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Abstract

Background

This study aimed to improve the automatic probabilistic classification of joint motion gait pat-

terns in children with cerebral palsy by using the expert knowledge available via a recently

developed Delphi-consensus study. To this end, this study applied both Naïve Bayes and

Logistic Regression classification with varying degrees of usage of the expert knowledge

(expert-defined and discretized features). A database of 356 patients and 1719 gait trials

was used to validate the classification performance of eleven joint motions.

Hypotheses

Two main hypotheses stated that: (1) Joint motion patterns in children with CP, obtained

through a Delphi-consensus study, can be automatically classified following a probabilistic

approach, with an accuracy similar to clinical expert classification, and (2) The inclusion of

clinical expert knowledge in the selection of relevant gait features and the discretization of

continuous features increases the performance of automatic probabilistic joint motion

classification.

Findings

This study provided objective evidence supporting the first hypothesis. Automatic probabilis-

tic gait classification using the expert knowledge available from the Delphi-consensus study

resulted in accuracy (91%) similar to that obtained with two expert raters (90%), and higher

accuracy than that obtained with non-expert raters (78%). Regarding the second hypothe-

sis, this study demonstrated that the use of more advanced machine learning techniques

such as automatic feature selection and discretization instead of expert-defined and discre-

tized features can result in slightly higher joint motion classification performance. However,

the increase in performance is limited and does not outweigh the additional computational

cost and the higher risk of loss of clinical interpretability, which threatens the clinical accep-

tance and applicability.
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Introduction

The most common physical disability in children is cerebral palsy (CP). The prevalence of this

neuromotor disorder is estimated at 2.11 per 1000 live births [1]. The motor symptoms associ-

ated with CP, including spasticity, weakness, impaired balance, and loss of selective motor

control, affect the child’s ability to walk. Because of these different motor symptoms, the vari-

ability with which CP affects gait is considerable. To evaluate this variety of different joint

motion patterns, three-dimensional motion analysis (3DGA) is typically performed. 3DGA

provides a highly-detailed assessment of joint angles, joint moments, and power during walk-

ing. The difficulty with using this comprehensive biomechanical measurement of gait is the

clinical interpretation of the vast amount of multidimensional data that it generates. Summa-

rizing this vast amount of data, for instance using gait classification [2,3], can facilitate clinical

decision-making [4,5]. Nieuwenhuys et al. [6] highlighted additional advantages of gait classi-

fication: “Apart from research applications, gait classifications can improve communication

among health care workers by providing a tool for describing, evaluating, and comparing gait

between and among patients or groups of patients. Ultimately, it could aid lecturers teaching

about gait in CP, serve as a tool for assessing treatment outcome, and potentially lead to a

more in-depth understanding of the neurological cause of specific joint motion patterns,

which may be associated with specific treatment indications.”

Gait classification in CP based on 3DGA data is subject to different challenges. Dobson et al.

[2] defined two approaches for gait classification: qualitative and quantitative. According to qual-

itative approaches “decisions to group members rely on the judgment and experience of those

making the decisions”. Quantitative approaches use machine learning techniques to pre-process

and classify 3D gait data. Qualitative approaches optimally rely on expert knowledge but are lim-

ited by their subjective nature and inconsistency [2,7,8]. Quantitative approaches on the other

hand are objective and powerful when it comes to analysing complex data, however, obtaining

clinically relevant results and incorporating expert knowledge at the same time is often challeng-

ing [8]. In particular quantitative classification approaches have the risk of producing classes or

classification rules for which the clinical interpretation is not straightforward [2].

An additional challenge for gait classification in children with CP is that the inter-subject var-

iability is so high that often the observed joint motions do not match 100% with a set of pre-

defined joint motion patterns [8]. Forcing CP gait to fit into one joint motion pattern, a so-called

hard assignment, jeopardizes the clinical meaning [8]. This can be avoided by applying probabi-

listic classification approaches, which have the ability to do a soft-assignment as they calculate

the probability of an observed joint motion belonging to all different joint motion patterns.

By incorporating expert knowledge into an automatic probabilistic classification of joint

motions observed in the gait of children with CP, the advantages of qualitative and quantitative

approaches could be combined. From the plethora of information provided by 3DGA, clinical

experts can highlight the essential, clinically meaningful parts, thereby providing the quantita-

tive approaches with a more clinically relevant subset of the available data. Unsupervised quan-

titative classification has the risk of resulting in classes without clinical meaning. This issue is

alleviated by using a supervised classification approach that forces the outcome of the classifi-

cation in classes that are expert-defined and, thus, by definition relevant to clinicians. Recently,

a consensus-based gait classification supported by clinicians, including definitions of joint

motion patterns and the 3DGA features characterizing these joint motion patterns, was pro-

posed by Nieuwenhuys et al. [6]. The inter- and intra-rater reliability of this new classification

was shown to be high [9]. Moreover, Statistical Parametric Mapping (SPM) was used to study

the differences between these consensus-based gait classifications [10]. As such, we can state

that a qualitative, clinically accepted, and validated classification of joint motion gait patterns
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in children with CP is currently available. This new study aimed at evaluating quantitative,

probabilistic classification approaches that use this new expert knowledge provided by the Del-

phi-consensus study of Nieuwenhuys et al. [6].

