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Incidence of nonalcoholic fatty liver disease is increasing with an estimated prevalence of 20–30% in developed nations. This is
leading to increased incidence of chronic liver disease, cirrhosis, and hepatocellular cancer. It is critical to understand the etiology
and pathogenesis of any disease to create therapeutic targets and develop new treatments. In this paper we discuss the etiology and
pathogenesis of nonalcoholic steatohepatitis with special focus on obesity, role of insulin resistance, and molecular mechanisms of
hepatotoxicity.

1. Introduction

The term non-alcoholic fatty liver disease (NAFLD) refers to
the spectrum of diseases characterized by fatty infiltration of
the liver ranging from steatosis, steatohepatitis, or cirrhosis.
Hepatic steatosis with or without hepatitis, in the absence
of alcohol use, was first described by Ludwig et al. and
is referred to as non-alcoholic steatosis or non-alcoholic
steatohepatitis (NASH) [1]. NAFLD is a common disease
with an estimated prevalence in unselected population of
developed nations around 20–30% [2]. The rapid rise in
the incidence of the NAFLD might be explained by the
recent epidemic of obesity and metabolic syndrome, which
are manifested at hepatic level as NAFLD [3–5]. Most
patients with NAFLD have simple hepatic steatosis without
progression to steatohepatitis and fibrosis. However, in 2-
3% of patients, NAFLD can progress to NASH that can
eventually cause progressive fibrosis and lead to cirrhosis and
related complications including hepatocellular carcinoma
[3, 6, 7]. Once patients with simple steatosis develop NASH,
up to 50% of them could develop advanced fibrosis [8].

A “two-hit hypothesis” was then proposed to explain
the pathogenesis and progression of NAFLD, where the first
hit causes accumulation of excess triglycerides in the liver
leading to simple steatosis and the second hit causes the

steatosis to progress to inflammation and fibrosis [9, 10].
The two-hit hypothesis was recently questioned as it was
suggested that the hepatic accumulation of triglycerides in
the liver might be instead protective towards further hepatic
damage [11, 12].

Development of obesity or metabolic obesity, defined by
isolated increase in visceral fat in people who are not obese,
is often seen as the starting point for development of NAFLD
[13], leading to the cascade of events ending in the formation
of hepatic steatosis. How does increased visceral fat lead to
increased fat accumulation in liver? What is the role of insulin
resistance? What are the cellular and molecular mechanisms
involved? What are the chemical mediators involved?

2. Factors Contributing to
Development of Obesity

Development of obesity or metabolic obesity is seen as
the initial step in the development of metabolic syndrome
and non-alcoholic fatty liver disease. Obesity is likely due
to contributions from multiple factors including but not
limited to impaired central appetite regulation, genetic
predisposition, and contribution from dietary factors and
lack of physical activity [13].
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Central nervous system plays a critical role in regulation
of body weight via a negative feedback mechanism. Increase
in body fat stores alert the appetite center in hypothalamus
leading to appetite control and adipose tissue homeostasis
[14]. Insulin and leptin are considered as prime mediators of
this mechanism [15]. In overweight individuals, the amount
of leptin in circulation is high but they develop resistance
to leptin and so their appetite is not well controlled, leading
to failure of the negative feedback mechanism [16, 17]. The
molecular mechanisms leading to leptin resistance and its
role in the development of obesity are discussed in detail
elsewhere [18].

While increased caloric intake definitely has a critical
role in the development of obesity, there has been con-
siderable interest about various dietary components and
their relative contribution to the development of obesity.
Increased fructose consumption has been shown as a risk
factor for development of NASH and that increased fructose
consumption correlates with the severity of fibrosis in
patients with NAFLD [19, 20]. The explanation is that
fructose consumption leads to obesity or metabolic syn-
drome and that NAFLD is the hepatic manifestation but it
is interesting to note that increased fructose consumption
is an independent risk factor for development of fatty liver
irrespective of metabolic syndrome [21, 22].

Patients with NALFD are shown to have increased
percentage of dietary fat content and also get much lower
percentage of their calories from fruits [23, 24]; not only total
fat content in the diet but also the composition of fat has
seen considerable interest in recent times. Current literature
supports the fact that diet of patients with NAFLD might
be high in saturated fatty acids and n-6 polyunsaturated
fatty acids and low in n-3 polyunsaturated fatty acids and
monounsaturated fatty acids [25–27]. Though much of the
focus has been on diets with high percentage of fats, diet, rich
in synthetic disaccharides have also been shown to induce
hepatic fibrosis in rats [28].

