ± 1.5 <0.001
Fried food 2.0 ± 1.2 1.9 ± 1.1 2.0 ± 1.2 2.0 ± 1.3 0.017
Snacks 2.6 ± 1.5 2.4 ± 1.5 2.6 ± 1.6 2.6 ± 1.5 0.008
Exerciseb 3.4 ± 1.3 3.6 ± 1.2 3.5 ± 1.3 3.1 ± 1.4 <0.001
Walking to school, % 57 66 62 45 <0.001
Sleep duration (h/day) 8.5 ± 1.2 9.1 ± 0.9 8.6 ± 1.1 8.0 ± 1.2 <0.001
Decemb
er 2021 | Volume 12 | Article
aAdiponectin levels were natural logarithmically (ln) transformed.
bThe values of the diet items and exercise were encoded as “seldom or never” = 1; “1 time/2 weeks” = 2; “1-2 times per week” = 3; “3-5 times per week” = 4; “> 5 times per week” = 5.
cData are expressed as the mean ± SD or n (%).
dPrepuberty: Tanner stage I; Midpuberty: Tanner stage II-III; Postpuberty: Tanner stage ≥ IV.
Boldface type indicates nominally significant values (P < 0.05).
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3’ UTR of ADIPOQ, a very important regulatory area of the gene.
Details of the SNPs are listed in Supplementary Table S2.

Construction of Genetic Predisposition
Scores
As the effects of the SNPs were dramatically different, we used
weighted rather than unweighted genetic predisposition scores
(wGPSs) to evaluate the genetic structure of the children. wGPSs
were calculated by summing the scores of the six SNPs, each of
which was weighted using the mean of linear regression b from
our study (wGPSall-BCAMS) or that of published GWASs
(wGPSall-GWAS) for adiponectin levels (12, 13). CDH13-
rs4783244 was found to be the strongest modulator of
adiponectin levels in the current study, explaining at least 10-
fold higher adiponectin levels than the others (Supplementary
Table S2). We generated two GPSs that excluded CDH13-
rs4783244, namely, wGPSno CDH13-GWAS and wGPSno CDH13-
BCAMS, to evaluate the association of genetic structure with
adiponectin expression. For each participant j (j = 1, 2,…,
3405), we calculated wGPSs using the following equation:

wGPS(j)n = n�o
n
i=1b

(j)
i · EA(j)

i

on
i=1b

(j)
i

,

where n is 6 (i.e., wGPSall; including all six SNPs) or 5 (i.e., wGPSno
CDH13; all SNPs but CDH13-rs4783244), bi is the b coefficient of
each SNP for adiponectin levels (natural logarithm-transformed)
adjusted for age, sex, and BMI, and EAi is the number of effect
alleles (0, 1 or 2) in each SNP. Thus, wGPSall ranged from 0 to 12,
while wGPSno CDH13 ranged from 0 to 10. However, there were no
significant differences between the results of wGPSall-BCAMS and
wGPSall-GWAS or between wGPSno CDH13-GWAS and wGPSno
CDH13-BCAMS in the current study. Considering that SNP-
adiponectin associations could be different between children and
adults, we only report the results for wGPSall-BCAMS and wGPSno
CDH13-BCAMS in the current pediatric study, in the form of wGPSall
and wGPSno CDH13 for brevity.

