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Abstract

Using complex roots of unity and the Fast Fourier Transform, we design a new thermodynamics-based algorithm, FFTbor,
that computes the Boltzmann probability that secondary structures differ by k base pairs from an arbitrary initial structure
of a given RNA sequence. The algorithm, which runs in quartic time O(n4) and quadratic space O(n2), is used to determine
the correlation between kinetic folding speed and the ruggedness of the energy landscape, and to predict the location of
riboswitch expression platform candidates. A web server is available at http://bioinformatics.bc.edu/clotelab/FFTbor/.
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Introduction

In [1], we developed a dynamic programming algorithm,

RNAbor, pronounced RNA neighbor, which simultaneously com-

putes for each integer k, the Boltzmann probability pk~
Zk

Z
of the

subensemble of structures whose base pair distance to a given
initial, or reference, structure S� is k. (Here, Z denotes the partition
function, defined as the sum of all Boltzmann factors
exp({E(S)=RT), over all secondary structures S of a given
RNA sequence, and R denotes the universal gas constant and T
absolute temperature. Similarly Zk denotes the sum of all
Boltzmann factors of all structures S, whose base pair distance
to the initial structure S� is exactly k.) RNAbor stores the value of
the (partial) partition functions Zk(i,j) for all 1ƒiƒjƒn and
0ƒkƒn, each of which requires quadratic time to compute. Thus

it follows that RNAbor runs in time O(n5) and space O(n3), which

severely limits its applicability to genomic annotation. This

restriction is somewhat mitigated by the fact that in [2], we

showed how to use sampling [3] to efficiently approximate

RNAbor in cubic time O(n3) and quadratic space O(n2), provided

that the starting structure S� is the minimum free energy (MFE)

structure. We expect that a more efficient version of RNAbor

could be used in applications in genomics and synthetic biology, to

detect potential conformational switches – RNA sequences

containing two or more (distinct) metastable structures.

In this paper, we describe a radically different algorithm,

FFTbor, prounounced FFT neighbor, that uses polynomial interpo-

lation to compute the coefficients p0, . . . ,pn{1 of the polynomial

p(x)~p0zp1xzp2x2z � � �zpn{1xn{1, ð1Þ

where pk is defined by pk~
Zk

Z
. Due to severe numerical

instability issues in both the Lagrange interpolation formula and

in Gaussian elimination, we employ the Fast Fourier Transform

(FFT) to compute the inverse Discrete Fourier Transform (DFT)

on values y0, . . . ,yn{1, where yk~p(vk) and v~e2pi=n is the

principal nth complex root of unity and p(x) is defined in (1). This

gives rise to an improved version of RNAbor, denoted FFTbor,

which runs in time O(n4) and space O(n2). Once two metastable

structures S1,S2 are identified, we can subsequently evaluate the

feasibility of transition between structures S1 and S2, by

computing the barrier energy using algorithms, such as that described

in Dotu et al. [4] or Flamm et al. [5].

Background
Let s~s1, . . . ,sn denote an RNA sequence, i.e. a sequence of

letters in the alphabet of nucleotides fA,C,G,Ug. A secondary

structure S is a set of base pairs (i,j), where 1ƒiƒizhvjƒn and

h§0 represents the minimum number of unpaired nucleotides in

a hairpin loop (due to steric constraints, h is usually taken to be 3),

such that if (i,j) and (x,y) both belong to S, then i~xZj~y (a

nucleotide is involved in at most one base pair) and

ivxvjZivyvj (no pseudoknots are allowed).

The secondary structure S is compatible with s if for every base

pair (i,j) in S, the pair (si,sj) is contained in the set

B~f(A,U),(U ,A),(G,C),(C,G),(G,U),(U ,G)g of six Watson-

Crick and wobble base pairs. Often we write that S is a secondary

structure on s, or equivalently, a secondary structure of s, in place

of stating that S is compatible with s. Throughout this paper, by

structure, we always mean a secondary structure which is

compatible with an arbitrary, but fixed RNA sequence

s~s1, . . . ,sn.

Given two secondary structures S,T on s , we define the base

pair distance dBP between S and T to be the number of base pairs

that they have that are not in common, i.e.
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dBP(S,T)~DS|T D{DS\T D: ð2Þ

Structures S,T are said to be k- neighbors if dBP(S,T)~k.

For 1ƒiƒjƒn, let S½i,j� denote the restriction of S to interval

½i,j� of s, i.e. the set of base pairs

S½i,j�~f(x,y) : iƒxvyƒj,(x,y)[Sg. The notion of k-neighbor

can also be applied to restrictions of secondary structures; i.e. a

secondary structure T½i,j� is a k-neighbor of S½i,j� if

dBP(S½i,j�,T½i,j�)~

jf(x,y) : iƒxvyƒj,(x,y)[S{T or (x,y)[T{Sgj~k:

In the following, we often omit the sequence s and initial

secondary structure S� in our notation, since these are arbitrary,

but fixed. In particular, we write Zk
i,j~Zk

i,j(s,S�) – see following

paragraph for definitions.

Given an RNA sequence s~s1, . . . ,sn and compatible second-

ary structure S�, let Zk denote the sum of the Boltzmann factors

exp({E(S)=RT) of all k-neighbors S of S�; i.e.

Zk~Zk
1,n~

X
S such that

dBP(S,S�)~k

e
{E(S)

RT

where E(S) denotes the Turner (nearest neighbor) energy [6,7] of

S, R~0:00198 kcal/mol denotes the universal gas constant and T
denotes absolute temperature. Since the maximum base pair

distance between a given initial structure S� and any other

structure S on RNA sequence s~s1, . . . ,sn must satisfy

dBP(S,S�)ƒDS�Dzt
n{h

2
sƒn ð3Þ

it follows that the full partition function

Z~Z1,n~
Xn

k~0

Zk
1,n: ð4Þ

Moreover, since h~3, we need to compute at most the values

Z0
1,n, . . . ,Zn{1

1,n – this observation will later prove useful. The

Boltzmann probability P½dBP(S,S�)~k� that a secondary struc-

ture S has base pair distance k from the initial structure S� can be

defined from the partition function by

p(k) : ~
Zk

1,n

Z1,n

:

By graphing the probabilities pk as a function of k, we expect to

see one or more peaks at base pair distance k when there is a

meta-stable (low energy) structure S at base pair distance k from

S�. See Figure 1 for an illustration.

Recursions for structural neighbors
For the rest of the paper, we consider both s as well as the

secondary structure S� on s to be fixed. We now recall the

recursions from Freyhult et al. [8] to determine the partition

function Zk
i,j with respect to the Nussinov-Jacobson energy E0

model [9], defined by {1 times the number of base pairs; i.e.

E0(S)~{1:DSD. Although we describe here the recursions for the

Nussinov-Jacobson model, for the sake of simplicity of exposition,

both RNAbor [8] as well as our current software FFTbor, concern

the Turner energy model, consisting of free energy parameters for

stacked bases, hairpins, bulges, internal loops and multiloops. The

full recursions for FFTbor are described for the the Turner energy

model in the appendix.