Many quantitative approaches have been developed for the classification of joint motion

gait patterns in children with CP [8], but few manage to incorporate patient- or pathology-spe-

cific clinical expert knowledge [2,3,8]. Two notable exceptions that use a Bayesian probabilistic

approach were provided by Van Gestel et al. [8] and by Zhang et al. [11], showing proof-of-

concept using automatic probabilistic algorithms. With respect to Zhang et al. [11], where

Bayesian classification was used as a paradigm for probabilistic decision-making, the current

study had several novel contributions. Firstly, Zhang et al. [11] only differentiated normal

healthy gait from spastic diplegic patients while the current study considered eleven different

joint motions across multiple joint motion patterns (see Table 1; ranging from three patterns

for the sagittal and transverse hip joint motion and foot progression angle up to six patterns

for the pelvis, and knee during swing in the sagittal plane). Secondly, Zhang et al. [11] only

used four features (stride length, cadence, leg length, and age), while the current study used 23

expert-defined features (Table 2). Thirdly, the population studied by Zhang et al. [11] was

rather limited (68 normal healthy individuals and 88 with the spastic diplegia form of CP),

while we studied 356 patients, with a total of 1,719 gait trials.

In Van Gestel et al.’s [8] study there are more setting similarities with the current study,

and Bayesian networks were used for probabilistic classification. However, in addition to test-

ing a Bayesian network classifier this study also applied Logistic Regression. Moreover, we

used the most recent consensus-based joint motion patterns [6] as available expert knowledge,

which have evolved considerably since the study of Van Gestel et al. [8]. Van Gestel et al. [8]

only applied the classification to four joint motions (sagittal knee and ankle motion in stance

and swing), while this paper reports on results for eleven joint motions (Table 1). The studied

population in the current study was also larger (356 patients versus 139 patients) and we

explored different approaches to incorporate expert knowledge (feature selection and discreti-

zation), which have not been studied before in the field of CP gait pathology.

By developing a quantitative classification approach that uses joint motion patterns and gait

features defined and discretized by clinical experts as its essential characteristics, the clinical

relevance of the automatic classification and its clinical acceptance will improve. This study

states two hypotheses to evaluate automatic probabilistic joint motion gait classification in

children with CP incorporating the newly available expert knowledge from the consensus-

based classification [6]:

1. Joint motion patterns in children with CP, obtained through a Delphi-consensus study, can

be automatically classified following a probabilistic approach, with an accuracy similar to

clinical expert classification.

2. The inclusion of clinical expert knowledge in the selection of relevant gait features (hypoth-

esis 2a) and in the discretization of continuous features (hypothesis 2b), increases the per-

formance of automatic probabilistic joint motion classification.

Materials and methods

Patient group

After the project was approved by the Medical Ethics Committee of UZ Leuven (Leuven Uni-

versity Hospitals) (ref. s56036), the clinical motion analysis laboratory’s database of Pellenberg

University Hospital was searched for gait analysis sessions of children with unilateral or
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Table 1. Joint motion pattern descriptions and their frequency in the dataset.

(%)

SAGITTAL PLANE

Pelvis

PS0—Normal pelvic motion/posture–no or minor gait deviations 16.3

PS1—Increased range of motion 29.4

PS2—Increased anterior tilt on average 16.0

PS3—Increased anterior tilt and increased range of motion 35.8

PS4—Decreased anterior tilt (posterior tilt) 1.4

PS5—Decreased anterior tilt (posterior tilt) and increased range of motion 1.0

Hip

HS0—Normal hip motion–no or minor gait deviations 55.4

HS1—Hip extension deficit 27.5

HS2—Continuous excessive hip flexion 17.1

Knee during stance

KSTS0—Normal knee motion during stance–no or minor gait deviations 15.9

KSTS1—Increased knee flexion at initial contact 8.1

KSTS2—Increased knee flexion at initial contact and earlier knee extension movement 25.4

KSTS3—Knee hyperextension 8.0

KSTS4—Knee hyperextension and increased knee flexion at initial contact 10.8

KSTS5a - Increased flexion in midstance and internal flexion or extension moment present 31.8

Knee during swing

KSWS0—Normal knee motion during swing–no or minor gait deviations 35.4

KSWS1—Delayed peak knee flexion 21.5

KSWS2—Increased peak knee flexion 12.6

KSWS3—Increased and delayed peak knee flexion 9.4

KSWS4—Decreased peak knee flexion 10.8

KSWS5—Decreased and delayed peak knee flexion 10.2

Ankle during stance

ASTS0—Normal ankle motion during stance–no or minor gait deviations 38.6

ASTS1—Horizontal second ankle rocker 27.9

ASTS2—Reversed second ankle rocker 9.4

ASTS3—Equinus gait 4.2

ASTS4—Calcaneus gait 19.8

Ankle during swing

ASWS0—Normal ankle motion during swing–no or minor gait deviations 40.0

ASWS1—Insufficient prepositioning in terminal swing 6.7

ASWS2—Continuous plantarflexion during swing (drop foot) 18.6

ASWS3—Excessive dorsiflexion during swing 34.7

CORONAL PLANE

Pelvis

PC0—Normal pelvic motion/posture–no or minor gait deviations 48.5

PC1—Increased pelvic range of motion 29.1

PC2—Continuous pelvic elevation 11.8

PC3—Continuous pelvic depression 10.6

Hip

HC0—Normal hip motion–no or minor gait deviations 62.8

HC1—Excessive hip abduction in swing 21.6

HC2—Continuous excessive hip abduction 9.2

HC3—Continuous excessive hip adduction 6.5

(Continued)
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bilateral spastic CP, aged between 3 to 18 years and GMFCS levels I, II, or III. Children with

marked signs of dystonia or ataxia were excluded, but any previous treatments were allowed.

All patient information was anonymized prior to statistical analysis.