Statistical Analysis
All analyses were performed using SPSS version 22.0 software for
Windows (SPSS Inc.) (30). Adiponectin levels were natural
logarithm transformed for analysis. We assigned a score of 1-5
(“seldom or never” = 1; “1 time every 2 weeks” = 2; “1-2 times per
week” = 3; “3-5 times per week” = 4; “> 5 times per week” = 5) to
each lifestyle factor to facilitate the analyses. The exception was
transportation (non-walking = 0, walking = 1). The results are
expressed as the mean ± SD or mean (95% CI) unless otherwise
stated. We used ANOVA, ANCOVA, and t tests to compare the
values of factors between different puberty groups. We performed
a linear regression adjusted for confounders including age, sex,
and BMI, to evaluate the associations of adiponectin with SNPs,
GPSs, and lifestyle factors. Furthermore, gene-lifestyle interactions
on adiponectin were tested using linear regression models by
including the interaction terms (e.g. diet*genotype) in these
models. The b coefficient, which reflects the change in the
serum adiponectin concentration, was used to report the effects
of genetic variants and lifestyle on adiponectin levels. Associations
Frontiers in Endocrinology | www.frontiersin.org 4
between SNPs and adiponectin levels were assessed using an
additive model in which a score of 0, 1, or 2 was assigned to
genotypes according to the number of effect alleles. An SNP
association was considered statistically significant if the resulting
P-value was less than the Bonferroni-corrected significance
threshold of 0.05/6 = 0.008. We only tested the interactions
between gene variants and lifestyle factors that were statistically
significantly associated with adiponectin levels, and then stratified
analyses were conducted to observe effect modification. The gene-
by-lifestyle interaction was considered to be significant if the
resulting P-value was less than the Bonferroni-corrected
significance threshold of 0.05/9 = 0.006 and considered to be
“nominally significant” if the P-value between 0.006 and 0.05.
RESULTS

Population Characteristics
Among the 3,402 children in our study, 32% were prepubertal,
32% were midpubertal, and 36% were postpubertal (Table 1).
Except for fruit intake, the examined lifestyle factors differed
significantly among children at different pubertal stages.
Children at an advanced pubertal stage generally exhibited a
higher BMI and lower adiponectin levels. Figure 1 highlights
the adiponectin levels among the different groups according to sex
and puberty status. Compared with prepuberty, adiponectin levels
significantly decreased after the onset of puberty, and adiponectin
levels were higher in girls after adjusting for age.

Genotypic Influences at Different
Pubertal Stages
Supplementary Table S2 shows the genetic information for the
six selected SNPs. After controlling for age, sex, and BMI, five of
FIGURE 1 | Changes in ln-adiponectin levels during puberty according to
sex. Data were shown as mean and SE. Puberty status was reclassified into
prepuberty (Tanner stage I), midpuberty (Tanner stage II-III) and postpuberty
(Tanner stage ≥ IV). Difference between boys and girls in the same pubertal
group was indicated *P < 0.001 and N.S. as non-significant value after
adjusted for age. Difference between diverse pubertal groups of the same sex
was indicated as different letters with P < 0.05 after adjusted for age, that
was, difference between pubertal groups of the same sex with the same letter
were not statistically significant.
December 2021 | Volume 12 | Article 737459
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these loci significantly influenced adiponectin levels: CDH13-
rs4783244, ADIPOQ-rs10937273, PEPD-rs889140, ADIPOQ-
rs6773957, and WDR11-FGFR2-rs3943077, explaining 5.2%,
0.7%, 0.5%, 0.2%, and 0.2% of the total variance, respectively. As
for the two wGPSs, both wGPSall and wGPSno CDH13 were strongly
positively associated with adiponectin levels and explained 7.1%
and 1.9% of the total variance, respectively. Table 2 outlines the
associations between the SNPs and adiponectin levels according to
pubertal status in the current study. The changes in the strength of
these associations during puberty after adjustment for age, sex and
BMI are graphically highlighted in Figure 2A. The association of
ADIPOQ-rs6773957 with adiponectin levels was only significant at
postpuberty [b = 0.058 (0.017, 0.099), P = 0.005], while WDR11-
FGFR2-rs3943077 presented a significant effect on adiponectin
levels at midpuberty [b = 0.076 (0.027, 0.125), P = 0.002]. The
other three SNPs, namely, ADIPOQ-rs10937273, CDH13-
rs4783244, and PEPD-rs889140, together with wGPSall and
wGPSno CDH13, were associated with adiponectin levels
throughout puberty. Most notably, among the six SNPs,
CDH13-rs4783244 showed the strongest association with
adiponectin levels at all pubertal stages.

