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Stroke is still one of the most common causes for mortality and morbidity worldwide.
Following acute stroke onset, biochemical and cellular changes induce further brain injury
such as neuroinflammation, cell death, and blood-brain barrier disruption. Matricellular
proteins are non-structural proteins induced by many stimuli and tissue damage including
stroke induction, while its levels are generally low in a normal physiological condition in
adult tissues. Currently, a matricellular protein tenascin-C (TNC) is considered to be an
important inducer to promote neuroinflammatory cascades and the resultant pathology in
stroke. TNC is upregulated in cerebral arteries and brain tissues including astrocytes,
neurons, and brain capillary endothelial cells following subarachnoid hemorrhage (SAH).
TNC may be involved in blood-brain barrier disruption, neuronal apoptosis, and cerebral
vasospasm via the activation of mitogen-activated protein kinases and nuclear factor-
kappa B following SAH. In addition, post-SAH TNC levels in cerebrospinal fluid predicted
the development of delayed cerebral ischemia and angiographic vasospasm in clinical
settings. On the other hand, TNC is reported to promote fibrosis and exert repair effects
for an experimental aneurysm via macrophages-induced migration and proliferation of
smooth muscle cells. The authors review TNC-induced inflammatory signal cascades and
the relationships with other matricellular proteins in stroke-related pathology.

Keywords: biomarker, blood-brain barrier disruption, cerebral vasospasm, matricellular protein,
neuroinflammation, neuronal apoptosis, stroke, subarachnoid hemorrhage
INTRODUCTION

Stroke is a large public concern in terms of both human and financial resources (1, 2). In the United
States, annual stroke expenses have reached approximately 33.9 billion dollars (2). Although recent
research has been clarifying pathological changes in the brain following stroke, therapeutic options
for these patients remain limited.

Neuroinflammation is a key pathologic change arising from stroke. Findings from both clinical
and animal studies have indicated that inflammatory reactions may contribute to the development
of brain injury following stroke (3–5). Post-stroke tissue damage releases secondary breakdown
products of brain tissue and blood components. Damage-associated molecular patterns (DAMPs)
are endogenous molecules released as a result of tissue damage that rapidly activate the innate
immune response by interacting with a number of pattern recognition receptors (PRRs) located
primarily on microglia and macrophages (6, 7). Activated microglia and macrophages release
inflammatory cytokines and mediators via activation of signaling pathways downstream of the
org January 2021 | Volume 11 | Article 6075871
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PRRs. The PRRs include Toll-like receptors (TLRs), cytosolic
NOD-like receptors and inflammasomes, receptors for advanced
glycation end products, and other scavenger receptors (8–10).
Following stroke, the TLR4 signaling pathway is involved in the
initial steps of neuroinflammation cascades, which result in brain
injury such as vasogenic and cytotoxic edema and blood-brain
barrier (BBB) disruption (11). Furthermore, neuroinflammation
recruits more DAMPs, accelerating the inflammatory response.
The secondary brain injury includes early brain injury (EBI),
cerebral vasospasm (CVS), and delayed cerebral ischemia (DCI)
after subarachnoid hemorrhage (SAH). Neuroinflammation is
currently considered to be a critical factor contributing to
morbidity and mortality in stroke patients who survive the
initial brain damage and needs to be addressed in order to
improve clinical outcomes (11–13).

Matricellular proteins (MCPs) are extracellular matrix (ECM)
components upregulated and released by tissue damage, exerting
both beneficial and harmful effects through binding to receptors,
other matrix proteins, growth factors (GFs), and cytokines (14).
Recent studies have demonstrated the efficacy of treatments
targeting MCPs in preclinical stroke neuroinflammation
models (15, 16).

In this review, we focus on aMCP tenascin-C (TNC) involved in
neuroinflammation following stroke, and highlight current evidence
for its use as a clinical biomarker and a therapeutic target.
WHAT ARE MCPS?