The base case for Zk
i,j is given by

Z0
i,j~1, for i ƒ j, ð5Þ

since the only 0-neighbor to a structure S� is the structure S� itself,

and

Zk
i,j~0, for k w 0, i ƒ j ƒ izh , ð6Þ

since the empty structure is the only possible structure for a

sequence shorter than hz2 nucleotides, and so there are no k-

neighbors for kw0. The recursion used to compute Zk
i,j for kw0

and jwizh is

Zk
i,j~Z

k{b0
i,j{1 z

X
(sr ,sj )[B,

iƒrvj

X
wzw0~k{b(r)

exp({E0(r,j)=RT):Zw
i,r{1Zw0

rz1,j{1,

ð7Þ

where E0(r,j)~{1 if positions r,j can pair in sequence s, and

otherwise E0(r,j)~z?. Additionally, b0~1 if j is base-paired in

S�½i,j� and 0 otherwise, and

b(r)~dBP(S�½i,j�,S
�
½i,r{1�|S�½rz1,j{1�|f(r,j)g). This holds since in

a secondary structure T½i,j� on si, . . . ,sj that is a k-neighbor of S�½i,j�,

either nucleotide j is unpaired in ½i,j� or it is paired to a nucleotide

r such that iƒrvj. In this latter case it is enough to study the

smaller sequence segments ½i,r{1� and ½rz1,j{1� noting that,

except for (r,j), base pairs outside of these regions are not allowed,

since there are no pseudoknots. In addition, for dBP(S�½i,j�,T½i,j�)~k

to hold, it is necessary for wzw’~k{b(r) to hold, where

w~dBP(S�½i,r{1�,T½i,r{1�) and w’~dBP(S�½rz1,j{1�,T½rz1,j{1�), since

b(r) is the number of base pairs that differ between S�½i,j� and a

structure T½i,j�, due to the introduction of the base pair (r,j).

Methods

Given RNA sequence s and compatible initial structure S�, we

define the polynomial

Z(x)~
Xn

k~0

ckxk ð8Þ

where coefficients ck~Zk
1,n. Moreover, because of (3) and the fact

that the minimum number of unpaired bases in a hairpin loop h is

3, we know that cn~0, so that Z(x) is a polynomial of degree

strictly less than n. If we evaluate the polynomial Z(x) for n

distinct values

Z(a1)~y1, . . . ,Z(an)~yn, ð9Þ

then the Lagrange polynomial interpolation formula guarantees

that Z(x)~
Pn

k~1 ykPk(x), where the polynomials Pk(x) have

degree at most n{1 and are given by the Lagrange formula

FFTbor and RNA Conformational Switches
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Pk(x)~

P
i=k

(x{xi)

P
i=k

(xk{xi)
: ð10Þ

Since the polynomials Pk(x) can be explicitly computed, it follows

that we can compute the coefficients ck of polynomial Z(x). As we

describe below, the evaluation of Z(x) for a fixed value of x can be

done in time O(n3) and space O(n2). It follows that the coefficients

ck~Zk
1,n can be computed after n evaluations of Z(x), where the

space for each evaluation of Z(x) is re-used; hence these

evaluations can be performed in time O(n4) and space O(n2).
Finally, Lagrange interpolation is clearly computable in time

O(n3). Although this approach is theoretically sound, there are

severe numerical stability issues related to the interpolation

method [10], the choice of values a1, . . . ,an in the interpolation,

and floating point arithmetic (round-off error) related to the

astronomically large values of the partition functions Zk
1,n, for

0ƒkvn. After many unsuccessful approaches including scaling

(see File S1), we obtained excellent results by interpolating the

polynomial p(x), defined in equation (1), rather than the

polynomial Z(x), defined in equation (9), and performing

interpolation with the Fast Fourier Transform (FFT) [11] where

a0, . . . ,an{1 are chosen to be nth complex roots of unity, ak~e
2pk

n .

One advantage of the FFT is that interpolation can be performed

in O(n log n) time, rather than the cubic time required by using

the Lagrange formula (10) or by Gaussian elimination. Fewer

numerical operations implies increased numerical stability in our

application. Details now follow.

Recursions to compute the polynomial Zi,j(x)
Given an initial secondary structure S� of a given RNA

sequence s, our goal is to compute

Zk
1,n~

X
S such that

dBP(S,S�)~k

e
{E0(S)

RT ð11Þ

where S can be any structure compatible with s. As previously

mentioned, the recurrence relation for RNAbor with respect to the

Nussinov energy model E0 is

Zk
i,j~Z

k{b0
i,j{1 z

X
srsj[B,

iƒrvj

e
{E0(r,j)

RT

X
wzw’~k{b(r)

Zw
i,r{1Zw’

rz1,j{1

 !
ð12Þ

where E0(r,j)~{1 if r and j can base-pair and otherwise z?,

and b0~1 if j is base paired in S�½i,j� and 0 otherwise, and

b(r)~dBP(S�½i,j�,S
�
½i,r{1�|S�½rz1,j{1�|f(r,j)g). The following theo-

rem shows that an analogous recursion can be used to compute the

polynomial Zi,j(x) defined by

Zi,j(x)~
Xn

k~0

ck(i,j)xk ð13Þ

where

ck(i,j)~Zk
i,j~

X
S such that

dBP(S,S�½i,j�)~k

e
{E0(S)

RT :

Here, in the summation, S runs over structures on si, . . . ,sj , which

are k-neighbors of the restriction S�½i,j� of initial structure S� to

interval ½i,j�, and E0(S)~{1:DSD denotes the Nussinov-Jacobson

energy of S.

THEOREM 1: Let s1, . . . ,sn be a given RNA sequence. For any

integers 1ƒiƒjƒn, let

Zi,j(x)~
Xn

k~0

ckxk

where

ck(i,j)~Zk
i,j :

Then for iƒjƒizh, Zi,j(x)~1 and for jwizh we have the

recurrence relation

Figure 1. FFTbor output for the RNA attenuator for the phenylalanyl-tRNA synthetase (pheST) operon in E. coli K-12 substr. DH10B,
located adjacent to the phenylalanyl-tRNA synthetase operon leader, with GenBank accession code CP000948.1/1887748-1887820 (complement). The
x-axis represents base pair distance to the minimum free energy structure S� ; y-axis represents Boltzmann probability p(k) that a structure has base
pair distance k to S�. (Left) Probability P dBP(S,S�)~kð Þ that base pair distance to MFE structure is k. (Center) Cumulative probability P dBP(S,S�)ƒkð Þ
that base pair distance to MFE structure is at most k. (Right) Finite difference (Derivative) P kƒdBP(S,S�)~kz1ð Þ of probability that base pair
distance to MFE structure is k.
doi:10.1371/journal.pone.0050506.g001
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Zi,j(x)~Zi,j{1(x):xb0

z
X

srsj[B,

iƒrvj

e
{E0(r,j)

RT :Zi,r{1(x):Zrz1,j{1(x):xb(r)

� �
: ð14Þ

where b0~1 if j is base-paired in S�½i,j� and 0 otherwise, and

b(r)~dBP(S�½i,j�,S
�
½i,r{1�|S�½rz1,j{1�|f(r,j)g).