Impact of Lifestyle at Different Pubertal
Stages
Controlling for age and sex, both exercise (P = 0.049) and walking
to school (P = 4.47×10-12) was associated with increased
adiponectin levels; adjustment for BMI attenuated the
association of adiponectin levels with both exercise (P = 0.750)
and walking to school (P = 1.07×10-4). Six diet items (breakfast,
meat, dairy, soft drink, fried food, and snack) were significantly
associated with adiponectin levels in the model adjusted for age
and sex (soft drink, fried food, and snack), or in the model further
adjusted for BMI (breakfast, meat, dairy, and soft drink) (Table 3).
To better analyze the association of adiponectin with dietary
structure, we used the six dietary items shown to be associated
with adiponectin in either adjusted model to construct a new diet
score. The diet score showed a stronger association with increased
adiponectin levels than any single diet factor in both models with
Frontiers in Endocrinology | www.frontiersin.org 5
(P = 1.25 × 10-8) or without (P = 6.32 × 10-6) adjustment for BMI
(Supplementary Table S3). Further analyses of lifestyle factors
and gene-by-environment interactions will only focus on nine
lifestyle factors that were associated with adiponectin levels in
either adjustment model, including walking to school, exercise,
diet score, and consumption of breakfast, meat, dairy, soft drink,
fried food, and snacks. Further analyses (depicted in Figure 2B
and summarized in Supplementary Table S3) adjusted for age
and sex revealed different effects of the nine lifestyle factors on
adiponectin levels among the three pubertal stages. However, none
of the dietary items nor the diet score was associated with
adiponectin levels at midpuberty. Walking to school was the
only factor that influenced adiponectin levels throughout
puberty [prepuberty: b = 0.114 (0.043, 0.185), P = 0.002;
midpuberty: b = 0.077 (0.003, 0.151), P = 0.044; postpuberty:
b = 0.203 (0.142, 0.264), P < 0.001]. In addition, exercise frequency
was only associated with adiponectin levels after the onset of
puberty [midpuberty: b = 0.031 (0.002, 0.060), P = 0.036;
postpuberty: b = 0.025 (0.001, 0.049), P = 0.031]. After further
adjustment for BMI, most of the effects of lifestyle factors on
adiponectin levels were weakened, except for that of breakfast
frequency, which decreased adiponectin levels significantly at
postpuberty [b = -0.039 (-0.059 to -0.019), P = 0.003]
(Supplementary Table S3). Additionally, none of the lifestyle
factors, including walking to school, significantly affected
adiponectin levels at midpuberty independent of BMI.

SNPs-Lifestyle Interactions Across
Pubertal Stages
After controlling for age and sex (Supplementary Table S4), we
found two statistically significant interactions in the entire
population: one between WDR11-FGFR2-rs3943077 and
walking to school [b = -0.079 (-0.132 to -0.026), P = 0.004]
and the other between ADIPOQ-rs6773957 and exercise [b =
0.038 (0.018 to 0.058), P = 1.71 × 10-4], as well as five nominally
significant interactions. Regarding the interactions between GPS
and lifestyle factors, as depicted in Figure 3 and Supplementary
Table S5, we identified nominally significant negative
TABLE 2 | SNPs’ effect on adiponectin levels adjusted for age, sex, and BMI.

SNP/GPS Prepubertyb Midpubertyb Postpubertyb

b (95%CI) c P c b (95%CI) c P c b (95%CI) c P c

ADIPOQ- rs10937273 0.102(0.055 to 0.149) 2.34×10-05 0.057(0.010 to 0.104) 0.028 0.066(0.023 to 0.109) 0.002
ADIPOQ- rs6773957 0.036(-0.011 to 0.083) 0.131 0.007(-0.042 to 0.056) 0.781 0.058(0.017 to 0.099) 0.005
CDH13- rs4783244 -0.190(-0.237 to -0.143) 3.24×10-15 -0.207(-0.256 to -0.158) 5.85×10-16 -0.207(-0.250 to -0.164) 2.46×10-20