The concept of MCPs was introduced in 1995 due to their
characteristics which differ from classical ECM proteins (17). MCPs
are currently considered important inducers that regulate the
expression of inflammatory mediators and are involved in diverse
pathological changes such as cell death, immunomodulation,
inflammation, fibrosis, vascular permeability, and angiogenesis via
modulation of the molecular functions or cellular responses to the
molecules (18, 19). MCPs can work on the plasma membrane,
intracellularly, in body fluids, or in the ECM, and also act as
reservoirs of the bioactive molecules (18, 19). The level of protein
expression is low in normal physiological conditions in adult tissues
in general, and MCP knockout mice undergo normal development
(18, 20). Almost all tissues and cell types produce MCPs following
various stimuli which disappear after stimulus removal. MCPs do not
provide a scaffold for stable cell adhesion, but induce cell motility and
tissue remodeling via modulation of cell surface receptors, other
matrix proteins, GFs, and cytokines (Table 1) (18). Accumulating
evidence suggests that many types of MCPs, such as TNC, periostin,
galectin-3, and osteopontin, contribute to aggravation or
improvement of neuroinflammation in stroke at least partly by
influencing the expression of each other (15, 18–23).
TNC: THE STRUCTURE AND ISOFORMS

Tenascins (TNs) are representative of MCPs and are comprised
of a family of four homologs, that is, TNC, TNR, TNW, and TNX
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(22–24). Among the TNs, only TNC has been investigated in
stroke (20). TNC was discovered in the early 1980s and initially
referred to by different terms such as myotendinous antigen,
glioma mesenchymal ECM, hexabrachion, TN, J1-200/220,
cytotactin, and neuronectin (25, 26). TNC is a pleiotropic
ECM glycoprotein with a large molecular weight (180–400
kDa). Its N-terminal contains highly conserved heptad repeats,
followed by 14 epidermal growth factor (EGF)-like repeats and
up to 15 fibronectin type III (FN III) repeats comprised of
universal repeats and alternatively spliced repeats; and a
fibrinogen repeat domain is located at the C-terminal (25, 27–
30). Alternatively spliced repeats in the FN III domain are
comprised of a combination of A1, A2, A3, A4, B, AD2, AD1,
C, and D domains in humans and A1, A2, A4, B, C, and/or D
domains in mice, which are inserted between domains 5 and 6 in
universal FN III repeats (20, 23, 29–34). TNC generally forms a
disulfide-linked hexamer mediated by the N-terminal domain in
which six flexible arms emanate from a central globular particle
(Figure 1) (20, 22, 29, 30, 35). In humans, TNC is encoded at a
single gene located at 9q33 (20).

TNC exhibits a diverse range of isoforms in various tissues,
the splicing of which is regulated by intracellular pH. Under
exposure to basic pH ~7.30–7.50 as observed with fetal cells and
aggressive tumors, the level of longer or larger TNC isoforms is
enhanced (33). Isoforms with a large molecular mass (≥200 kDa)
contain at least one alternatively spliced FN III repeat. Each
alternatively spliced FN III repeat has unique functions (33).
Larger TNC isoforms induce cell proliferation and migration,
and control cell spreading, resulting in promotion of destruction
or remodeling of local tissues (33). In addition, larger TNC
isoforms can be easily degraded by matrix metalloproteinases
(MMPs), leukocyte elastase, and possibly other serine proteases
(33). MMPs usually cleave the sites located within the
alternatively spliced region (23, 33). In contrast, TNC isoforms
with a lower molecular mass (<200 kDa) lack A1-D domains in
alternatively spliced FN III repeats and seem to be more stable in
dense connective tissues and to be expressed at low levels in a
physiologically normal tissue (33). Under physiological pH <7.0,
the level of small TNC isoforms is increased (33). Different TNC
isoforms seem to be produced by proteolytic processing of a large
multimodular TNC isoform. The proteolytic destruction may
impart novel functions to TNC by destroying existing binding
TABLE 1 | Characteristics of matricellular proteins compared with classical
extracellular matrix (ECM) proteins.

Classical ECM
protein

Matricellular protein

- Structural protein - Soluble non-structural protein
- Low expression level under normal physiological
conditions in adult tissues
- Induced in almost any tissue by stimuli and disappear
after stimulus removal

- Provide a scaffold
for stable cell
adhesion

- Induce cell motility and tissue remodeling
- Various functions via interacting with cell surface
receptors, other matrix proteins, growth factors, and
cytokines
- Knockout mice basically undergo normal development
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sites or generating smaller fragments with new binding sites:
these new functions can drive entirely novel processes compared
to the previous or intact form (33). Smaller TNC fragments exert
quite different reactions in various cells. Fragmented EGF-like
domains of TNC induce apoptotic effects on vascular smooth
muscle cells in culture, while intact or full-length TNC does not
have the functions (36). Thus, respective TNC isoforms seem to
have flexible physiological or pathological functions (20).
However, the timing and location of distinct TNC isoforms
production during inflammatory reactions have not been
completely investigated. In addition, the functions of individual
TNC isoforms have not yet been fully clarified (20).