PROOF: First, some notation is necessary. Recall that if F is an

arbitrary polynomial [resp. analytic] function, then ½xk�F (x)

denotes the coefficient of xk [resp. the kth Taylor coefficient in

the Taylor expansion of F ] – for instance, in equation (1),

½xk�p(x)~pk, and in equation (9), ½xk�Z(x)~ck(i,j).

By definition, it is clear that Zi,j(x)~1 if iƒjƒizh, where we

recall that h~3 is the minimum number of unpaired bases in a

hairpin loop. For jwizh, we have

½xk�Zi,j(x)~ck(i,j)~Zk
i,j

~Z
k{b0
i,j{1 z

Xj{1

r~i

X
k0zk1~k{b(r)

e
{E0(r,j)

RT :Z
k0
i,r{1

:Z
k1
rz1,j{1

~½xk{b0 �Zi,j{1(x)z
Xj{1

r~i

X
k0zk1~k{b(r)

e
{E0(r,j)

RT

: ½xk0 �Zi,r{1(x)
� �

: ½xk1 �Zr{1,j{1(x)
� �

~½xk{b0 �Zi,j{1(x)z
Xj{1

r~i

X
k0zk1~k{b(r)

e
{E0(r,j)

RT

:½xk0zk1 �Zi,r{1(x)Zr{1,j{1(x):

By induction, the proof of the theorem now follows. %

Notice that if one were to compute all terms of the polynomial

Z1,n(x) by explicitly performing polynomial multiplications, then

the computation would require O(n5) time and O(n3) space.

Instead of explicitly performing polynomial expansion in variable x,

we instantiate x to a fixed complex number a[C, and apply the

following recursion for this instantiation:

Zi,j(a)~Zi,j{1(a):ab0

z
X

(sr,sj )[B,

iƒrvj

e
{E0(r,j)

RT :Zi,r{1(a):Zrz1,j{1(a):ab(r)

� �
: ð15Þ

In this fashion, we can compute Z(a)~Z1,n(a) in O(n3) time and

O(n2) space. For n distinct complex values a0, . . . ,an{1, we can

compute and save only the values Z(a0), . . . ,Z(an{1), each time

re-using the O(n2) space for the next computation of Z(ak). It

follows that the computation resources used to determine the

(column) vector

Y~(y0, . . . ,yn{1)T~

y0

y1

..

.

yn{1

0
BBBBBBB@

1
CCCCCCCA

ð16Þ

where y0~Z(a0), . . . ,yn{1~Z(an{1) is thus quartic time O(n4)

and quadratic space O(n2).

Polynomial interpolation using the FFT
Let v~e2pi=n be the principal nth complex root of unity. Recall

that the Vandermonde matrix Vn is defined to be the n|n matrix,

whose i,j entry is vi:j ; i.e.

Vn~

1 1 1 � � � 1

1 v v2 � � � vn{1

1 v2 v4 � � � v2(n{1)

1 v3 v6 � � � v3(n{1)

..

. ..
. ..

. ..
. ..

.

1 vn{1 v2(n{1) � � � v(n{1)(n{1)

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

The Fast Fourier Transform (FFT) is defined to be the O(n log n)
algorithm to compute the Discrete Fourier Transform (DFT),

defined as the matrix product Y~VnA:

y0

y1

y2

..

.

yn{1

0
BBBBBBBBB@

1
CCCCCCCCCA

~Vn
:

a0

a1

a2

..

.

an{1

0
BBBBBBBBB@

1
CCCCCCCCCA

On page 837 of [11], it is shown that the (i,j) entry of V{1
n is

v{ji

n
and that

aj~
1

n

Xn{1

k~0

ykv{kj ð17Þ

for j~0, . . . ,n{1.

Since we defined Y in (16) by Y~(y0, . . . ,yn{1)T , where

y0~Z(a0), . . . ,yn{1~Z(an{1) and ak~vk exp(
k:2pi

n
), it follows

that the coefficients ck~Zk
1,n in the polynomial

Z(x)~c0zc1xz � � �zcn{1xn{1 defined in (8) can be computed,

at least in principle, by using the FFT. It turns out, however, that

the values of Zk
1,n are so astronomically large, that the ensuing

numerical instability makes even this approach infeasible for

values of n that exceed 56 (data not shown). Nevertheless, our

approach can be modified as follows. Define Y by

FFTbor and RNA Conformational Switches
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Y~(y1, . . . ,yn)T , where y1~
Z(a1)

Z
, . . . ,yn~

Z(an)

Z
, and Z is the

partition function defined in (4). Using the FFT to compute the

inverse DFT, it follows from (17) that we can compute the

probabilities p0, . . . ,pn{1 that are coefficients of the polynomial

p(x)~p0zp1xz � � �zpn{1xn{1 defined in equation (1). For

genomics applications, we are only interested in the m most

significant digits of each pk, as described in the pseudocode below.

ALGORITHM for FFTbor

This pseudocode computes the m most significant digits of

probabilities pk~
Zk

1,n

Z
.

INPUT: RNA sequence s~s1, . . . ,sn, and initial secondary

structure S� of s, and integer m.

OUTPUT: Probabilities pk~Zk
1,n=Z to m significant digits for

k~0, . . . ,n{1.

1. generate roots of unity vk for k~0, . . . ,n{1, where

v~exp(
2pi

n
) and i~

ffiffiffiffiffiffiffiffi
{1
p

2. note that the partition function Z~y0~Z(v0)

3. for k~0 to n{1

4. compute yk~Z(vk) using recursion (15)

5. yk~10m: yk

Z
//normalize yk

6. compute P~(p0, . . . ,pn{1)T where pj~

Pn{1
k~0 akv{kj

n
by

using FFT in (17)

7. for k~0 to n{1

8. pk~t10m:pks:
1

10m

9. //truncate to m most significant digits

Speed-up in our implementation of FFTbor. In this

subsection, we show that we need only evaluate the polynomial

Z(x), as defined in equation (8), for n=2 of the complex nth roots

of unity. It is first necessary to recall the definition of complex

conjugate. Recall that the complex conjugate of z is denoted by z;

i.e. if z~azbi where a,b[R are real numbers and i~
ffiffiffiffiffiffiffiffi
{1
p

, then

z~a{bi.

LEMMA 1: If Z(x) is the complex polynomial defined in equation

(8), then for any complex nth root of unity a, it is the case that

Z(a)~Z(a). In other words, if a is a complex nth root of unity of

the form azbi, where a,b[R and bw0, and if Z(azbi)~AzBi
where A,B[R, then it is the case that

Z(a{bi)~A{Bi:

PROOF: Letting i~
ffiffiffiffiffiffiffiffi
{1
p

, if h~
2p

n
, then

v~eih~cos(h)zi sin(h) is the principal nth complex root of

unity, and 1~v0, . . . ,e(n{1):ih~vn{1 together constitute the
complete collection of all nth complex roots of unity – i.e. the n
unique solutions of of the equation xn{1~0 over the field C of
complex numbers. Clearly, for any 1ƒrvn,

e{irh~1:e{irh~e2pi:e{irh~ei(2p{rh)~ei(nh{rh)~eih(n{r). More-

over, if vr~eirh~azbi where bw0, then we have

e{irh~a{bi. It follows that for any nth root of unity of the form
azbi, where bw0, the number a{bi is also an nth root of unity.