Gut microbiota and its interaction with the consumed
nutrients have also been the focus of research and microbiota
could have a possible role in obesity by their influence on
amount of nutrients absorbed. Several mechanisms were
proposed including altered gut permeability and digesting
the ingested polysaccharides thereby increasing the amount
of energy absorbed [29].

While low physical activity might not directly contribute
to NAFLD in otherwise healthy patients, increase in physical
activity coupled with weight loss has been shown to improve
liver profile in overweight patients with chronic liver disease
[30].

3. Obesity Is a Proinflammatory State:
Results in Insulin Resistance

Two types of adipose tissue are recognized in humans: brown
adipose tissue and white adipose tissue. brown adipose tissue,
mainly found in neonates, helps with heat production and
has a protective effect against hypothermia. White adipose
tissue, present in adults, consists of adipocytes, endothelial

cells, fibroblasts, leukocytes, and bone marrow derived
macrophages. The only function of white adipose tissue was
initially thought to be energy store. Instead, new research
is pointing towards adipose tissue having a more complex
endocrine function mediated by the production of numerous
proinflammatory cytokines called adipocytokines [31, 32]. It
should also be noted that not all white adipose tissue might
be the same; increasing volume of visceral adipose tissue and
their production of pro-inflammatory cytokines seems to
play an important role in development of insulin resistance
compared to subcutaneous adipose tissue [33].

Adipocytokines produced by the adipose tissue include
adiponectin, leptin, resistin, visfatin, tumor necrosis factor-α
(TNF-α), interleukin-6 (IL-6), monocyte chemoattractant
protein-1 (MCP-1; also known as CCL2 or CC-chemokine
ligand 2), plasminogen activator inhibitor-1, angiotensino-
gen, retinol-binding protein-4, and serum amyloid A
[34–38]. Adipocytokines are not exclusively produced by
adipocytes but some, like TNF-α, are mainly produced by
the macrophages in the adipose tissue. MCP-1 produced
by adipocytes is a major factor contributing to macrophage
recruitment to the adipose tissue [39]. Adipose tissue in
obese individuals is associated with increased macrophage
activity, which is responsible for almost all of the TNF-α and
major part of the IL-6 expressed by the adipose tissue [40].
Thus, obesity is state of chronic inflammation characterized
by abnormal cytokine (adipocytokines) production and
activation of pro-inflammatory signaling pathways [41]. The
following sequence of events has been proposed: devel-
opment of obesity leads to increased volume of adipose
tissue, followed by increased production of MCP-1 by the
adipocytes, which attracts more macrophages to the adipose
tissue itself. Once the macrophages in the adipose tissue
are activated, a self-perpetuating inflammatory cascade is
triggered by secretion of pro-inflammatory cytokines like
TNF-α and IL-6 [31].

As noted above, the distribution of fat is also important
in the pathogenesis of metabolic syndrome and visceral
adipose tissue is considered a better indicator of insulin
resistance and cardio vascular disease [42]. This could be
due to either release of greater amounts of adipocytokines by
visceral fat tissue compared to subcutaneous tissue in obese
individuals [43] or could be due to the fact that visceral fat
has direct access to portal circulation and thereby having
stronger impact on liver [34].

Sodium salicylate an antiinflammatory medication has
been used to decrease glycosuria associated with diabetes
many years before the discovery of association between
type-2 diabetes mellitus and increased inflammatory mark-
ers [44]. Since then more studies have shown increased
levels of inflammatory mediators like C-reactive protein,
interleukin-6, and plasminogen activator inhibitor-1 in
patients with type-2 diabetes [45–48].

Obesity is a proinflammatory state with high levels of
circulating pro-inflammatory cytokines and diabetes is also a
state of chronic inflammation; how are these two conditions
related? The answer to this question was provided by a study
that has shown that TNF-α can induce insulin resistance
in obese rodents and also that neutralization of TNF-α
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Figure 1: Lipid metabolism in liver. Liver FFA pool is derived from
uptake of circulating FFAs and de novo synthesis. The FFAs are then
either oxidized or esterified into triglycerides. Triglycerides are then
released into circulation as VLDL or stored as vacuoles leading to
hepatic steatosis.

can decrease the insulin resistance with resulting increased
peripheral uptake of glucose [49]. Since then similar findings
of elevated TNF-α were also found in humans with increased
insulin resistance and impaired glucose tolerance [50–52].