WDR11-FGFR2- rs3943077 0.021(-0.026 to 0.068) 0.377 0.076(0.027 to 0.125) 0.002 0.028(-0.015 to 0.071) 0.193
CMIP- rs2925979 0.002(-0.045 to 0.049) 0.938 -0.022(-0.073 to 0.029) 0.405 -0.031(-0.074 to 0.012) 0.152
PEPD- rs889140 0.064(0.019 to 0.109) 0.006 0.088(0.039 to 0.137) 5.09×10-4 0.048(0.007 to 0.089) 0.025
wGPS-GWAS 0.072 (0.057 to 0.087) 4.28×10-20 0.080(0.064 to 0.096) 3.39×10-21 0.077(0.063 to 0.091) 7.14×10-26

wGPS-BCAMS 0.071(0.056 to 0.085) 2.53×10-21 0.076(0.061 to 0.092) 1.75×10-21 0.074(0.061 to 0.087) 3.33×10-26

wGPS-GWAS(no CDH13) 0.044 (0.024 to 0.064) 1.01×10-5 0.046 (0.026 to 0.066) 1.35×10-5 0.042 (0.024 to 0.060) 3.30 ×10-6

wGPS-BCAMS(no CDH13) 0.046 (0.028 to 0.064) 9.40×10-7 0.045 (0.025 to 0.065) 6.51×10-6 0.04 (0.022 to 0.058) 3.27×10-6
Dece
mber 2021 | Volume 12 | Art
aAdiponectin levels were natural logarithm transformed for analysis.
bPrepuberty: Tanner stage I; Midpuberty: Tanner stage II-III; Postpuberty: Tanner stage ≥ IV.
cResults are adjusted for age, sex, and BMI.
Boldface type indicates nominally significant values (P < 0.05).
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interactions of wGPSall with diet score [b = -0.003 (-0.005 to
0.000), P = 0.022] and wGPSno CDH13 with exercise [b = -0.009
(-0.017 to 0.000), P = 0.049] and snacks [b = -0.006 (-0.012 to
Frontiers in Endocrinology | www.frontiersin.org 6
0.000), P = 0.038] when age, sex and other lifestyle factors were
controlled. The interaction between wGPSall and diet score was
more prominent at postpuberty than at other puberty stages.
TABLE 3 | Association of lifestyles factors with adiponectin levels.

Variables Model 1- unadjusted Model 2- adjusted for age and sex Model 3- adjusted for age, sex and BMI.

b (95% CI) P-value b (95% CI) P-value b (95% CI) P-value

Age -0.049 (-0.055 to -0.043) 3.12×10-53 / / / /
Sex 0.094 (0.055 to 0.133) 2.69×10-6 / / / /
BMI (kg/m2) -0.048 (-0.052 to 0.044) 3.23×10-132 -0.041 (-0.045 to -0.037) 2.30×10-87 / /
Tanner stage -0.097 (-0.111 to -0.083) 5.82×10-48 -0.076 (-0.100 to 0.052) 6.90×10-10 -0.025 (-0.049 to -0.001) 0.040
Exercise 0.026 (0.010 to 0.042) 0.001 0.015 (-0.001 to 0.031) 0.049 0.002 (-0.012 to 0.016) 0.75
Walking to school 0.183 (-0.209 to 0.575) 2.33×10-19 0.137 (0.098 to 0.176) 4.47×10-12 0.074 (0.037 to 0.111) 1.07×10-4

Sleep time 0.112 (0.077 to 0.147) 2.17×10-10 0.009 (-0.026 to 0.044) 0.641 -0.011 (-0.046 to 0.024) 0.531
Diet factors
Breakfast 0.013 (-0.003 to 0.029) 0.095 -0.005 (-0.021 to 0.011) 0.479 -0.019 (-0.033 to -0.005) 0.009
Bean 0.012 (-0.002 to 0.026) 0.115 0.006 (-0.008 to 0.020) 0.375 -0.004 (-0.018 to 0.010) 0.532
Meat -0.013 (-0.027 to 0.001) 0.063 -0.009 (-0.023 to 0.005) 0.204 -0.014 (-0.026 to -0.002) 0.024
Sea food 0.020 (0.004 to 0.036) 0.014 0.008 (-0.008 to 0.024) 0.328 -0.005 (-0.019 to 0.009) 0.537
Diary 0.006 (-0.006 to 0.018) 0.335 -0.010 (-0.022 to 0.002) 0.128 -0.019 (-0.031 to -0.007) 0.002
Vegetable -0.012 (-0.039 to 0.015) 0.387 -0.007 (-0.032 to 0.018) 0.573 -0.003 (-0.027 to 0.021) 0.819
Fruit 0.003 (-0.013 to 0.019) 0.717 -0.004 (-0.018 to 0.010) 0.563 -0.010 (-0.024 to 0.004) 0.147
Fast food 0.016 (-0.009 to 0.041) 0.213 0.004 (-0.020 to 0.028) 0.744 -0.011 (-0.033 to 0.011) 0.352
Soft drink -0.032 (-0.046 to -0.018) 5.07×10-6 -0.016 (-0.030 to -0.002) 0.017 -0.018 (-0.030 to -0.006) 0.004
Fried food 0.014 (-0.027 to 0.055) 0.523 0.018 (0.002 to 0.034) 0.026 0.014 (-0.001 to 0.029) 0.072
Snacks 0.049 (-0.343 to 0.441) 0.017 0.021 (0.008 to 0.034) 0.001 0.011 (-0.001 to 0.023) 0.072
December 2021 | Volume 12 |
Adiponectin levels were natural logarithm transformed (ln, e-based) for analysis.
Boldface type indicates nominally significant values (P < 0.05).
A