TNC Expression During
Developmental Stage
TNC is highly expressed during embryonic development and was
first identified in developing astrocytes (37–41). Currently, TNC is
considered to be primarily induced by astrocytes and radial glial
progenitor cells and to play a crucial role in normal brain
development: it serves as a repulsive substrate for neuronal and
astrocytic growth and plays a role in proliferation and process
elongation of astrocyte progenitor cells, maturation of neural
progenitor cells, proliferation and maintenance of oligodendrocyte
precursors, and synaptic plasticity through autocrine and paracrine
regulatory mechanisms during developing stages (Figure 2) (28, 34,
40–47). In the spinal cord, TNC is synthesized by a subset of
Frontiers in Immunology | www.frontiersin.org 3
gliogenic precursors in the late phase of embryogenesis and
influences proliferation and migration of a subpopulation of
astrocytes (48). Although the expression of TNC is downregulated
in the brain 2–3 weeks after birth, it is involved in hippocampal
synaptic plasticity and synchronized neural network activities in the
mature brain via control of postsynaptic L-type Ca2+ channels (47).
Intrahippocampal injections of recombinant TNC fragments
containing the FN III repeats 6–8 block the retention of memory
and hippocampal formation in mice, showing the mediation in
hippocampus-dependent contextual memory and hippocampal
synaptic plasticity (49).

Regulation of TNC Expression
in Adult Tissues
In adult tissues, the expression and the distribution of TNC are
typically limited under normal physiological conditions but
transiently upregulated in reaction to inflammatory responses or
tissue damages (50, 51). TNC expression is controlled by several
transcription factors and intracellular regulators, including T cell
factor/lymphoid enhancer-binding factor, nuclear factor (NF)-kB,
Notch1 and Notch2, hepatocyte NF-4a, Ets, SP1, c-myc, homeobox
transcription factor Prx1, Rho, c-Jun, and extracellular signal-
regulated kinases (ERKs) (29, 32). Overexpression of the
transcription factors Slug and Sox9 induce TNC and periostin
expression (52). However, the involvement of these transcription
factors in stroke has not been investigated in vivo. In contrast,
FIGURE 1 | Hexamer structure of tenascin-C (TNC; upper), monomer structure of TNC (lower), and the possible downstream signaling pathway in stroke. Six TNC
monomers combine to a hexamer at their N-terminal domains. EGF, epidermal growth factor; ERK1/2, extracellular signal-regulated kinase 1/2; JNKs, c-Jun N-
terminal kinases; MMP-9, matrix metalloproteinase-9; TLR4, Toll-like receptor 4.
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micro-ribonucleic acids (RNAs) such as miR-355 downregulate
TNC expression in breast cancer metastases (53). Upregulation of
TNC appears in reactive astrocytes, injured neurons, and glial scar
formation with restricted occurrence in space and time: therefore,
these cells are considered to release TNC (20, 22, 29, 47, 50, 54, 55).
TNC modulates a variety of cell functions and morphologies (22,
23). Scratch wound assays induce TNC expression by astrocytes in
vitro (56). Levels of TNC enhancement following stab-wound injury
to cerebellar and cerebral cortical structures depend on the number
of glial fibrillary acidic protein (GFAP)-positive cells, which
represent reactive astrocytes (55). GFAP was significantly
suppressed in TNC-knockout mice compared to wild-type ones
one week after stab injury (57); and therefore TNCmay be involved
in the late acute phase formation of astrogliosis around sites of
injury and failed regeneration (55). However, in another mice study,
TNC exerted protective effects after brain damage (57). The study
demonstrated that extravasated immunoglobulin G was
considerably prolonged and RNA levels of proinflammatory
cytokines tumor necrosis factor (TNF)-a, interleukins (ILs)-1b
and -6 were higher in the cerebral cortex after stab-wound injury
in TNC-deficient mice: TNC productionmight promote BBB repair
or maintain the BBB integrity by the reduction of inflammatory
cytokine levels (57).