Data collection

The method of data collection corresponds with Nieuwenhuys et al.’s [9] methodology. Briefly,

the data was obtained by a standardized 3DGA measurement using optoelectronic cameras

(Vicon Motion Systems, Oxford, UK), observing reflective markers, attached by clinical ex-

perts to the anatomical landmarks of the child’s lower legs, following the Plug-In-Gait marker

configuration. Children were walking barefoot at a self-selected speed. The joint angles and

their derivatives were obtained through the Nexus software. Additionally, the kinematic data

was time-normalized to the overall gait cycle (pelvis in the sagittal (PS), coronal (PC), and

transverse (PT) plane; hip in the sagittal (HS), coronal (HC), and transverse (HT) plane; and

foot progression angle (FPA)) or to the stance and swing phase (knee during stance (KSTS)

and during swing (KSWS) in the sagittal plane; ankle during stance (ASTS) and during swing

(ASWS) in the sagittal plane) and interpolated resulting in 51 data points for each time-varying

variable. All available trials were included in the study and classified according to the consen-

sus-based joint motion patterns [6], by one of the two involved clinical experts. For each

patient, 2 to 15 trials were used per session, with an average number of 4 trials. Multiple ses-

sions per patient could be included, involving sessions before and after intervention (botuli-

num toxin injections, selective dorsal rhizotomy or orthopaedic surgery), as well as follow-up

sessions charting the natural evolution (275 patients had one session, 67 had two sessions and

14 patients had more than two sessions included in the database). The interval between gait

analysis sessions was 2 to 3 months for botulinum toxin injections, and one year for selective

Table 1. (Continued)

TRANSVERSE PLANE

Pelvis

PT0—Normal pelvic motion/posture–no or minor gait deviations 44.5

PT1—Increased pelvic range of motion 30.3

PT2—Excessive pelvic external rotation during the gait cycle 13.0

PT3—Excessive pelvic internal rotation during the gait cycle 12.2

Hip

HT0—Normal hip motion–no or minor gait deviations 75.3

HT1—Excessive hip external rotation during the gait cycle 9.0

HT2—Excessive hip internal rotation during the gait cycle 15.7

Foot

FPA0—Normal foot progression angle–no or minor gait deviations 66.4

FPA1 –Out-toeing 15.6

FPA2 –In-toeing 17.9

Observed frequency (%) and brief description of all sagittal, coronal, and transverse plane joint motion

patterns as defined by the experts in the Delphi-consensus study of Nieuwenhuys et al. [6]. Described

deviations such as increased or excessive joint angles refer to deviations that are clearly deviating from the

reference database of children developing normally, according to the detailed description that is available in

[6].
a The knee joint patterns KSTS5 and KSTS6 from [6] were merged as they only differ in the kinetics while

this study focused on the kinematic features.

https://doi.org/10.1371/journal.pone.0178378.t001
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dorsal rhizotomy and orthopaedic surgery. Including gait analysis sessions before and after

interventions created a generic database that facilitates the development of classification algo-

rithms that are valid for all common clinically patient conditions. This classification was used

as the ground-truth when training and validating the automatic classifiers. Pathological gait

patterns were classified comparing average walking patterns of 56 children, aged between 5

and 18 years, who display normal development and had no previous history of neuromotor or

musculoskeletal disorders. Table 1 presents a brief description of the consensus-based joint

motion patterns and their observed frequency in the data set of this study. For the develop-

ment of the algorithms, the knee joint motion patterns KSTS5 and KSTS6 from [6] were

merged as the only difference between these two joint motion patterns is in the kinetic fea-

tures, which were not considered in this study.

In total, the dataset consists of 356 patients and 1,719 gait trials. Moreover, 1,010 features

were identified including the interpolated joint motion measurements and the discrete fea-

tures extracted from these measurements.

Automatic probabilistic classification algorithms

The goal of the automatic probabilistic classification was to classify the eleven different joint

motions occurring in the gait of a child with CP as one of the classes (joint motion patterns)

defined by experts (Table 1). On top of this, rather than providing a hard assignment, the

Table 2. Expert-defined features and discretization.

Expert features Expert discretization Number of bins

ASTS SRA [-21,-5.5,19.4,31] 3

aMaxStSagA [-40,0,20,38] 3

ASWS aIc2SagA [-39,-4.2,80] 2

aSagA-pct-GC-900 [-42,-2,31] 2

aBelow1SDSwSagApct [0,50,100] 2

aAbove1SDSwSagApct [0,33,100] 2

KSTS aIcSagK [-17,13.6,77] 2

pctaMaxMStSagK [0,11.2,30] 2

aMinStSagK [-33,-3.8,7.9,70] 3

KSWS aMaxSwSagK [5,54.4,67,98]] 3

DeFlKpctSw [1.5,35.6,99] 2

PS ARomSagP [1,5.4,23] 2

PS-f2 [aAbove1SDSagP,aBelow1SDSagP] 3

HS aMinStSagH [-32,-4.3,40] 2

aRomStSagH [8,38.3,73] 2

aAbove1SDSagHpct [0,90,100] 2

PC aRomCorP [1,12.8,26] 2

PC-f2 [aAbove1SDCorP,aBelow1SDCorP] 3

HC aBelow1SDSwCorHpct [0,50,100] 2

HC-f2 [aAbove1SDCorHpct,aBelow1SDCorHpct] 3

PT aRomTransP [0,18,53] 2

PT-f2 [aAbove1SDTransP,aBelow1SDTransP] 3

HT HT-f1 [aAbove1SDTransH,aBelow1SDTransH] 3

FT FT-f1 [aAbove1SDStTransF,aBelow1SDStTransF] 3

The expert-defined discretization for the kinematic features from [6]. Two examples for interpreting the discretization: (1) for the SRA feature of ASTS the

resulting bins are: bin1 = [-21,-5.5); bin2 = [-5.5,19.4), bin3 = [19.4,31]; and (2) for the PS-f2 feature of PS: bin1 = [aAbove1SDSagP = true], bin2 =