B

FIGURE 2 | Genetic and lifestyle associations with adiponectin levels according to the different puberty stages. Figure (A) shows the effect (histograms) and
SEs (error bar) of SNPs on adiponectin levels (% change in adiponectin levels per effect allele) at different puberty stages. Figure (B) shows the effect
(histograms) and SEs (error bar) of lifestyle factors on adiponectin levels (% change in adiponectin levels when walking to school for the transportation variable
and % change in adiponectin levels per assigned score increase for other variables) at different puberty stages. The results were adjusted for age, sex, and
BMI. *P < 0.05; ** P < 0.05/6 = 0.008 (after Bonferroni correction); *** P < 0.001.
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Further adjustment for BMI did not change the significance of
the interactions between wGPSno CDH13 and exercise and snacks
in the entire population and between wGPSall and diet score in
children at postpuberty (Supplementary Tables S4, S5).

As we identified an interaction between wGPSall and diet score,
and an interaction of wGPSno CDH13 with exercise, further stratified
analyses were undertaken to observe effect modification. We firstly
analyzed the associations of adiponectin levels with diet score and
exercise according to the categories of genetic risk (Figure 4). We
found that diet score and exercise had greater effects in children
with a higher genetic risk for low adiponectin (Figure 4).

Second, we compared adiponectin concentrations between
different categories of genetic risk and lifestyle levels (Figure 5).
The difference in adiponectin levels between children at high
genetic risk and those at intermediate or low genetic risk was
more prominent among children with low and intermediate
exercise levels than among those with high exercise levels
(Figure 5A), whereas no significant difference in adiponectin
levels was found among the genetic risk groups when the exercise
frequency was high. A similar pattern was observed for diet
levels, while an increased diet score significantly attenuated the
difference in adiponectin levels between the high genetic risk
group and intermediate genetic risk group (Figure 5B).
DISCUSSION

In this large cohort of Chinese children, we observed that eight
lifestyle factors (breakfast, meat, dairy, soft drink, fried food, and
snack consumption, walking to school, and exercise), and
reported for the first time that five loci (ADIPOQ-rs10937273,
Frontiers in Endocrinology | www.frontiersin.org 7
ADIPOQ-rs6773957, CDH13-rs4783244, WDR11-FGFR2-
rs3943077, and PEPD-rs889140) and two weighted polygene
scores (wGPSno CDH13 and wGPSall), and some of their
interactions were associated with adiponectin levels of
children. We noted that the effects of a healthy diet and
physical activity were more prominent in children at higher
genetic risk of hypoadiponectinemia. We further found that the
effects of these factors on adiponectin levels varied between
pubertal stages, suggesting a modulating effect.