TNC induces MMPs, which seem to result in a positive TNC
feedback loop viaMMP-induced TNC cleavage (29). In addition,
many stimuli, including various pro- and anti-inflammatory
cytokines, GFs, hypoxia, reactive oxygen species, and
mechanical stress, readily but transiently upregulate TNC
within several hours in various pathological conditions such as
myocarditis, arteriosclerosis, and cancer, irrespective of the
location or type of causative insults (Figure 3) (29, 58).
Clinically, TNC has been reported as a plasma biomarker of
neurodegenerative diseases, as significantly elevated TNC levels
were found in the peripheral blood of patients with Alzheimer’s
disease with mild cognitive impairments and in the amniotic
fluid of pregnancies affected by Down syndrome (59–61). In
addition, TNC expression is induced in the hippocampi of both
epileptic rats and human patients with temporal lobe epilepsy
(62–64). In the brains of patients with temporal lobe epilepsy, the
regions exhibiting diffuse and elevated expression of TNC were
characterized by an extended area of reactive gliosis and synaptic
Frontiers in Immunology | www.frontiersin.org 4
reorganization (42). Loss of TNC in transgenic CRND8 mice
caused enhanced production of anti-inflammatory cytokines and
decreased production of proinflammatory cytokines, associated
with reduction of b- and g-secretase activity, Ab oligomerization,
amyloid plaque load, and synaptic impairments (65). However,
another study demonstrated that TNC may be involved in the
maintenance of late acute phase astrogliosis surrounding the site
of severe injuries, and exert anti-inflammatory and BBB-
repairing effects (57). Thus, TNC induced by reactive
astrocytes may play neuroprotective, neurotoxic or other
diverse roles depending on the context, including regulation of
astrocyte reactivity, BBB permeability, and potentiation of
inflammatory processes (Figure 2). TNC may also directly
affect neuronal plasticity and lead to memory impairments (42).