Recall that Z(x)~
Pn

k~0 ckxk, where ck[R are real numbers

representing the partition function Zk
1,n over all secondary

structures of a given RNA sequence s1, . . . ,sn, whose base pair

distance from initial structure S� is k. Thus, in order to prove the

lemma, it suffices to show that for all values k~0, . . . ,n{1, if

azbi is a complex nth root of unity, where a,b[R and bw0, and if

(azbi)k~CzDi where C,D[R, then (a{bi)k~C{Di. Indeed,

we have the following.

(azbi)m~
Xm

k~0

m
k

� �
am{k:(bi)k

(bi)k~

bk if k : 0 mod 4

ibk if k : 1 mod 4

{bk if k : 2 mod 4

{ibk if k : 3 mod 4

8>>>>>><
>>>>>>:

(a{bi)m~
Xm

k~0

m
k

am{k:({bi)k

({bi)k~

bk if k : 0 mod 4

{ibk if k : 1 mod 4

{bk if k : 2 mod 4

ibk if k : 3 mod 4

8>>>>>><
>>>>>>:

It follows that each term of the form am{k:(bi)k, for k~0, . . . ,m,

is the complex conjugate of am{k:({bi)k, and thus (azbi)m is the

complex conjugate of (a{bi)m. Since Z(azbi) is a sum of terms

of the form ck(azbi)k, it follows that Z(a{bi) is the complex

conjugate of Z(azbi). This completes the proof of the lemma. %

Lemma 1 immediately entails that we need only evaluate Z(x)
on n=2 many of the complex nth roots of unity – namely, those of

the form azbi, where b§0. The remaining values of Z(x) are

obtained by taking conplex conjugates of the first n=2 values. This,

along with a precomputation of powers of the complex nth roots of

unity, leads to an enormous performance speed-up in our

implementation of FFTbor.

Results

Applications of FFTbor
In this section, we consider two applications of FFTbor: (i)

correlation between kinetic folding speed and the ruggedness of the

energy landscape near the minimum free energy structure, (ii)

computational detection of riboswitch expression platform candi-

dates.
Kinetic folding speed and energy landscape

ruggedness. The output of FFTbor, as shown in Figure 2, is

a probability distribution, where the x-axis represents the base pair

distance from an arbitrary, but fixed secondary structure S�, and

the y-axis represents the Boltzmann probability p(k)~
Zk

Z
that a

secondary structure has base pair distance k from S�. Arguably,

this probability distribution is an accurate one-dimensional

projection of the rugged, high dimensional energy landscape near

structure S�, of the sort artistically rendered in the well-known

energy landscape depicted in Figure 1 of [12]. In the sequel, we

may call the FFTbor probability distribution a structural neighbor

profile, or simply structural profile S�. A hypothesis behind theoretical

work in biomolecular folding theory in [13] is that kinetic folding

FFTbor and RNA Conformational Switches
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slows down as the energy landscape becomes more rugged. This is

borne out in our computational experiments for RNA using

FFTbor, as reported in Figure 2.

We randomly chose two TPP riboswitch aptamers from the

seed alignment for Rfam family RF00059. The first sequence

has EMBL accession code BX842649.1/277414-277318 and is

comprised of the 97 nt sequence ACCUGACGCU AGGGGU-

GUUG GUGAAUUCAC CGACUGAGAA UAACCCUUUG

AACCUGAUAG AGAUAAUGCU CGCGCAGGGA AG-

CAAGAAUA GAAAGAU, while the second sequence has

EMBL accession code AACY022101973.1/389-487 and is

comprised of the 99 nt sequence UAUAAGUCCA AGGG-

GUGCCA AUUGGCUGAG AUGGUUUUAA CCAAUCC-

CUU UGAACCUGAU CCGGUUAAUA CCGGCGUAGG

AAUGGAUUUU CUCUACAGC. Rfam consensus and min-

imum free energy structures for both sequences are depicted in

Figure 3. Despite the fact that there is no sequence homology

according to pairwise BLAST [14], this figure clearly demon-

strates that consensus and minimum free energy structures

closely resemble each other, and that the structures of both TPP

riboswitch aptamers are quite similar, with the exception of the

leftmost hairpin loop [resp. multiloop]. The MFE structures

differ from the consensus structures principally by the addition

of base pairs not determined by covariation in the Rfam

alignment. Indeed, if we let S0,S1 denote the Rfam consensus

structure resp. MFE structure for the 97 nt sequence with

EMBL accession code BX842649.1/277414-277318, then S0\S1

has 4 base pairs, and S1\S0 has 7 base pairs. If we let T0,T1

denote the Rfam consensus structure resp. MFE structure for

the 99 nt sequence with EMBL accession code

AACY022101973.1/389-487, then T0\T1 has 1 base pair, and

T1\T0 has 5 base pairs.

We ran FFTbor on each of the TPP riboswitch aptamer

sequences, with the MFE structure of each sequence taken as the

initial structure S� for that sequence. For the first sequence,

BX842649.1/277414-277318, the FFTbor output suggests that

there are low energy structures at a distance from the MFE

structure, which might compete with the MFE structure and hence

slow the kinetics of folding. In contrast, for the second sequence,

AACY022101973.1/389-487, the FFTbor output suggests that

there are no such competing low energy structures, hence the

second sequence should fold more quickly than the first.

To test the hypothesis that folding is slower for rugged energy

landscapes, we ran the kinetic folding software, Kinfold [15], on

each of the two TPP riboswitch aptamer sequences, BX842649.1/

277414-277318 and AACY022101973.1/389-487, to determine

the mean first passage time (MFPT) to fold into the MFE structure,

when starting from the empty structure. In this computational

experiment, we took MFPT to be the average number of Monte

Carlo steps taken by Kinfold, each step consisting of the addition

or removal of a single base pair (or shift – see [15]), to fold the

empty structure into the MFE structure, where the average was

taken over 30 runs, with an absolute maximum number of Monte

Carlo steps taken to be 500,000. The first sequence, BX842649.1/

277414-277318, converged within 500,000 steps only for 20 out of

30 runs. Assigning the maximum step count of 500,000 for the 10

runs that did not converge, we found a mean first passage time of

311,075:06 steps for this sequence. The second sequence,

AACY022101973.1/389-487, converged within 500,000 steps in

29 out of 30 runs, and we found a mean first passage time of

61,575:69 steps for this sequence. From computational experi-

ments of this type, it is suggestive that FFTbor may prove useful in

synthetic biology, where one would like to design rapidly folding

RNA molecules that fold into a designated target structure. (See

[16,17,18,19] for more on synthetic biology.) In particular, one

could use RNAinverse [20], RNA-SSD [21], INFO-RNA [22], or

our recent constraint programming exact solution of RNA inverse

folding, RNAiFold (to appear in Journal of Bioinformatics and

Computational Biology, see http://bioinformatics.bc.edu/

clotelab/RNAiFold/), to output a list of sequences, whose

minimum free energy structure is a designated target structure.