High TNF-α levels can induce insulin resistance in
animal models through the activation of I-kappa-B-kinase-
β (IKKβ)/nuclear-factor-kappa-B (NF-κB) and Jun N-
terminal kinase (JNK) pathways [53]. JNK can cause insulin
resistance through the phosphorylation of serine residues in
insulin receptor substrate-1 (IRS-1) [54, 55]. IKKβ activation
leads to activation of NF-κB via transcription and sub-
sequent increased expression of markers and mediators of
inflammation causing insulin resistance. Increasing obesity
will lead to increased production of adipocytokines like
TNF-α, IL-6 that lead to perpetuating cycle of JNK, and
NF-κB activation leading to worsening insulin resistance.
Detailed review of signaling pathways associated with insulin
resistance due to inflammation was discussed elsewhere [56].

4. Mechanisms of Hepatic Fat Accumulation:
Role of Insulin Resistance

The liver plays a key role in lipid metabolism; its role
includes uptake and de novo synthesis of free fatty acids
(FFAs) followed by conversion of FFAs into triglycerides
by esterification. These triglycerides are then released into
the circulation as very low-density lipoproteins (VLDL) or
stored as triglyceride vacuoles in hepatocytes [57]. FFAs that
are not esterified into triglycerides will be metabolized in the
liver by β-oxidation [58] (Figure 1).

In NAFLD, there is disruption of this cascade of events
since the amount of FFAs delivered/synthesized in the
liver exceeds its oxidative capacity. This leads to increased
triglyceride synthesis and as the triglyceride synthesis con-
tinues to rise and exceed the amount that can be released
as VLDLs, triglycerides accumulate in hepatocytes causing
hepatic steatosis [58, 59]. This step of development of hepatic
steatosis is considered as “first hit” in the pathogenesis of
NAFLD [60, 61].

This raises the questions: what causes increased availabil-
ity of FFAs to liver, is it increased delivery or is it due to

increased de novo synthesis of FFAs in liver? What is the role
of insulin resistance? Other than increased FFA availability,
does disruption of other mechanisms like β-oxidation or
VLDL synthesis contribute to hepatic lipid accumulation?

As much as 59% of hepatic triglyceride content is derived
from free fatty acids and only 26.1% of the hepatic triglyc-
eride was due to de novo synthesis as shown in this study,
where isotope tracers were used to track hepatic fat content
[62]. This increased delivery of FFAs to liver is due to insulin
resistance because insulin resistance increases the total serum
FFAs levels due to increased lipolysis in peripheral adipose
[63, 64]. Cluster differentiation 36 pathway activation leads
to increased FFA uptake by liver [65]. Increased expression
of this pathway is seen in patients with insulin resistance
and is implicated in pathogenesis of NAFLD [66]. Defective
oxidation of the FFAs and dysfunctional VLDL synthesis
were also thought to be a key factor in pathogenesis of
NAFLD [67]. Though delivery of increased amounts of FFAs
beyond the capacity of liver metabolism seems to be the
primary cause of hepatic fat accumulation, it should be noted
that disruption of other pathways could have a role and more
importantly that insulin resistance is implicated in most of
these mechanisms [13, 68, 69].

As discussed earlier, increased visceral adipose tissue is
a risk factor for development of metabolic syndrome and
visceral adipose tissue is more prone to insulin resistance
when compared to peripheral fat. Insulin resistance in
visceral fat leads to increased lipolysis and subsequent
delivery of FFAs to the liver increases in an exponential
manner due to its direct drainage into portal circulation [70].

5. Molecular Mechanisms and Mediators of
Hepatotoxicity from Excess Lipids

Hepatic steatosis [61] was considered as first hit in the
pathogenesis of NAFLD but it later became clear that
accumulation of triglycerides is actually protective and that
free fatty acids are the toxic substances that lead to steato-
hepatitis and fibrosis [71, 72]. Diacylglycerol acyltransferase
2 (DGAT2) is an enzyme responsible for esterification of
FFAs into triglycerides; inhibition of triglyceride synthesis
by genetically deleting this enzyme has reduced hepatic
steatosis in mouse model but made fibrosis worse due to FFA
toxicity [11]. Interruption of triglyceride synthesis could be
the initiating event for FFAs-mediated lipotoxicity (cellular
toxicity due to accumulated fat) in liver cells [73]. As such,
hepatic triglycerides are called the “good fat” and FFAs are
called the “bad fat” [74].