TNC in SAH
Many experimental studies as to TNC have been reported in SAH in
rats and mice. Some have demonstrated that TNC is expressed in
the walls of spastic cerebral arteries (endothelial, smooth muscle,
adventitial, and periarterial inflammatory cells) and in brain
parenchyma (astrocytes, neurons, and brain capillary endothelial
cells), primarily in the surface of the cerebral cortex between 24 and
72 h after SAH by endovascular perforation (22, 37, 66–69). In a
clinical setting, TNC levels in the cerebrospinal fluid (CSF) were
below the diagnostic threshold level in patients with an unruptured
cerebral aneurysm butmarkedly increased after cerebral aneurysmal
rupture (70). Elevation of TNC expression may be affected by
several factors, including elevated intracranial pressure as well as
brain damage resulting from local or systemic inflammatory
reactions (68, 71). A previous experimental study in rats showed
that even cisternal saline injections caused elevated intracranial
pressure and induced slight subarachnoid inflammatory reactions,
which caused TNC upregulation in the basilar artery adventitia (68,
71). TNC is a key pathological factor that promotes activation of
inflammatory cell infiltration in the periarterial space, causing EBI
in terms of neuroinflammation, BBB disruption, and neuronal
apoptosis; and also is involved in CVS and plays an important
role in the development of DCI (Figure 2) (3–5, 20, 29, 37, 66, 72).
Recent studies demonstrated that intracisternal injections of both
intact or full-length TNC and recombinant TNC fragments
containing the EGF-like repeats which activate EGF receptors
FIGURE 2 | The role of tenascin-C during developmental stage and following stroke. BBB, blood-brain barrier; CVS, cerebral vasospasm.
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activated mitogen-activated protein kinases (MAPKs) in arterial
smooth muscle cells, causing prolonged CVS, but had no effects on
neurobehavior, brain water content, and BBB integrity in normal
healthy rats; however, in SAH rats, the TNC injections caused
neurological impairments (3, 16, 22, 66, 72–77). In addition, TNC-
induced activation of MAPKs is considered to upregulate MMP-9
in brain capillary endothelial cells and to cause BBB disruption in
mice with SAH, although the mechanisms remain unidentified (29,
72, 73, 75, 77, 78). MAPK activation also results in a release of
inflammatory mediators (18, 79). Human studies have repeatedly
shown elevation of inflammatory mediators such as endothelin-1,
TNF-a, and ILs-1b and -6 in CSF after SAH (37, 80–82). IL-1b
induces TNC production via MAPK-dependent or -independent
pathways, while TNC stimulates the synthesis of IL-1b (58, 77). This
positive feedback mechanism upregulates TNC and the receptors in
an early phase of SAH and may cause more activation of TNC
signaling transduction and consequently further development or
aggravation of EBI including neuronal apoptosis and BBB
disruption, as well as prolonged CVS (Figure 1) (66, 69, 73).
Post-SAH neuronal apoptosis develops through TNC-induced
activation of p38 and ERK1/2 (20, 66), and the EGF-like repeats
of TNC have been involved in apoptotic processes in cultured
human smooth muscle cells (23). The blockage of TNC induction
prevented post-SAH MAPK activation in the brain and suppressed
EBI in terms of neuronal apoptosis and BBB disruption (22).
Overexpression of ILs-1b and -6 itself is also known to cause
apoptosis by triggering caspase cascade reactions (16).
Frontiers in Immunology | www.frontiersin.org 5
Effects of TNC Knockout on
Experimental SAH
Some studies using TNC-knockout mice have reported a
relationship between TNC and EBI or CVS. In a filament
perforation SAH model, TNC knockout did not change the
total volume of SAH (22). However, TNC knockout alleviated
neurological impairment and decreased brain water content and
Evans blue dye extravasation, which were associated with
inactivation of three major MAPKs (c-Jun N-terminal kinase
[JNK], p38, and ERK1/2) in brain capillary endothelial cells in
the cerebral cortex; and the MAPK inactivation resulted in
inhibition of MMP-9 induction and retention of tight junction
proteins such as zonula occludens (ZO)-1 (20, 22, 72, 83). In
addition, TNC-knockout mice demonstrated prevention of CVS,
which was associated with a reduction in periarterial
inflammatory cells infiltration and MAPK inactivation in
cerebral arterial smooth muscle cells as well as suppression of
caspase-dependent neuronal apoptosis in the cerebral cortex
with reduction or inactivation of TLR4, NF-kB, and ILs-1b
and -6 (37, 50). TNC knockout also inhibited post-SAH
upregulation of another MCP, periostin, in brain capillary
endothelial cells and neurons (83). In a hepatic ischemia and
reperfusion model, the protective effects of TNC knockout have
been also shown in terms of a marked decrease in apoptotic
hepatic cells via reduction of inflammatory cytokines and MMP-
9 (77). Exogenous TNC treatment induced TLR4 and MMP-9
and aggravated EBI in wild-type SAH rats; and abolished the
FIGURE 3 | Possible molecular mechanisms for regulating tenascin-C expression and downstream signaling cascade. EGFR, epidermal growth factor receptor;
MAPKs, mitogen-activated protein kinases; NF-kB, nuclear factor-kappa B; PDGF, platelet-derived growth factor; TLR4, Toll-like receptor 4; VEGF, vascular
endothelial growth factor.
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protective effects through induction of TLR4 and MMP-9 in
TNC-knockout SAH and transient hepatic ischemic models in
mice (20, 22, 66, 73, 76).

TNC in Cerebral Aneurysm, Post-SAH
Chronic Hydrocephalus, and
Ischemic Stroke
TNC induced potent aneurysm repair through the fibrosis-
promoting effects in a rat aneurysm model, possibly by
recruiting macrophages, which secrete cytokines to induce
migration and proliferation of smooth muscle cells (84). In
contrast, the fibrosis-promoting effects of TNC may cause
chronic hydrocephalus after SAH due to obstruction of
circulation and reabsorption of CSF (70). Therefore, TNC
induction may be protective if it is induced in the ruptured
cerebral aneurysm wall but detrimental if it is induced in the
brain, cerebral arteries, subarachnoid space, or CSF after SAH
(22). However, no studies have investigated the role of TNC in
cerebral aneurysmal genesis, growth, or rupture and the
subsequent hemostasis. In addition, the effects of TNC on a
ruptured cerebral aneurysm itself are unknown. Further studies
are needed to clarify the role of TNC in intracranial aneurysm
animal models (22).

In ischemic stroke in rats, treatment with neurotrophic factor
L-serine upregulated TNC at 5 days post-ischemia and exerted
neuroprotective effects by inducing the proliferation of neural
stem cells and microvessels and the reconstruction of
neurovascular units, resulting in neurorepair in the ischemic
boundary zone (85). However, the mechanisms have not
been investigated.