The value of identifying the associations between SNPs and
adiponectin is related not only to the prediction of disease but also
to the identification of causal steps on the path from genes to
disease that can be targeted to reduce the risk (31). Previous
GWASs have identified several genetic variants associated with
adiponectin levels in adults (12, 13). Studies have shown that
decreased androgen levels (32), decreased adipocyte size growth,
better adipose tissue differentiation (5), and less visceral fat
accumulation (33, 34), for which dramatic changes are observed
during puberty, are associated with increased adiponectin levels
(15, 35, 36). However, the relationships between these SNPs and
adiponectin in childhood, and especially during puberty, a critical
time for adipocyte hypertrophy and hyperplasia (37–39), are
unclear. In line with GWASs conducted in adults, we found
that ADIPOQ-rs10937273, ADIPOQ-rs6773957, CDH13-
rs4783244, WDR11-FGFR2-rs3943077, and PEPD-rs889140
were associated with adiponectin levels among school children.
According to previous studies, ADIPOQ-rs10937273 and
ADIPOQ-rs6773957 were two unlinked SNP of adiponectin
gene, while CDH13-rs4783244, PEPD-rs889140, WDR11-
FGFR2-rs3943077 were associated with the synthesis of
adiponectin receptor T-cadherin, adipocyte hypertrophy, and
FIGURE 3 | Effects of the interactions of the weighted genetic score with lifestyle factors on the % change in adiponectin levels according to the different puberty
stages. The figure shows the effect and 95% CI of the interactions of wGPSall and wGPSno CDH13 with lifestyle factors on adiponectin levels (% change in adiponectin
levels per wGPSall or wGPSno CDH13 per diet score or per lifestyle factors assigned score increase) in the entire population of children at different puberty stages. The
results for the diet items were adjusted for age and sex. The results for the diet score were adjusted for age, sex, and activities (including exercise and transportation
type). The results for the activities were adjusted for age, sex, and diet score; * P < 0.05.
December 2021 | Volume 12 | Article 737459

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Wu et al. Puberty, Gene, and Lifestyle Effects on Adiponectin
adipocyte differentiation respectively, which were further related
to adiponectin levels. Therefore, our study suggested that the
effects of SNPs on adiponectin levels reflected the activation of
specific pathways. Different from studies in adults, CMIP-
Frontiers in Endocrinology | www.frontiersin.org 8
rs2925979 (12), an SNP related to lipolysis (40), was not
associated with adiponectin levels in this study. One possible
explanation is that the major processes of adipose development in
children are differentiation and hypertrophy, and the effect of
lipolysis might be weak during puberty.

To better understand the role of puberty in the SNP-
adiponectin relationship, we divided puberty into three
categories based on Tanner’s stages. We hypothesized that the
modifying effect of puberty reflects the development of adipose
tissue in children (Figure 6). We found that PEPD-rs889140,
ADIPOQ-rs10937273, and CDH13-rs4783244 were significantly
associated with adiponectin level both at prepuberty and in later
life. Given that PEPD-rs889140, ADIPOQ-rs10937273, and
CDH13-rs4783244 were related to collagen synthesis and
adipocyte hypertrophy (41, 42), adiponectin, and adiponectin
receptor T-cadherin (43, 44) respectively. Therefore, our findings
suggested that adipocyte hypertrophy, the expression of both
adiponectin and the adiponectin receptor are a continuous
process throughout childhood. At midpuberty, the differences
between sexes and the effect of WDR11-FGFR2-rs3943077,
which is related to adipocyte differentiation (12), become
significant, which supported that sex hormone levels are
elevated and adipocyte differentiation is accelerated (37). At
postpuberty, when the process of puberty is near its end,
ADIPOQ-rs6773957, located in the 3’UTR of the adiponectin
gene, is activated by unknown regulators.

Given that low adiponectin levels were associated with
increased risk of metabolic disorders and cancers, findings of
genetic and environmental factors related to adiponectin at a
young age are important for early prevention and detection of
these diseases. We found that both wGPSall and wGPSno CDH13