This raises the question: are all free fatty acids the
same? Studies that looked at the composition of hepatic and
circulating free fatty acids have revealed that patients with
NAFLD have elevated levels of oleic acid (a monounsaturated
fatty acid, MUFA) and palmitic acid (a saturated fatty acid,
SFA) [75, 76]. On the other hand polyunsaturated fatty
acids are not shown to be toxic to hepatocytes and could
be protective in patients with NAFLD [13, 77]. Further
information on this topic was provided by experimental
studies that looked at the role of stearoyl-CoA desaturase-1
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(SCD1), the enzyme that converts SFA to MUFA. Increased
expression of SCD1 leads to more MUFA production, which
was then incorporated into triglycerides and thus leading
to well tolerated simple hepatic steatosis. But inhibition
of SCD1 leads to accumulation of SFA and subsequent
development of hepatocytes apoptosis and steatohepatitis
[74, 78]. So for disease progression in NAFLD, the type of
FFA accumulated is as important or may be more important
than the quantity of FFAs accumulated in the hepatocytes
[79].

Apoptosis is a process of programmed cell death and is
considered an important mechanism in the progression of
NAFLD [80–82]. Apoptosis is the key pathogenic mechanism
noted in the biopsy specimens of the patients with NASH
and in the spectrum of NAFLD presence of apoptosis
distinguishes patients with simple steatosis from patients
with NASH [83]. The extent and severity of the apoptosis
correlates with the degree of inflammation and fibrosis,
so patients with higher apoptosis rates will have advanced
stage fibrosis [80]. Cytokeratin-18 fragments are markers for
apoptotic hepatic cells and their circulating levels correlate
with the severity of the fibrosis providing further evidence
that apoptosis is an important feature of NASH [84].
Apoptosis mediated by FFAs is called lipoapoptosis [85] and
the mediators of lipoapoptosis are further discussed here.
Apoptotic pathways can be activated via extrinsic pathway
mediated by receptors on cell surface or via intrinsic pathway
mediated by intracellular organelles [86].

5.1. Toll-Like Receptors. Toll-like receptors (TLRs) are pat-
tern recognition receptors that can identify pathogen-
associated molecular patterns and in response, they activate
the immune system via pro-inflammatory signaling path-
ways [87]. Saturated fatty acids like palmitic acid can activate
TLR4-mediated upregulation of NF-κB with subsequent
increased production of adipocytokines like TNF-α and IL-6
[88]. Decreased expression of TLR4 in mutant mouse model
is shown to be protective against development of NASH [89].

In an experimental dextran sulfate sodium (DSS) colitis
mouse model, mouse fed with high fat diet and DSS had
increased levels of bacterial lipopolysaccharides in portal
circulation, increased expression of TLR4, and severe hepatic
inflammation when compared to controls [90]. TLR4 might
be the crucial link in the gut microbiota-liver axis related to
progression of NASH.

5.2. Death Receptors. Death receptors are cell surface recep-
tors from the tumor necrosis factor family of receptors and
play critical role in extrinsic apoptotic pathways [91]. The
death receptors and their ligands expressed in liver include
Fas, tumor necrosis factor receptor 1 (TNF-R1) and TNF-
related apoptosis-inducing ligand receptor 1 and 2, TRAIL-
R1 and TRAIL-R2, Fas ligand (FasL), TNF-α, and TRAIL
[92]. In extrinsic pathway, death ligands activate their recep-
tors forming adeath complex that in turn activates caspase-8
leading to apoptosis (caspases are death-inducing proteolytic
enzymes). Overexpression of these death receptors and
subsequent apoptosis is an important feature of NASH [80].

Figure 2: Reference [74]. FFA may activate several signaling path-
ways of apoptosis including upregulation and increased number of
death receptors such as Fas and TRAIL receptor 5 (DR5), at the level
of the plasma membrane, lysosomal permeabilization, and ER stress
both coupled to mitochondrial dysfunction resulting in activation
of the mitochondrial pathway of apoptosis. These toxic fatty acids
may also activate TLR4 signaling resulting in up-regulation of
several pro-inflammatory cytokines. Finally, other lipid types such
as free cholesterol (FC) and ceramide may induce mitochondrial
dysfunction and activate the mitochondrial pathway of apoptosis.
Abbreviations: FFA: free fatty acids; SFA: saturated fatty acids.
MUFA: monounsaturated fatty acids, FC: free cholesterol, CE.
cholesteryl-ester; ER: endoplasmic reticulum.