[aBelow1SDSagP = true], bin3 = [aAbove1SDSagP = false, aBelow1SDSagP = false] (co-occurrence is physically impossible).

https://doi.org/10.1371/journal.pone.0178378.t002
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output of the probabilistic classification equals the probabilities that the child’s joint motions

belong to one of the clinically relevant joint motion patterns. To this end, this study used a super-

vised learning approach that uses joint motions classified by experts to train the algorithms. To

investigate how expert knowledge can improve automatic probabilistic gait classification, this

study applied four approaches, each using the available expert knowledge to a different extent. In

the first approach (approach 1), the expert knowledge was used maximally, i.e. the classification

rules include the expert-defined features and the discretization rules of the continuous features

(Table 2). In the second approach (approach 2) all available 1,010 features were fed into to the

classification algorithm. A naïve approach that inputs all the features directly into the classifica-

tion algorithm (approach 2a) was compared with an approach where data-driven feature selec-

tion precedes the classification (approach 2b). Finally, the third approach (approach 3) did not

use the discretization of continuous features as defined by the expert, but rather used the contin-

uous features directly, or learned the discretization rules from the data.

The exploration of the effect of different levels of expert knowledge is of interest for four

reasons. Firstly, an approach that maximally uses the expert knowledge is expected to demon-

strate improved compliance with the expert-based classification and therefore expected to

obtain higher classification performance. However, this is only be the case if the expert-defined

classification rules (relevant features and the discretization of these features) supply the underly-

ing the expert rationale. If experts use knowledge that is not contained in the classification rules

(for example by focusing on the overall gait pattern instead of the features they identified as

important), the emerging automatic classification will obtain lower classification performance

when compared to experts. Therefore, a high classification performance of the first approach,

which uses expert knowledge to a maximum degree, thus works to confirm the validity of the

expert-defined classification rules. Secondly, the process of creating an expert-defined classifica-

tion and classification rules is labour intensive (in this case a Delphi-based consensus classifica-

tion was used) and depends on the experts involved in the process (subjectivity). While on the

other hand, an automatic data-driven feature selection and discretization process (approach 2

and 3) is considered to be objective. Moreover, by using data-driven feature selection, less obvi-

ous features and discretization could potentially be detected, resulting in an even higher classifi-

cation performance than was obtained by using full-expert knowledge (approach 1). Thirdly,

while automatic feature selection and discretization is objective, the selected features and identi-

fied discretization rules will depend on the database used for learning. As developing gait data-

base that correctly captures a wide population is far from trivial, there is a risk of overfitting to

the available gait data. Fourthly, using automatic feature selection and discretization comes at a

higher computational cost and bears the risk of decreasing clinical interpretability. Automatic

procedures might select features that, according to experts, are not directly related to the gait

patterns or might discretize features into bins that do not have any clinical meaning.

Theory

Evaluation and performance measures

To evaluate the performance of the classification approaches, stratified ten-fold cross valida-

tion was used. The folds were constructed manually such that multiple trials of a single patient

were all placed in the same fold and such that different joint motion patterns were evenly dis-

tributed across the different folds (stratified sampling). The same folds were used to evaluate

each of the approaches presented in this study.

Classification performance was measured by accuracy and f-score. Accuracy was expressed

as the percentage of correctly classified trials. The joint motion patterns assigned by the two

clinical experts was taken as the ground-truth. Accuracy might be misleading in the case of

Expert knowledge in automatic cerebral palsy gait classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0178378 June 1, 2017 7 / 18

https://doi.org/10.1371/journal.pone.0178378


unbalanced (skewed) classes. As the posed classification problem was skewed (Table 1), the

f-score, which combines the more robust precision and recall in a single measure, was addi-

tionally reported.

To assess the performance of the multi-class classification, macro-averaging was used as it

treats all classes equally, independent of class size. This makes macro-averaging the preferred

measure when high performance for small classes is desired. Macro-averaging defines the

overall classification accuracy and f-score as the average across the different classes [12].

Naïve Bayes (NB) and Logistic Regression (LR)

This study compared the performance for the four proposed classification approaches for two

different classification algorithms: Naïve Bayes (NB) and Logistic Regression (LR).

Naïve Bayes. A naïve Bayes (NB) classifier simplifies the classification problem by as-

suming that the observed features are independent of each other, given the class to which the

pattern belongs. The Bayesian network underlying the classifier graphically illustrates this

independency. Fig 1 shows the Bayesian network for the naïve Bayes classifier of the knee in

stance in the sagittal plane (KSTS). The parent random variable is the joint motion pattern (cj)

and the child random variables (f1, f2, . . ., fn) are the features from the 3DGA. To fully specify

the BN the conditional probability tables (CPTs) p(fi|cj) of each of the features given the joint

motion patterns should be specified or learned. In this study, the maximum likelihood esti-

mates of the CPTs were learned from the available expert classification by simple counting

[13]. Once these are available, the posterior probability of a patient’s joint motion belonging to

a particular joint motion pattern cj given the observed features (f1, f2, . . ., fn) was calculated as:

p cjjf1; f2; . . . ; fn

� �
¼

Qn
i¼1

pðfijcjÞpðcjÞ

pðf1; f2; . . . ; fnÞ
; ð1Þ

where p(f1, f2, . . ., fn) is a mere normalisation constant. When performing hard assignments,

the joint motion was assigned to the maximum posterior probability joint motion pattern, i.e.:

cMAP ¼ argmaxc1;...;cm
pðcjjf1; f2; . . . ; fnÞ ¼ argmax

c1 ;...;cm

Qn
i¼1

pðfijcjÞpðcjÞ: ð2Þ

Fig 1. Bayesian network for naïve Bayes classifier. Example of Bayesian Network for naïve Bayes

classifier for the knee in stance in the sagittal plane (KSTS). The parent random variable is the joint motion