were associated with increased adiponectin levels throughout
A B

FIGURE 5 | Adiponectin levels according to genetic risk and categories of diet and exercise. The figure shows multivariable-adjusted means (histograms) and SEs
(error bar) of the natural logarithm transformed adiponectin levels according to the categories of lifestyle and genetic risk for decreased adiponectin levels. The P-
values are the results of an ANCOVA comparing the adiponectin levels among the genetic risk groups. Data for exercise were adjusted for age, sex, and diet score,
while data for diet were adjusted for age, sex, and exercise frequency. As we reported an interaction between diet score and wGPSall and an interaction for exercise
with wGPSno CDH13, we used (A) wGPSall to identify genetic risk categories in the diet subgroups and (B) used wGPSno CDH13 to identify genetic risk categories
in the exercise subgroups. Genetic risk was divided into low genetic risk (wGPSno CDH13 or wGPSall > mean + 1SD), intermediate genetic risk (wGPSno CDH13 or
wGPSall ≥ mean - 1SD but ≤ mean + 1SD) and high genetic risk (wGPSno CDH13 or wGPSall < mean - 1SD). Similarly, diet and exercise were divided into high
(diet score> mean + 1SD; exercise frequency ≤ 2 times per week), intermediate (diet score ≥ mean - 1SD but ≤ mean + 1SD; exercise frequency = 3-4 times per
week), and low (diet score < mean – 1SD; exercise frequency ≥ 5 times/week). N.S. means the difference is not significant.
FIGURE 4 | The associations of diet and exercise with adiponectin levels
according to the categories of genetic risk. The figure shows the main effects
(histograms) and SEs (error bars) of diet score and exercise on adiponectin
levels (% change in adiponectin levels per assigned score increase for diet
and exercise) according to the genetic risk for decreased adiponectin levels.
The data for diet scores were adjusted for age, sex, transportation type and
exercise. The data for exercise were adjusted for age, sex and diet score.
As we reported an interaction between diet score and wGPSall and an
interaction for exercise with wGPSno CDH13, we used wGPSall to identify
the genetic modification of diet effect and used wGPSno CDH13 to identify
the genetic modification of the exercise effect. Genetic risk was divided into
low genetic risk (wGPSno CDH13 or wGPSall > mean +1SD), intermediate
genetic risk (wGPSno CDH13 or wGPSall ≥ mean -1SD but ≤ mean+1SD)
and high genetic risk (wGPSno CDH13 or wGPSall < mean-1SD). N.S.
means the effect of exercise at low genetic risk is not significant.
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puberty when adjusted for age, sex, and BMI. Therefore, children
with a low wGPSall or wGPSno CDH13 should pay more attention
to their lifestyle to increase the adiponectin concentration
in childhood.

In line with previous studies in both adults and children (14–
17, 45–48), we found that lifestyle factors, including the
consumption of breakfast, meat, dairy, soft drinks, fried food,
and snacks and exercise, were associated with adiponectin levels.
For the first time, we report that walking to school increases
adiponectin levels in school-age children. Moreover, we identified
Frontiers in Endocrinology | www.frontiersin.org 9
several significant gene-by-environment interactions, suggesting
that lifestyle factors affect adiponectin levels by activating a specific
regulatory region of a gene containing an SNP. Growing evidence
indicates that it is not only energy intake from food consumption
but also special components of food that link the adiponectin-diet
relationship (49, 50). The negative associations of adiponectin
levels with dairy, meat, and breakfast consumption might be
explained by the intake of vitamin D (49). Fried food may
contribute to increased adiponectin levels by supplying fatty
acids for adipocyte differentiation (50). The effect of snacking on
FIGURE 6 | Hypothesis for the changes in adipocyte metabolism during puberty. The figure shows our hypothesis, which is that the modification effect of puberty
on the SNP-adiponectin association is based on the development of adipose tissue during puberty. The SNPs shown in this figure are SNP1: ADIPOQ-rs10937273;
SNP2: ADIPOQ-rs6773957; SNP3: CDH13-rs4783244; SNP4: WDR11-FGFR2-rs3943077; and SNP5: PEPD-rs889140. The puberty categories that we used in the
current study were as follows: prepuberty (Tanner stage I), midpuberty (Tanner stage II-III), and postpuberty (Tanner stage ≥ IV). Prepuberty is a period during which
the processes of puberty have not yet been activated completely. Midpuberty is the phase during which puberty has been activated but is not finished. Postpuberty
is the stage at which the processes of puberty are nearly completed, and adolescents at postpuberty are similar to adults. The development of adipose tissue
includes hyperplasia, related to WDR11-FGFR2-rs3943077, and the hypertrophy of adipocytes. The number of adipocytes increases quickly at midpuberty but
remains relatively consistent after postpuberty. The size of adipocytes increases during puberty, which makes them secrete lower amounts of adiponectin. The
process of hypertrophy is suppressed by the function of collagen, which might be related to PEPD-rs889140. ADIPOQ-rs10937273 and ADIPOQ-rs6773957
are SNPs located at different regulation sites of the adiponectin gene. They are activated at different puberty stages. Adiponectin is bound by T-cadherin
encoded by CDH13, which is a high-molecular-weight adiponectin receptor expressed on target cells. Sex steroids decrease adiponectin levels by taking part
in the regulation of both the distribution and differentiation of adipocytes.
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increasing adiponectin levels might also be based on a greater
intake of fatty acids. Sugar-sweetened beverage consumption has
also been reported to cause an increased BMI and adipokine
dysregulation, independent of energy intake (15, 16). Regarding
activity factors, previous studies have shown discrepancies
regarding the effects of exercise on adiponectin metabolism (48).
Some studies indicate that exercise contributes to increased
adiponectin levels only by causing weight loss, while others
suggest that exercise itself can increase adiponectin levels
independent of changes in body composition (48). Additionally,
previous studies have indicated that different kinds of exercise
might affect adiponectin levels through different mechanisms and
that combining resistance exercise with aerobic exercise may be
more beneficial (48). Similarly, we found that two activity factors,
walking to school and regular exercise, were associated with
increased adiponectin levels. However, the effect of exercise on
adiponectin levels depended on BMI, while the influence of
walking to school did not. Furthermore, we found that exercise
and walking to school interacted with different SNPs significantly
after adjusting for age, sex, and BMI: exercise interacted with
ADIPOQ-rs6773957 while walking to school interacted with
WDR11-FGFR2-rs3943077. Therefore, our results support the
idea that different types of exercise affect adiponectin levels
through various mechanisms (18).