Subsequently, using FFTbor, one could prioritize sequences in

terms of FFTbor structural profile, on the grounds that sequences

with a profile similar to the right panel of Figure 2 are likely to fold

more rapidly than those whose profile resembles the left panel of

Figure 2.

In order to more systematically determine the relation between

kinetic folding speed and the ruggedness of an energy landscape near

the MFE structure, we need to numerically quantify ruggedness. To

this end, in the following we define the notion of expected base pair distance

to a designated structure. Let S� be an arbitrary secondary structure of

the RNA sequence s~a1, . . . ,an. The expected base pair distance to

S� is defined by

E½fd bp (S,S�) : S[S(a1, . . . ,an)g�~
X

S

P(S):d bp (S,S�) ð18Þ

where S(a1, . . . ,an) denotes the set of secondary structures for

s~a1, . . . ,an, P(S)~
exp({E(S)=RT)

Z
is the Boltzmann probability

of S, and d bp (S,S�) denotes base pair distance between S and S�. If

we run FFTbor on an input sequence s and secondary structure S�,
then clearly E½fd bp (S,S�) : S[S(a1, . . . ,an)g�~

P
k k:p(k), where

p(k)~
Zk

Z
, obtained from the program output. If S� is the empty

structure, then FFTbor output is simply the probability distribution of

the number of base pairs per secondary structure, taken over the

Boltzmann ensemble of all structures.

For the benchmarking assay, we took all 61 selenocysteine

insertion sequence (SECIS) sequences from the seed alignment of

Rfam family RF00031 [23]. Average length was 64:32+2:83 nt.

For each sequence, we ran both FFTbor and a Monte Carlo

folding algorithm, developed by E. Freyhult and P. Clote

(unpublished). Using the Monte Carlo algorithm, we determined

the mean first passage time (MFPT), defined as the average taken

over 50 runs, of the number of Monte Carlo steps taken to fold the

empty structure into the MFE structure, where an absolute upper

bound of 5 million steps was allowed in the simulation. After

unsuccessful attempts due to ruggedness of the energy landscape

near the MFE structure, by using the Hartigan-Hartigan dip test of

unimodality [24], expected base pair distance from MFE structure,

total variation distance between FFTbor output and the

exponential distribution estimated by the method of moments

[25], etc., we ran FFTbor when starting from the empty structure

(rather than the MFE structure) as initial structure. As mentioned

above, in this case, FFTbor output is simply the probability

distribution for the number of base pairs per structure, taken over

the ensemble of all secondary structure for the input RNA

sequence. Surprisingly, we found that there is a significant

correlation of 0:48436192 with one-tailed p-value of 0:00018249
between the standard deviation of the FFTbor output (when

starting from the empty structure) and logarithm base 10 of the

mean first passage time. Table 1 and Figure 4 explain this

phenomenon in detail.

In the right panel of Figure 4, we applied FFTbor to each of the

two randomly chosen TPP riboswitch aptamers BX842649.1/

277414-277318 and AACY022101973.1/389-487, starting from

the empty reference structure S�~1. The mean for the FFTbor

FFTbor and RNA Conformational Switches

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e50506



structural profile near the empty structure is m1~23:0203 [resp.

m2~27:5821], the standard deviation s for the FFTbor structural

profile is s1~2:22528791 [resp. s2~1:98565959], and the

Kinfold MFPT is 311,075:06 [resp. 61,575:69] for the TPP

riboswitch aptamer AB030643.1/4176-4241 [resp. AL645723.11/

192421-192359]. This anecdotal evidence supports the hypothesis

that small standard deviation in FFTbor distribution is correlated

with fast folding.

Additionally, in following a suggestion of one of the anonymous

referees, we randomized the TPP riboswitches BX842649.1/

277414-277318 and AACY022101973.1/389-487 by using our

implementation of the Altschul-Erikson dinucleotide shuffle

algorithm [26], and then applied FFTbor to these sequences,

starting from the empty structure. The mean m1 and standard

deviation s1 for the FFTbor distribution for randomized

BX842649 are respectively m1~19:93 and s1~2:88, while those

for randomized AACY022101973 are m2~24:39 and s2~24:00.

Running Kinfold, with a maximum of 500,000 steps with 30

replicates (as explained in the text), we found that for randomized

BX842649, all 30 runs converged yielding a mean first passage

time (MFPT) of 13022.58 with standard deviation of 15221.78. In

contrast for randomized AACY022101973, only 15 out of 30 runs

converged within 500,000 steps, and discounting these noncon-

vergent data, we obtain an average mean first passage time

(MFPT) of 94446.93 with standard deviation of 157107.43. This

additional test provides more anecdotal evidence supporting our

hypothesis that small standard deviation s in FFTbor probability

density is correlated with fast folding, as measured by MFPT.

Riboswitch expression platform prediction. A bacterial

riboswitch is a portion of the 5’ untranslated region (UTR) of

messenger RNA, that performs gene regulation by undergoing a

conformational change upon binding with a ligand, such as

Figure 2. Output from FFTbor on two randomly selected thiamine pyrophosphate riboswitch (TPP) aptamers, taken from the Rfam
database [23]. The x-axis represents base pair distance from the minimum free energy structure for each given sequence; the y-axis represents

Boltzmann probabilities p(k)~
Zk

Z
, where Zk denotes the sum of Boltzmann factors or all secondary structures, whose base pair distance from the

MFE structure is exactly k. (Left) The 97 nt sequence BX842649.1/277414-277318 appears to have a rugged energy landscape near its minimum free
energy structure, with distinct low energy structures that may compete with the MFE structure during the folding process. (Right) The 99 nt
sequence, AACY022101973.1/389-487 appears to have a smooth energy landscape near its MFE structure, with no distinct low energy structures to
might compete with the MFE structure. Based on the FFTbor output or structural profile near MFE structure S�, one might expect folding time for the
first sequence to increase due to competition from metastable structures, while one might expect the second sequence to have rapid folding time.
Computational Monte Carlo folding experiments bear out this fact. Kinfold [15] simulations clearly show that the second sequence folds at least four
times more quickly than the first sequence. See text for details. Subfigure A Subfigure B Subfigure C Subfigure D.
doi:10.1371/journal.pone.0050506.g002

Figure 3. Rfam consensus structures (Rfam) and minimum free energy (MFE) secondary structures for two thiamine pyrophosphate
(TPP) riboswitch aptamers, chosen at random from RF00059 Rfam family seed alignment [23]. Using pairwise BLAST [14], there is no
sequence similarity, although the secondary structures are very similar, as shown in this figure. (A) Rfam consensus structure for BX842649.1/277414-
277318. (B) MFE structure for BX842649.1/277414-277318. (C) Rfam consensus structure for AACY022101973.1/389-487. (D) Rfam consensus structure
for AACY022101973.1/389-487.
doi:10.1371/journal.pone.0050506.g003
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guanine, thiamine pyrophosphate, lysine, etc. [27]. This confor-

mational change may either turn on or off the corresponding gene

by either transcriptional or translational regulation of the

messenger RNA [28], depending on the particular riboswitch.