KSTS, which can take states {KSTS0, KSTS1, KSTS2, KSTS3, KSTS4, KSTS5} (the expert-defined joint

motion patterns, Table 1). The child random variables are the expert-defined features (Table 2). For KSTS

there are three expert-defined features: alcSagK, aMinStSagK, pctaMaxMstSagK. The arrows depict the

probabilistic relationship between the parent and child node, in this case: the probability that a feature has a

particular value, given the joint motion pattern: e.g. p(f1 = 0|KSTS = KSTS1).

https://doi.org/10.1371/journal.pone.0178378.g001
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Logistic regression. Logistic regression (here equations are provided for binary classifica-

tion, for multinomial classification we refer to [14], chapter 8) maps the input, in this case the

features (f1, f2, . . ., fn) to the output, in this case to the probability of belonging to the joint

motion pattern cj.

pðcjjf1; f2; . . . ; fnÞ ¼ Berðhy f1; f2; . . . ; fnð ÞÞ ¼ Ber
1

1þ e� ðy0þ

Pn
i¼1

yi fiÞ

 !

: ð3Þ

Supervised maximum-likelihood learning consists of finding the parameters θ that fit the

training data optimally while not overfitting. To this end a cost function J(θ) that measures the

misfit between the predicted probability of belonging to the different joint motion patterns

and the ground-truth joint motion pattern cl of the K training instances while adding a regu-

larization (λ) to penalize overfitting, is minimized:

yMAP ¼ argmin
y
JðyÞ; with

JðyÞ ¼
PK

k¼1
½� cðkÞl logðhyðf

ðkÞ
1 ; f ðkÞ2 ; . . . ; f ðkÞn ÞÞ � ð1 � cðkÞl Þ logð1 � hyðf

ðkÞ
1 ; f ðkÞ2 ; . . . ; f ðkÞn ÞÞ� þ l

Pn
i¼1

yi:
ð4Þ

As the cost function is convex, there are no local minima and minimization can be carried

out using standard optimization algorithms such as gradient descent or Newton’s method, as

employed in this study.

Data-driven feature selection

The goal of data-driven feature selection (FS) is to reduce the feature subset while trying to

maintain the information present in the original feature set. FS removes irrelevant data, while

often still increasing the predictive accuracy of the learned model and thus reduces the compu-

tational complexity and increases the learning efficiency. Moreover, by using a reduced feature

set, the interpretability can be increased [15,16]. This study used correlation-based feature

selection, which aims at selecting a subset of features that individually correlate well with the

class but have little inter-correlation [17]. Moreover, a best-first search heuristic [17] was used

and the search was terminated when five consecutive non-improving iterations occurred. The

resulting subset was used as input for the NB and LR classifiers.

Automatic feature discretization

For NB, entropy-based discretization [18,19] was used to discretize the features selected by

experts, which is reported to improve classification performance [19]. As the LR classifier can

easily handle continuous features, they were directly fed into the algorithm.

Results

Hypothesis 1: Joint motion patterns in children with CP, obtained through

a Delphi-consensus study, can be automatically classified following a

probabilistic approach, with an accuracy similar to clinical expert

classification

Table 3 provides the results for all joint motions of the NB and LR classifiers using approach 1

(abbreviated as NB1 and LR1), i.e. when using the expert-defined features and discretization.

The overall accuracy and f-score of both NB1 and LR1 were 91% and 90%, respectively. For

the different joint motion patterns, the accuracy and f-score range from 75% and 72% (KSTS)

to 98% and 96% (HT) respectively. The overall performance of NB1 and LR1 were similar,

with small variations for the different joint motion patterns.

Expert knowledge in automatic cerebral palsy gait classification
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Nieuwenhuys et al. [9] reported the level of agreement with which clinicians could recog-

nize specific joint motion gait patterns in children with cerebral palsy (CP) as defined by the

consensus study [20]. Therefore, to compare the performance of the automatic probabilistic

joint motion classification with respect to clinical expert classification, the accuracy and f-

score of NB and LR proposed in this study were compared to the Percentage-Of-Agreement

(POA) reported by Nieuwenhuys et al. [9]. The POA are also available in Table 3. The overall

accuracy of both NB1 and LR1 (91%) was higher than both the inter-rater POA of a group of

28 raters (RG1, 78%) and of two expert raters of the research team developing the classification

(RG2, 90%). In addition, the accuracy of both NB1 and LR1 was higher than the POA of RG1

for all joint motion patterns. For RG2, the POA was higher than the accuracy of NB1 and LR1

for four joint motion patterns (NB1: ASWS, HS, PC, FT; LR1: KSWS, HS, PC, FT). Only for

the hip in the sagittal plane (HS) was this difference higher than 3% and reached a significant

value of 9% and 10% for NB1 and LR1 respectively.

Confusion matrices and average posterior probabilities (Fig 2 for NB1 and KSTS, the S1

Appendix provides the results for all patterns and for both NB1 and LR1) provide more detail

on the classification performance. The confusion matrix shows how the joint motions that

belong to a particular joint motion pattern (True Class) according to the expert, are automati-

cally classified into the different joint motion patterns (Predicted Class). Additionally, the

average posterior probability matrix adds the information on the probability of the joint

motions that according to the experts (True Class) belong to a particular joint motion pattern,

originating from any other joint motion pattern (Predicted Class) according to the automatic

classifier.