TLR4 Cascades and TNC in Stroke
TLRs are constituents of the innate immune system that are
activated by DAMPs. At present, a total of 11 human and 13
murine TLRs have been identified (86). Since its discovery in
1998, TLR4 has been the most studied TLR family member (16,
87). TLR4 signaling is currently considered an important
neuroinflammation therapeutic target because TLR4 has the
unique ability to trigger two distinct signaling pathways (16,
71, 79, 86–88), the myeloid differentiation primary response
protein 88 (MyD88)-dependent cascade in the acute phase and
the Toll receptor-associated activator of interferon (TRIF)-
dependent cascade in the late phase (86). TLR4 is expressed on
the cell surface of various cells including microglia, neurons,
astrocytes, brain capillary endothelial cells, endothelial and
smooth muscle cells of the cerebral arteries, as well as
peripheral blood cells including leukocytes, macrophages, and
platelets (16, 86). TLR4 is activated by numerous DAMPs such as
red blood cell breakdown products (heme, hemin, and
methemoglobin), extravasated fibrinogen and fibrin, various
intracellular components, and MCPs including TNC and
galectin-3 (Figure 3) (16, 18). Activation of TLR4 induces the
activation of the adaptor molecule MyD88 and subsequently the
downstream signaling transcriptional factors NF-kB and
activator protein (AP)-1. The process of AP-1 activation is
primarily mediated by MAPKs including JNK, p38, and ERK1/
Frontiers in Immunology | www.frontiersin.org 6
2 (16, 79, 86, 89, 90). Both NF-kB and AP-1 upregulate MCPs
including TNC, as well as proinflammatory cytokines or
mediators such as TNF-a, IL-1b, -6, -8, and -12, intercellular
adhesion molecule-1, monocyte chemoattractant protein, and
MMP-9 (16, 20). These proinflammatory cytokines and
mediators upregulate specific cell adhesion molecules on
endothelial cells and induce neuroinflammation as well as the
degradation of the inter-endothelial tight junctions and basal
membrane in brain capillaries, which leads to BBB disruption
and apoptosis of various cells, aggravating tissue damage after
stroke (16, 20, 91). MMP-9 is a proinflammatory mediator
induced by inflammatory cytokines and reactive oxygen
species, and degrades components of the ECM of the cerebral
microvessel basal lamina such as collagen IV, laminin, and
fibronectin, as well as inter-endothelial tight junction proteins
such as ZO-1, causing BBB disruption (92, 93). TNC amplifies
the expression levels through positive feedback mechanisms
utilizing the TLR4 signaling pathway, leading to further
activation of the signaling transduction and the development
or aggravation of secondary brain injury, as TNC itself is a ligand
of TLR4 (16, 22). Experimental SAH studies have demonstrated
that TNC induces CVS via activation of TLR4 and the
downstream signaling MAPKs JNKs and p38 for more than 72
h in a rat cerebral artery, and that selective TLR4 antagonists
LPS-RS and IAXO-102 inhibit TNC-induced CVS as well as
expression of TLR4 in endothelial cells and smooth muscle cells
of the arteries (Figure 3) (16, 17, 22, 73, 75, 76, 89). Therefore,
targeting TLR4 is a potential therapeutic option against
neuroinflammation after stroke. A recent study demonstrated
that a selective TLR4 antagonist attenuated neurobehavioral
impairments and prevented BBB disruption via suppression of
the expression of MAPK JNK, MMP-9, MCPs such as TNC and
periostin, as well as inflammatory mediators such as IL-6 and
cyclooxygenase-1 in post-SAH mice (79, 89). TNC-knockout
post-SAH mice showed less subarachnoid space infiltration of
inflammatory cells in association with suppression of TLR4/NF-
kB/IL-1b/IL-6 and the MMP-9 signaling pathway (37, 50, 67).

On the other hand, the late phase TRIF-dependent pathway
in stroke induces interferon regulatory factor-3 as well as NF-kB
and MAPKs, releasing interferon-b (86, 94). Interferon-b also
modulates the innate immune response but exerts both anti-
inflammatory and anti-apoptotic effects (94). The ligands of
TLR4 interact with the receptor without distinction and induce
the same downstream signaling pathways. However, the
mechanisms to control the activation of respective pathways
remains unclear (86).
TNC AS A CLINICAL BIOMARKER
OF STROKE

In clinical settings of SAH, EBI is very difficult to be diagnosed
precisely. Loss of consciousness at ictus, poor initial clinical
grade, a large amount of SAH and/or intraventricular hematoma,
presence of global cerebral edema, and inflammatory mediators
have been generally used as surrogate markers of EBI (20).
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However, these markers are neither objective nor specific to EBI
(35). Highly specific biomarkers that reflect EBI and predict the
development of DCI are needed to enable earlier diagnosis and
treatment of EBI and DCI (67). The ideal biomarkers should be
easily measured via simple methods and provide accurate and
prompt results (95).