The common feature shared by all riboswitches is that a gene is

regulated by conformational change upon ligand binding.

Bacterial riboswitches are often found upstream of operons,

regulating groups of genes, as in purine de novo synthesis and

salvage [29].

A riboswitch consists of two equally important parts: an

upstream aptamer, capable of highly discriminative binding to a

particular ligand, and a downstream expression platform, capable of

undergoing a radical conformational change upon binding of a

ligand with the discriminating aptamer. Since aptamers have been

Figure 4. This figure represents the graphical output of FFTbor, when the empty structure is chosen as initial structure S�. The x-axis
represents the number of base pairs per structure, taken over the ensemble of all secondary structures for the given RNA sequence; the y-axis

represents Boltzmann probability p(k)~
Zk

Z
, where Zk is the partition function for all secondary structures having exactly k base pairs. (Left) For the

selenocysteine (SECIS) element AB030643.1/4176-4241 from Rfam family RF00031, the standard deviation s of the number of base pairs, taken over
the ensemble of all secondary structures, is 0:73, while the logarithm base 10 of the mean first passage time (logMFPT) is 4:75. (Center) For the
selenocysteine (SECIS) element AL645723.11/192421-192359 from Rfam family RF00031, the standard deviation s of the number of base pairs, taken
over the ensemble of all secondary structures, is 2:68, while logMFPT is 5:69. Among the 61 sequences in the seed alignment of RF00031,
AB030643.1/4176-4241 was the fastest folder, while AL645723.11/192421-192359 was the slowest folder. (Right) Superimposition of output of FFTbor
for two TPP riboswitch aptamers: the 97 nt sequence BX842649.1/277414-277318 and the 99 nt sequence AACY022101973.1/389-487, both obtained
when taking the empty structure for the initial structure S�. The mean m for the FFTbor structural profile near the empty structure is 23:02 [resp.
27:5821], the standard deviation s for the FFTbor structural profile is 2:23 [resp. 1:99], and the Kinfold MFPT is 311,075:06 [resp. 61,575:69] for the TPP
riboswitch aptamer AB030643.1/4176-4241 [resp. AL645723.11/192421-192359]. The right panel of this figure should be compared with Figure 2.
These anecdotal results bear up the correlation between standard deviation s and logMFPT described in Table 1.
doi:10.1371/journal.pone.0050506.g004

Table 1. Pearson correlation between various aspects of selenocysteine insertion sequences from the seed alignment of Rfam
family RF00031 [23].

m s
s

m
len MFE logMFPT

m 1

s 20.43722448 1

s
m 20.691411183 0.943650913 1

len 0.707683898 20.158951202 20.364591789 1

MFE 20.569474125 0.739515083 0.759622716 20.368485646 1

logMFPT 20.036291124 0.48436192 0.376230235 0.405865529 0.399015556 1

For each of the 61 RNA sequences, we ran FFTbor, starting from empty initial structure S� , and we ran a Monte Carlo folding algorithm, developed by E. Freyhult and P.
Clote (unpublished). Using the Monte Carlo algorithm, we determined the mean first passage time (MFPT), defined as the average taken over 50 runs, of the number of
Monte Carlo steps taken to fold the empty structure into the MFE structure, where an absolute upper bound of 5 million steps was allowed in the simulation. From the
output of FFTbor, we computed (1) the mean number (m) of base pairs per structure, taken over the ensemble of all secondary structures for the given sequence, (2) the

standard deviation (s) of the number of base pairs per structure, (3) the coefficient of variation
s

m
, (4) the RNA sequence length, and (5) the minimum free energy (MFE).

Additionally, we computed the logarithm base 10 of mean first passage time (log10MFPT), taken over 50 Monte Carlo runs per sequence (log base 10 of the standard
deviation of number of Monte Carlo steps per run was approximately 9% of log10MFPT on average). The table shows the correlation between each of these aspects.

Some correlations are obvious – for example, (i) the standard deviation s is highly correlated with the coefficient of variation
s

m
; (ii) the mean m is negatively correlated

with the coefficient of variation
s

m
; (iii) the mean m is negatively correlated with the minimum free energy (MFE) – if most low energy structures in the ensemble have

many base pairs, then it is likely that the minimum free energy is very low (i.e. since MFE is negative, the absolute value of MFE increases); (iv) sequence length is
negatively correlated with MFE – as sequence length increases, the minimum free energy (MFE) decreases. However, it may appear surprising that (v) the mean m
number of base pairs per structure is independent of MFPT (correlation {0:036291124), although (vi) MFE is correlated with MFPT (correlation 0:399015556) – i.e. from
(iii), lower MFE is correlated with a larger average m number of base pairs per structure, from (vi) higher MFE is correlated with longer folding time, but from (v) the
average m number of base pairs per structure is independent of folding time. The most important insight from this table is that (vii) standard deviation s is correlated
with mean first passage time – the correlation is statistically significant, with one-tailed p-value of 0:00018249.
doi:10.1371/journal.pone.0050506.t001
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under strong evolutionary pressure to bind with high affinity (e.g.

KD&5 nM for guanine [30]), there is strong sequence conserva-

tion found in the aptameric region of orthologous riboswitches. In

contrast, while secondary structure is conserved in the terminator

loop of the expression platform in purine riboswitches, there is

relatively low sequence conservation (data not shown). While a

number of methods exist to computationally predict riboswitch

aptamers [31,32,33,34,35] (and especially INFERNAL [36],

which latter is used to predict riboswitch aptamers in Rfam), it

is an important biological problem to determine the expression

platform, since the structure of the expression platform can suggest

whether there is transcriptional regulation via a terminator loop or

translational regulation via the sequestration of the Shine-

Dalgarno sequence [28]. Determination of the precise location

and structure of the expression platform is difficult due to low

conserved sequence identity (in-house computations, data not

shown). Although this problem remains open, we report here how

FFTbor may provide help to biologists in the selection and

prioritization of riboswitch candidates.

Figure 5 depicts the gene OFF structure of the xpt G-box purine

riboswitch in B. subtilis, as determined by inline-probing – this

structure was taken from Figure 1 of [27]. Note that this structure

Figure 5. Gene OFF secondary structure of the xpt G-box purine riboswitch in B. subtilis; structure taken from that in Figure 1A of
[27].
doi:10.1371/journal.pone.0050506.g005