Hypothesis 2: The inclusion of clinical expert knowledge increases

classification performance

Hypothesis 2a: Gait feature selection. Table 4 shows the classification performance of

NB and LR where all available features were used, both following the naïve approach (approach

2a, so NB2a and LR2a) as well as the approach with data-driven feature selection (approach 2b,

Table 3. Performance of automatic classification using expert-defined and discretized features.

NB1 LR1 Inter-rater POA [9]

accuracy f-score accuracy f-score RG1 RG2

ASTS 90 91 89 90 76 88

ASWS 86 85 89 86 74 87

KSTS 75 72 75 72 58 68

KSWS 90 89 89 89 77 90

PS 92 90 92 92 77 85

HS 84 83 85 83 78 94

PC 97 97 97 97 79 98

HC 92 92 92 92 78 91

PT 96 97 96 96 79 99

HT 98 96 98 96 87 96

FT 97 96 97 96 91 95

overall 91 90 91 90 78 90

Performance, expressed in percentages, of NB and LR for classification using expert-defined features and discretization compared with level of agreement

by clinicians, expressed as percentage of agreement (POA) as reported in [9] for a group of 28 trained raters with clinical background (RG1) and two expert

raters (RG2). For each joint motion, the accuracy and f-score of the algorithm with highest performance are indicated in grey.

https://doi.org/10.1371/journal.pone.0178378.t003
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so NB2b and LR2b). The S2 Appendix provides the detailed results using the confusion matri-

ces and posterior probabilities for all patterns and for NB2a, LR2a, NB2b, and LR2b.

The naïve approach (approach 2a) had lower performance (NB2a: 76% and 73%; LR2a: 87%

and 84%) than the first approach which used the expert-defined features (Table 3; NB1 and

LR1: 91% and 90%). For NB2a the accuracy for all joint motion patterns was lower than for

NB1 (smallest difference for HS, 2%; largest difference for FT, 23%). For LR2a the accuracy for

Fig 2. Classification performance details for Naïve Bayes and KSTS. Normalized confusion matrix (left) and average posterior probability matrix (right)

for KSTS obtained by NB using expert-defined features (NB1). Each entry (i,j) in the confusion matrix shows the fraction of all joint motions that according to

the expert belong to joint motion pattern i (True Class) are actually classified as joint motion pattern j (Predicted Class). Each entry (i,j) in the average

posterior probability matrix shows the average posterior probability of all joint motions that according to the expert belong to joint motion pattern i (True Class)

originating from joint motion pattern j (Predicted Class) according to the classifier. So the entry (i,j) of the average posterior probability matrix contains the

average of p(cj|f1, f2, . . ., fn) for all joint motions that belong to class i (True Class) according to the expert.

https://doi.org/10.1371/journal.pone.0178378.g002

Table 4. Performance of classifiers using a naïve approach (all features) and data-driven feature selection.

naïve approach data-driven feature selection

NB2a LR2a NB2b LR2b number of features selected

accuracy f-score accuracy f-score accuracy f-score accuracy f-score

ASTS 71 71 83 84 90 91 90 91 8

ASWS 74 69 69 64 87 85 88 87 14

KSTS 62 61 69 64 82 81 79 75 12

KSWS 68 66 82 75 92 92 92 91 11

PS 74 60 96 90 97 92 98 96 4

HS 82 80 86 86 89 90 89 89 7

PC 76 76 94 94 97 97 96 97 9

HC 86 80 89 89 94 94 94 94 9

PT 79 79 93 93 97 97 95 95 8

HT 90 86 96 94 97 96 98 96 9

FT 74 72 95 93 97 96 96 97 6

overall 76 73 87 84 93 92 93 92

Performance, expressed in percentages, of NB and LR for classification using all features both for the naïve approach and the data-driven feature selection.

For each joint motion, the accuracy and f-score of the algorithm with highest performance is indicated in grey.

https://doi.org/10.1371/journal.pone.0178378.t004
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joint motion patterns PS and HS was slightly higher than for LR1 with accuracy improvements

of 4% and 1%, respectively.

When using data-driven feature selection (approach 2b) the overall performance of the

algorithms (NB2b and LR2b: 93% and 92%) was higher than when using the expert-defined

features in NB1 and LR1 (accuracy + 2%; f-score +2%). However, the increase of performance

was limited. For instance, when considering LR2b, for four (ASWS, PC, HT, FT) and three

(PC, PT, HT) of the joint motion patterns, no increase in performance was observed with

respect to LR1 when considering the accuracy and f-score, respectively.

Table 4 shows that the number of features obtained by data-driven feature selection was

higher than the number of expert-defined features (Table 2). The data-driven feature selection

selected on average 8.8 features per pattern while the experts only used on average 2.1 features

to obtain similar performance.

Hypothesis 2b: Gait feature discretization. Table 5 shows the performance when only

considering the features used by experts (approach 3). In NB3 the continuous features were

automatically discretized while for LR3 the continuous features were used directly. The S3

Appendix provides the detailed results using the confusion matrices and posterior probabilities

for all patterns and for both NB3 and LR3. LR3 with the continuous features outperformed

NB3 with the learned discretization (accuracy +4%, f-score + 5%) and this was consistent for

all joint motions. However, even for LR3 the performance (LR3: accuracy 90% and f-score

90%) was slightly lower overall than the algorithms using the expert-defined features (Table 3;

LR1: accuracy 91% and f-score 90%). When considering the different joint motion patterns,

the accuracy of NB3 was only higher than NB1 for one joint motion pattern (HS, +3%), and

the accuracy of LR3 was only higher than LR1 for three joint motion patterns (KSTS, +2%;

KSWS, +5%; HS, +3%).