5.3. Mitochondrial Dysfunction and Reactive Oxygen Species.
Reactive oxygen species (ROS) are a group of free radicals
derived from molecular oxygen, and oxidative stress refers to
the cellular damage done by these free radicals [93]. ROS are
formed via oxidative reactions in intracellular organelles and
mitochondria are a principal source of ROS, but in a normal
healthy cell, the levels of ROS are very low due to various
anti-oxidant defense mechanisms [94, 95].

In normal healthy subjects, mitochondrial β-oxidation
is the preferential way to dispose of the FFAs by liver
[96]. But in NAFLD, there is an excess of FFAs, and
increased β-oxidation by mitochondria leads to increased
delivery of electrons to the electron transport chain causing
overreduction of electron transport chain and formation
of ROS [95]. Mitochondrial DNA is vulnerable to damage
by ROS; increased generation of ROS leads to damage of
mitochondrial DNA leading to mitochondrial dysfunction,
which further potentiates ROS formation [97].

Intracellular stress caused by accumulation of ROS
leads to mitochondrial dysfunction resulting in release of
proapoptotic proteins like cytochrome c into the cytosol.
Cytochrome c then combines with apoptotic-protein activa-
tion factor-1 (Apaf-1) and caspase 9 to form an activation
complex called the apoptosome. Apoptosome activates the
downstream caspases 3, 6, and 7 to complete the final steps
of apoptosis [98].

5.4. Lysosomal Permeabilization. Mitochondrial dysfunc-
tion is considered the central pathophysiological process
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Figure 3: Development and progression of nonalcoholic fatty
liver disease. Abbreviations: tumor necrosis factor-α (TNF-α),
interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-
1), I-kappa-B-kinase-β (IKKβ), nuclear-factor-kappa-B (NF-κB),
Jun N-terminal kinase (JNK), and free fatty acids (FFAs).

contributing to progression of NALFD to NASH, and the
quest to identify molecular mechanisms leads to the iden-
tification of lysosomal-mitochondrial axis in FFA-induced
lipotoxicity and the potential role of lysosomal permeabi-
lization in the progression of NASH [99]. In this study,
liver cells were fed with high fat diet and observed in
real time, lysosomal permeabilization and cathepsin B (a
lysosomal protease) release in the cytoplasm occurred much
earlier than mitochondrial dysfunction and cytochrome c
release into the cytosol. Also inhibition of cathepsin B was
protective against FFA-induced lipotoxicity [99]. Cathepsin
B is also implicated in progression of liver fibrosis by its
role in activation of hepatic stellate cells and aiding their
differentiation into myofibroblasts [100].

5.5. Endoplasmic Reticulum Stress. Endoplasmic reticulum
(ER) is an intracellular organelle with multiple important
functions like protein synthesis, lipid synthesis, and so forth.
When ER is put under stress (ER stress), it responds by a
mechanism called unfolded protein response (UPR) [101].
UPR is designed to protect ER from the stress induced by

various sources like viral infections, alcohol, or FFAs. But
when the duration of ER stress is prolonged then UPR might
not be able to cope and leads to apoptosis [102, 103]. Further
information about the role of ER stress is addressed in this
in vitro study where saturated fatty acid palmitic acid was
able to induce ER stress and lead to apoptosis of hepatic cells
[104].

Other mechanisms by which FFAs can lead to apoptosis
include mitochondrial dysfunction via c-Jun N-terminal
kinase (JNK) activation, pro-apoptotic protein Bax-induced
mitochondrial permeabilization, free cholesterol-mediated
ER stress, and ceramide-mediated apoptosis induced by
death ligands like TNF/FAS [74, 105] (Figure 2).

Insummary, impaired central appetite regulation, genetic
predisposition, dietary caloric excess, and lack of physical
activity contribute to development of obesity. Obesity is
a pro-inflammatory state and leads to insulin resistance
via adipocytokines. Insulin resistance leads to increased
lipolysis and exponentially high delivery of free fatty acids
to liver. Accumulation of FFAs leads to hepatic steatosis
and FFA-mediated lipotoxicity that eventually progresses to
fibrosis/cirrhosis (Figure 3).

In conclusion, NAFLD is increasing in prevalence and
could become the most common cause of chronic liver
disease in the near future in the Western world. It is very
important to understand the complex molecular mecha-
nisms and the mediator involved to develop new therapeutic
targets for this disease.
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