In the current study, puberty also presented a strong
modification effect on adiponectin-lifestyle associations. The
modulation effect of puberty on adiponectin-lifestyle might
also be explained by adipose tissue development during
puberty. Whole-body growth is accelerated during puberty,
and the effect of food consumption specifically on adipose
tissue metabolism is relatively weak at midpuberty compared
with the early and late puberty stage. However, activity factors
are still effective methods for controlling weight at the
midpuberty stage.

Our study had several strengths. The major advantages of our
study include the large sample size of more than 3,400 participants
and the completeness of the data, enabling us to analyze the
influence of puberty on adiponectin modulation in a novel way.
Previous studies addressing puberty and adiponectin have
provided limited information regarding the possible mechanisms
during this critical life period. The examination of the modifying
impact of pubertal development on the effects of other factors led
to the generation of several hypotheses regarding metabolic
changes in adipocytes that warrant further investigation. Our
study also had certain methodologic limitations. Firstly, because
the current study was based on the BCAMS study, some detailed
lifestyle information was not collected and the lifestyle indicators
in this study were a little simple; for example, the components of
the children’s breakfast were not recorded, which made it
challenging to analyze some interactions between lifestyle
factors. Besides, we only collected the consumption frequency of
diet while not collected the amount of consumption of each diet
item, and walking to school was recorded and simply reclassified
into only two modes, ‘walking’ and ‘non-walking’. Secondly,
although our 3,402-participant study cohort represents one of
the largest pediatric cohorts examined to date, even a larger sample
size is still required when analyzing data for different puberty
Frontiers in Endocrinology | www.frontiersin.org 10
subgroups. Thirdly, the ethnic background of human populations
plays an important role in both genetic architecture and
adiponectin levels; thus, our results cannot be directly
generalized without further research in other ethnic groups.
Lastly, the current study is a cross-sectional study, and it is
therefore impossible to determine how the evaluated lifestyle
factors will affect adiponectin levels in the future. Therefore, the
examination of a larger prospective cohort with more
comprehensive information is warranted to confirm the
modulation effect of puberty stages.
CONCLUSIONS

In this large pediatric cohort of a Chinese population, we found
that associations of adiponectin with SNPs, lifestyle factors, and
gene-by-environment interactions are modified by puberty
stages. Children at high genetic risk might benefit more from
dietary control, and exercise. The most important periods for
diet control were shown to be the early and late stages of puberty,
while exercise might be more important after the onset
of puberty.
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