Discussion

This study applied four different approaches, each using a different level of expert knowledge,

to answer the two hypotheses put forward. Fig 3 summarizes the performance of the four ap-

proaches, each time for the two classifiers used: Naïve Bayes (NB) and Logistic Regression (LR).

Table 5. Performance of classifiers using automatically discretized features.

NB3 LR3

accuracy f-score accuracy f-score

ASTS 89 89 89 89

ASWS 66 68 77 78

KSTS 71 69 77 73

KSWS 89 89 94 93

PS 92 90 92 92

HS 87 86 88 87

PC 91 90 96 95

HC 85 81 92 92

PT 90 89 95 95

HT 90 87 97 95

FT 94 93 97 96

overall 86 85 90 90

Performance, expressed in percentages, of Naïve Bayes for classification using automatically discretized features (NB3) and Logistic Regression with

continuous features (LR3). For each joint motion, the accuracy and f-score of the algorithm with highest performance is indicated in grey.

https://doi.org/10.1371/journal.pone.0178378.t005
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The high performance of each of the approaches presented shows that the joint motion gait

patterns in children with CP, obtained through a Delphi-consensus study, can be used for

automatic probabilistic gait. Additionally, when exploiting all available expert knowledge, i.e.

the expert-defined features and discretization rules, the overall accuracy of both NB1 and LR1

(91%) was higher than the inter-rater POA of two expert raters of the research team developing

the classification (RG2, 90% [9]). This confirmed the first hypothesis and provides additional

confidence that the consensus-based joint motion patterns are well-defined. Interestingly, the

overall accuracy of the automatic classifiers was on average 13% higher than the POA of the

group of more inexperienced raters (RG1, 78% [9]). This indicates that the automatic classifi-

cation can be especially useful when supporting or training junior clinicians.

As detailed in the results section (Table 3), the accuracy of the automatic classification for

the hip in the sagittal plane (HS) using expert-defined and discretized features (NB1, 84% and

LR1, 85%) was significantly lower than the POA of the expert raters (RG2, 94% [9]), but higher

than the non-expert raters (RG1, 78% [9]). The confusion matrices in Fig 4 indicate that the

lower performance is caused by misclassification of joint motion patterns that are classified by

the experts as HS1 (hip extension deficit) to HS0 (normal hip motion). While the use of the

continuous feature (LR3) and automatic feature discretization (NB3) does improve accuracy

(NB3, 87% and LR3, 88%), the accuracy is still a long ways away from expert rater accuracy.

Therefore, this would suggesta reconsideration of the expert-defined features, and not only the

discretization of the expert-defined features, for the hip in the sagittal plane. In particular, it

should be checked whether the joint motion pattern definitions sufficiently capture the expert

reasoning used when classifying this joint motion.

As an output, the probabilistic classification produces not only confusion matrices, but also

posterior probabilities. In other words,. for each of the classified patients, or for the classified

population as a whole, the probability of belonging to the different particular joint motion pat-

terns is provided. As such, these posterior probabilities give feedback to clinicians as to which

patterns can be potentially confused in an automatic classification. Clinicians may use this

information to improve to the consensus-based patterns, as shown above for the HS joint

motion patterns.

Fig 3. Summarized performance of different approaches. Performance, expressed in percentages, of the

four approaches presented in this study. NB1 and LR1 represent the Naïve Bayes and Logistic Regression

classifiers respectively using all expert-defined and discretized features (hypothesis 1, approach 1). NB2a

and LR2a represent the Naïve Bayes and Logistic Regression classifiers respectively using all available

features (hypothesis 2a, approach 2a). NB2b and LR2b represent the Naïve Bayes and Logistic Regression

classifiers respectively using automatic feature selection (hypothesis 2a, approach 2b). NB3 and L3 represent

the Naïve Bayes and Logistic Regression classifiers respectively using the expert-defined but automatically

discretized (NB) or continuous (LR) features (hypothesis 2b, approach 3).

https://doi.org/10.1371/journal.pone.0178378.g003
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As already indicated in the literature [4–6], summarizing the vast amount of data obtained

through 3DGA can facilitate clinical-decision making. This statement is supported by the

results in this study. Firstly, when using a naïve classification approach using available features

from the 3DGA (approach 2a), a lower performance (Table 4, NB2a: 76% and 73%; LR2a: 87%

and 84%) than the algorithms using the expert-defined features (Table 3; NB1 and LR1: 91%

and 90%) was obtained. The lower accuracy when naively using all available features was, how-

ever, alleviated by using data-driven feature selection: the overall performance of the algo-

rithms (NB2b and LR2b: 93% and 92%) was slightly higher than when using the expert-

defined features (accuracy + 2%; f-score +2%). However, this data-driven feature selection

comes at a cost: additional computational time has to be allocated for the features’ selection;

the number of features used to obtain similar classification performance is higher than the

number of expert-defined features (Table 4, average of features per pattern 8.8 for data-driven

feature selection and 2.1 for expert-defined features); the clinical interpretability of the selected

features is not guaranteed. Therefore, taking Occam’s razorand the importance of clinical

interpretability for clinical acceptance into account, we instead recommend using automatic

feature selection as feedback to experts to help them optimize joint motion pattern definitions,

rather than as a basis for classification. Secondly, when using the expert-defined features,

rather than the continuous version (LR3) or automatic feature discretization (NB3), the accu-

racy of the classification decreases (LR -1%, NB -5%). The use of these continuous features or

the automatic discretization of the features also brings an additional computational cost.