Figure 6. Graph of the expected distance from target secondary structure, as a function of window offset position in the 5’
untranslated region (UTR) of the xpt gene of B. subtilis; i.e. GenBank accession code CP002906.1/c2165402-2165042 B. subtilis
subsp. subtilis RO-NN-1. In a moving window application, FFTbor computed the Boltzmann probability p(k) that secondary structures of the
current window contents have base pair distance k from the target (or initial) structure S� . In each case, the size of the window was set to equal the
length of S� . (Left) Target structure S� comprises the entire secondary of the xpt riboswitch, as depicted in Figure 5, with the exception that the
leading and trailing unpaired positions were removed, as explained in the text – see displayed dot bracket structure in (19). (Center) Target structure
S� comprises only the aptamer secondary structure, as displayed in dot bracket structure in (20). (Right) Target structure S� comprises only the
expression platform secondary structure, as displayed in dot bracket structure in (21). The number of points displayed on the x-axis differs in each
case, since the window size differs, as explained above. The very well-defined minimum in each panel corresponds to the exact location of the entire
riboswitch (left panel), aptamer (center panel) and expression platform (right panel). Note that the base line value for the expected base pair distance
in the left panel (entire riboswitch) is approximately 70, while that for both the center panel (aptamer) and right panel (expression platform) is
approximately 35.
doi:10.1371/journal.pone.0050506.g006
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is only partial, since there are regions with no base pairs depicted,

despite the fact that additional base pairs could be added. By using

blastn, it is found that this 161 nt purine riboswitch can be found

on the complement strand of GenBank accession number

CP002906.1/c2165302-2165142 in complete genome of B. subtilis

subsp. subtilis RO-NN-1. Figure 6 depicts the result of three

computational experiments with FFTbor. The left panel displays

the expected base pair distance to the following secondary

structure

:((((((((:::(((((((:::::::)))))))::::::::((((((:::::::))))))::))))))))::::::::

(((((::::::::)))))::::::::::::((((((((((((((:::::::)))))))))))))):
ð19Þ

as a function of window offset, where window size equals the size

of this target structure. This structure was obtained by removing

all leading and trailing unpaired positions from the structure

depicted in Figure 5, except for the leftmost [resp. rightmost]

unpaired position adjacent to the leftmost [resp. rightmost] base-

paired position. The reason for removal of the leading and trailing

unpaired positions was that the structure of [27], depicted in

Figure 5, is clearly only partial, as earlier mentioned. The center

panel displays the expected base pair distance to the following

secondary structure

:((((((((:::(((((((:::::::)))))))::::::::((((((:::::::))))))::)))))))): ð20Þ

as a function of window offset, where window size equals the size

of this target aptamer structure. Similarly, the right panel displays

the expected base pair distance to the following secondary

structure

:(((((::::::::)))))::::::::::::((((((((((((((:::::::)))))))))))))): ð21Þ

as a function of window offset, where window size equals the size

of this target expression platform structure. Figure 6 determines the

precise location of the xpt riboswitch, both aptamer and

expression platform.

If the biologically functional target structure is unknown, one

can instead attempt a similar moving window computation, where

the target structure is taken to be the minimum free energy

structure of the current window contents. In this case, one may

hope to determine a bimodal distribution, as displayed in Figure 7.

Given an input RNA sequence, or genomic region, the web server

http://bioinformatics.bc.edu/clotelab/FFTbor creates a movie as

follows, described here for the xpt riboswitch previously discussed.

We extended the 161 nt xpt G-box purine riboswitch described in

Figure 5, with GenBank accession number CP002906.1/

c2165302-2165142, to a sequence of length 200 nt, by appending

flanking downstream genomic nucleotides. Running FFTbor on all

prefixes of the resulting sequence of lengths 70,72,74, . . . ,200, we

produced a movie, displayed on the webserver http://

bioinformatics.bc.edu/clotelab/FFTbor. Figure 5 displays the

output of FFTbor on the 166 nt prefix, clearly showing a bimodal

distribution. Attempting to automate the identification of non-

unimodal FFTbor output, we have applied the Hartigan-Hartigan

dip-test [24], implemented in R; however, the dip-test appears to

be too sensitive, in that a probability distribution is reported to be

non-unimodal, even when visual inspection indicates that it

appears overwhelmingly to be unimodal (data not shown). It is

for this reason that the web server http://bioinformatics.bc.edu/

clotelab/FFTbor produces a movie of prefixes, where the user can

start/stop the movie, move forward/backward, or download all

raw data output by FFTbor.

Figure 7. The 161 nt xpt G-box purine riboswitch described in Figure 1A of [27], found on the complement strand of GenBank
accession number CP002906.1/c2165302-2165142 in complete genome of B. subtilis subsp. subtilis RO-NN-1. We extended this 161 nt
sequence to a sequence of length 200 nt, by appending flanking downstream genomic nucleotides. The web site http://bioinformatics.bc.edu/
clotelab/FFTbor displays a movie of all prefixes of the resulting 200 nt sequence, where prefix lengths range from 70,72,74, . . . ,200.
doi:10.1371/journal.pone.0050506.g007
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Benchmarking results
Total variation distance for density of states. Recall that

the total variation distance between two probability distributions

P~fpx : x[Vg and Q~fqx : x[Vg, defined on the same sample

space V, is defined by

d(P,Q)~

P
x[VDpx{qxD

2
:

The density of states for an RNA sequence s with respect to an initial

structure S� of s is defined to be the probability distribution

P~(p0, . . . ,pn{1) where pk~Zk
1,n=Z. In all our tests, for RNA of

length up to 400 nt, we found the total variation distance between

Figure 8. Run times in seconds for RNAbor and FFTbor, on random RNA of length 20,40,60, . . . ,300 in step size of 20 nt. Each
algorithm was run with the empty initial structure S�, see rows RNAbor (empty), FFTbor (empty), and with the minimum free
energy structure as the initial structure S�, see rows RNAbor (MFE) and FFTbor (MFE). Note that for both RNAbor and FFTbor, the run time
increases when S� is the MFE structure, rather than the empty structure. Notice the radical improvement in the run time of FFTbor over that of
RNAbor.
doi:10.1371/journal.pone.0050506.g008

Figure 9. (Left) Table showing parallel run times in seconds for FFTbor, using OpenMP http://openmp.org/. Column headers 1,2
indicate the number of cores used in the computational experiment. For each sequence length 200, . . . ,500, five random RNAs were generated using
equal probability for each nucleotide A,C,G,U. Run time in seconds, plus or minus one standard deviation, are given for a 24-core AMD Opteron 6172
with 2.10 GHz and 64 GB RAM, with only 1 (resp. 2) cores used. (Right) Graph showing parallel run time of FFTbor on an AMD Opteron 6172 with
2.10 GHz and 64 GB RAM, using respectively 1,2,3,4,6,9,12,15,20 cores.
doi:10.1371/journal.pone.0050506.g009
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P, as computed to 6 decimal places by RNAbor and by FFTbor, to

be 0. It follows that FFTbor can reliably be used in place of

RNAbor to determine Boltzmann probabilities p(k)~
P dBP(S,S�)~kð Þ.

Run time comparison of RNAbor and FFTbor. As visible

from the defining recursions, the algorithmic time complexity of

RNAbor is O(n5) and space complexity is O(n3), where n is the

length of input RNA sequence. In contrast, the time complexity of

FFTbor is O(n4) and space complexity is O(n2). Figure 8 displays

run time curves for both RNAbor and FFTbor, when the initial

structure S� is taken to be either the empty structure or the

minimum free energy (MFE) structure.