Moreover, as with the data-driven feature selection, the automatic feature discretization might

produce discretized features which are hard to interpret clinically. Therefore, we recommend

using expert-defined and discretized features rather than continuous or automatically discre-

tized features. Based on the discussion above we can conclude that hypothesis 2 does not hold.

Automatic feature selection and discretization can result in slightly higher joint motion classi-

fication performance. However, the increase in performance is limited and does not outweigh

the additional computational cost and issues of clinical acceptance and applicability.

When comparing the classification performance to the earlier application of Bayesian net-

works using clinical expert-knowledge by Van Gestel et al. [8], this study (NB1) consistently

Fig 4. Normalized confusion matrix for Naïve Bayes and logistic regression using approach 1. Normalized confusion matrix for the hip in the sagittal

plane (HS) for both Naïve Bayes (left, NB1) and Logistic Regression (right, LR1) classifiers using all expert-defined and discretized features (hypothesis 1,

approach 1).

https://doi.org/10.1371/journal.pone.0178378.g004
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obtained a higher accuracy for the common joint motion patterns (ASTS +2%, ASWS +3%,

KSTS +1%, KSWS +3%) using a larger database (+217 patients). As the approach of Van Gestel

et al. [8] was the same as the Naïve Bayes in approach 1 in this study (NB1), the increase in per-

formance can only be explained by the improved pattern definitions in the consensus study

[6]. Interestingly, the consensus study used the insight gained from the automatic joint motion

classification of Van Gestel et al. [8]. Therefore, the new results reported in this study can

again be used to improve the pattern definitions of the consensus study.

A limitation of the paper is that the results are based on the gait database of the Clinical

Motion Analysis Laboratory of UZ Leuven. While the gait database is expansive, and includes

a large variety of patients, there is no guarantee that similar results would be obtained with

other gait pattern databases from other clinical centres. Moreover, the available reference data-

base defined the threshold values used in the definition of the expert-defined features, and

may thus have an impact on the classifications created by experts and therefore also on the

automatic classification. The inclusion of multiple trials of the same patient is another point

worth discussing. The decision to include multiple trials of the same patient or not is a balance

between including all available knowledge and hereby maximizing the size and generalizability

of the database and the risk of duplicating information (and hereby attaching too much weight

to patients with more trials). On the other hand, often different trials of the same patient differ

to a large extent and therefore including multiple trials of the same patient might help to cap-

ture the variability and even inconsistency that exists for a single patient. As having a large

database that captures this variability was considered important, this paper includes all avail-

able trials. However, as using gait trials of the same patient in the training and test might result

in overestimating the classification performance, the training and test sets were constructed

with great care. As all trials of the same patients were placed in the same fold, the 10-fold cross

validation never used data of the same patient in both the training and the test set. Therefore,

the toughest classification setting possible was constructed.

A second limitation of the paper is that the expert knowledge and expert classification

underlying this paper solely relies on the consensus-based gait pattern classification of Nieu-

wenhuys et al. [6]. The application of the same methodology to other gait pattern classifica-

tions is the subject of future study.

The performance reported in this study (accuracy and f-score) was based on the hard

assignment to the joint motion pattern with highest posterior probability. The probabilistic

classification, however, provided the probability of belonging to any of the joint motion pat-

terns, therefore opening the way to a soft assignment. As shown by Van Gestel et al. [8], accu-

racy measures based on hard assignment likely underestimate the true performance, i.e.

performance measured by incorporating the soft assignment in the accuracy measure. There-

fore, for future work, accuracy measures taking into account the soft assignment and bench-

marking it to the doubt indicated by experts in the reliability study [9], should be taken into

consideration. Additionally, the clinical added value of the use of the posterior probabilities as

“confidence” in the automatic classification should be explored further. The use of the poste-

rior probabilities can be especially useful when classifying a single new joint motion as it can

trigger the clinicians to appropriately interpret the automatic classification, or to make adapta-

tions where necessary.

Conclusion

This study developed algorithms for the automatic probabilistic joint motion gait classification

in children with CP by using the newly available expert knowledge from the consensus-based

classification [6]. To this end the study applied a Bayesian network and Logistic Regression in
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four different approaches, each with a different level of use of expert knowledge (expert-

defined and discretized features). Firstly, the results showed that the joint motion patterns,

obtained through the Delphi-consensus study [6], can be used to automatically classify joint

motions of children with CP following a probabilistic approach, with an accuracy similar to

clinical expert classification. Furthermore, it was shown that the automatic classification

obtains higher performance than non-experts. As such, the automatic classification has poten-

tial for supporting clinicians and medical practitioners in their clinical reasoning and decision

making, supporting or training junior clinicians, as well as facilitating and enabling standard-

ize use of this classification system among clinicians. In general, the automatic classification

supports the purposes of classification of CP is nicely outlined by Bax et al. [21]: description,

prediction, comparison, and evaluation of change. Nieuwenhuys elaborates on the potential

uses of consensus-based classification of gait in children with CP in [22] Secondly, the results

showed that the use of more advanced machine learning techniques such as automatic feature

selection and discretization, instead of the expert-defined and discretized features can result in

slightly higher joint motion classification performance. However, the increase of performance

is limited and does not outweigh the additional computational cost and the higher risk of los-

ing clinical interpretability, which threatens clinical acceptance and applicability. Therefore,

we conclude that an automatic probabilistic classification that maximally uses the available

expert-knowledge from the consensus-based classification [6] is preferred. Future works

should concentrate on showing the clinical relevance and applicability of the automatic proba-

bilistic joint motion classification in a clinical context, as well as the possibility of transferring

this knowledge to other gait laboratories.
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