Here, we compare the run time of RNAbor [1] and the

(unparallelized version of) FFTbor, using a Dell Power Edge 1950,

26 Intel Xeon E5430 Quad core with 2.80 GHz and 16 GB

RAM. For n~20,40,60, . . . ,300, in step size of 20 nt, we

generated n random RNA sequences of length n with equal

probability for each nucleotide A,C,G,U (i.e. a 0th order Markov

chain). For values of nƒ200, 100 random sequences of length n
were generated, while for values of 220ƒnƒ300, only 10
sequences of length n were generated. RNA sequences larger

than 300 nt were not tested, due to O(n3) memory constraints

required by RNAbor. For each RNA sequence, RNAbor and

FFTbor were both run, each starting with empty initial structure

S�, and also with initial sequence S� taken to be the MFE

structure. Each data point in the table comprises the average run

time for three independent evaluations.

OpenMP parallelization of FFTbor. OpenMP is a simple

and flexible multi-platform shared-memory parallel programming

environment, that supports parallelizations of C/C++ code – see

http://openmp.org/. Using OpenMP primitives, we created

multiple threads to evaluate the polynomial Z(x) on different

complex nth roots of unity. The table in the left panel of Figure 9

and Table 2 together present benchmarks, executed on a 24-core

AMD Opteron 6172 with 2.10 GHz and 64 GB RAM, for the

speedup of FFTbor as a function of the number of cores. The table

in Figure 9 describes average run time in seconds (+ one standard

deviation) for running FFTbor on random RNA of length

200,250,300,400,450,500 with either 1 or 2 cores. Table 2

presents similar data for running FFTbor on 2,3,6,4,12,15,20

cores. Although FFTbor clearly has quartic O(n4) run time as a

function of RNA sequence length, least-squares fit of run times

from Table 2 instead shows a quadratic run time for RNA

sequences of length up to 500 nt. There appears to be a power law

dependence of FFTbor speedup, as a function of number of cores.

For instance, for random RNA of length 200 nt, least-squares fit of

the data from the table yields a run time of 105:29x{0:923 with R2

value of 0:99782. A power law behavior is demonstrated, with

similarly high R2 values, for each fixed sequence length in Table 2,

with different coefficients of variable x but with approximately the

same exponent of x (data not shown, but easily computable from

data in Table 2).

Conclusion and Discussion

In this paper, we have used a dynamic programming

computation to evaluate the polynomial

Z(x)~
Xn

k~0

ckxk ð22Þ

on the complex nth roots of unity 1,e2pi=n, . . . ,e2pi(n{1)=n, where

the coefficients ck~Zk
1,n are equal to the sum of Boltzmann factors

over all secondary structures of a given RNA sequence, whose base

pair distance to a given initial structure S� is k. Recall the

definition of polynomial

p(x)~
Z(x)

Z1,n

~
Xn

k~0

pkxk ð23Þ

obtained from Z(x), whose coefficients are Boltzmann probabil-

ities pk~
Zk

1,n

Z1,n
that a secondary structure has base pair distance k

to S�. By using the fast Fourier transform to compute the inverse

discrete transform, we can approximate to m decimal places the

coefficients pk~
Zk

1,n

Z1,n
~

ck

Z1,n
of p(x), and thus the m most

significant positions of ck~Zk
1,n~pk

:Z1,n. Interpolation is per-

formed for p(x), rather than Z(x), due to issues concerning

numerical instability. The computational advantage of FFTbor

over its predecessor RNAbor [1] is that the new algorithm runs in

quartic time O(n4) and quadratic space O(n2), in contrast to the

O(n5) run time and O(n3) space required by RNAbor. We have

additionally provided a parallelization of FFTbor using OpenMP

primitives. Additionally, we have described applications of FFTbor

to determine the correlation between kinetic folding speed and the

Table 2. Table showing parallel run times of FFTbor, using OpenMP http://openmp.org/. Column headers 2,3, etc. indicate the
number of cores used in the computational experiment.

Len 2 3 4 6 9 12 15 20

200 61.8+8.0 41.6+6.0 31.6+4.2 21.1+2.9 15.0+2.3 11.3+1.1 9.6+1.3 7.6+1.5

250 166.1+13.7 111.5+8.7 84.1+7.1 56.9+4.0 38.8+3.8 30.3+2.6 24.6+1.6 18.9+2.7

300 365.2+30.1 246.4+20.5 184.5+14.9 125.1+9.6 85.5+6.6 64.9+6.5 53.6+5.9 42.1+5.2

350 698.4+46.9 470.1+32.6 352.0+23.0 242.6+15.8 163.3+12.4 125.1+6.7 104.2+8.9 76.2+3.9

400 1,129.5+104.3 757.5+68.9 571.6+53.9 391.2+36.4 265.1+24.2 207.2+18.4 165.6+14.5 125.9+14.9

450 1,980.9+126.5 1,326.3+85.1 1,000.0+59.0 688.9+44.8 469.2+29.1 355.1+25.4 289.8+21.2 223.1+18.2

500 3,389.8+788.4 2,067.9+99.2 1,555.0+72.2 1,074.3+53.7 728.1+40.9 548.3+24.0 451.5+25.7 338.1+22.7

For each sequence length 200, . . . ,500, five random RNAs were generated using equal probability for each nucleotide A,C,G,U. Run time in seconds, plus or minus one
standard deviation, are given for a 24-core AMD Opteron 6172 with 2.10 GHz and 64 GB RAM. Least-squares fit of the data indicates a quadratic dependency of run time

on sequence length (despite the obvious O(n4) theoretical run time), and a power law dependence of approximately x{0:99 on the number of cores x.
doi:10.1371/journal.pone.0050506.t002
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ruggedness of the energy landscape, and to predict the location of

riboswitch expression platform candidates.

It is important to point out that the algorithm and software

RNAbor is more general than that of FFTbor – in particular,

RNAbor not only computes the partition function values Zk
1,n, for

all 0ƒkƒn, but as well as computes the structures Sk, defined to

be the minimum free energy structure over all k-neighbors of

initial structure S�. In contrast, FFTbor only computes the m most

significant digits of the probabilities pk~Zk
1,n=Z, for 0ƒkƒn,

where by multiplication of pk by the partition function Z~Z1,n,

one obtains an approximation of the partition function values Zk
1,n.

There is no possibility that FFTbor can compute the structures Sk,

nor can at present we see how to use FFTbor to sample structures

from the Boltzmann ensemble of structures having base pair

distance k from S�.
In [37,38], we introduced the a related parametric RNA structure

algorithm, RNAmutants, which computes the partition function Zk
1,n

and minimum free energy structure MFE(k) over all secondary

structures of all k-point mutants of a given RNA sequence

s~s1, . . . ,sn. In [39], RNAmutants was extended to sample low

energy structures over k-point mutants within a certain range of GC-

content. Some of the ideas in [39] foreshadowed the results of this

paper, and in the future, we intent to apply interpolation and the FFT

to similarly provide a more efficient version of RNAmutants.

Nevertheless, this future, more efficient version will be incapable of

efficiently sampling low energy structures over k-point mutants,

analogous to the current differences between RNAbor and FFTbor.
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37. Clote P, Waldispühl J, Behzadi B, Steyaert JM (2005) Exploring the energy

landscape of k-point mutagens of rna. Bioinformatics 21: 4140–4147.

38. Waldispuhl J, Devadas S, Berger B, Clote P (2008) Efficient algorithms for
probing the RNA mutation landscape. PLoS Comput Biol 4: e1000124.
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