If TNC upregulation after stroke reflects secondary brain
injury, blood and CSF TNC concentrations can be a candidate
for biomarkers: both concentrations are easily measured using an
enzyme-linked immunosorbent assay (35). Previous studies have
shown that the level of TNC containing alternatively spliced B or
C domains in both CSF and peripheral blood may be used as a
diagnostic and prognostic biomarker of inflammation and tissue
remode l ing processes in severa l d i seases such as
cardiomyopathy, myocarditis, osteoarthritis, hepatitis, and
tumor (58, 96–100).

In patients with SAH, higher plasma and CSF TNC levels may
be associated with severe EBI, angiographic CVS, and DCI (22,
101). Plasma TNC level increases independent of serum levels of
C-reactive protein and some proinflammatory cytokines (102).
Clinically, the peripheral blood level of TNC isoforms containing
a C domain in the alternatively spliced FN III repeats at 1 to 3
days from SAH onset could not predict the development of CVS
(68). However, the plasma level peaked between 4 and 6 days
from SAH onset and was significantly higher in patients who
subsequently developed CVS (68). The plasma TNC level
increased before 2.4 days of the development of CVS as
determined by transcranial Doppler ultrasonography and
before 3.6 days of the onset of symptomatic CVS (67, 68, 103).
In intracerebral hemorrhage patients, a higher serum level of
TNC containing a C domain in the FN III repeats at admission
was associated with greater hematoma volume and worse initial
neurological status. In addition, the elevation of TNC level was
independently correlated with early neurological deterioration,
hematoma growth, and worse clinical outcomes defined as
modified Rankin scale score >2 at 90 days (104).

In contrast, the CSF level of TNC containing a C domain in
the FN III repeats peaked within the first 3 days after SAH onset
and correlated with worse neurological status and greater
hematoma volume at admission; and additionally, it predicted
the development of CVS and shunt-dependent chronic
hydrocephalus as well as poorer functional outcomes (22, 35,
70, 101, 105, 106). The differences in the time course of TNC
levels between the plasma and CSF may be because TNC in the
CSF may be belatedly transferred to the plasma due to its large
molecular weight, although the possibility that TNC is released
by different cells between the CSF and the plasma cannot be
excluded. Although the reason of different time course of
peripheral blood and CSF TNC levels after SAH remains
unexplained, the findings in previous studies suggest that
severe hemorrhagic stroke may induce higher expressions of
TNC and that both CSF and peripheral blood TNC levels could
be used in predicting or diagnosing the development of CVS and
DCI after SAH (20, 22, 35, 103, 107). At present, the most
practical clinical application of TNC appears to be its use as a
biomarker (67).
Frontiers in Immunology | www.frontiersin.org 7
CONTRIBUTION OF OTHER MCPS
TO REGULATING TNC EXPRESSION IN
SAH-ASSOCIATED NEUROINFLAMMATION
Periostin
TNC directly binds to other MCPs periostin and galectin-3, and
may regulate the expression levels of each other in stroke, playing
diverse roles (29, 42, 54, 66, 101). Periostin is a multimodular N-
glycoprotein (93 kDa) with a N-terminal cysteine-rich EMI
domain, fourfold repeated fasciclin (FAS) 1 domains in the
middle, and a hydrophilic C-terminal region (108). The C-
terminal region interacts with other ECM proteins such as
TNC, collagen, fibronectin, and heparin (15, 66, 72, 74, 107,
109–111). The FAS1 domain of periostin also directly binds to
integrins (avb1, avb3, avb5, and a6b4) and TNC, exerting
various functions (112–115). Periostin is secreted by stromal
cells, which are stimulated by cytokines, transforming growth
factor (TGF)-b, and other GFs which are produced in epithelial
cells and other cells (112). In an experimental study, periostin
was expressed in brain capillary endothelial cells and neurons in
the cerebral cortex at 24 h after SAH induction (83). TNC and
periostin may induce expression of each other, forming a positive
feedback loop (67, 72, 83, 107, 108). MAPKs are both
downstream and upstream of periostin, TNC, and IL-6; and
thus activated MAPKs induce periostin, TNC, and IL-6, which in
turn activate MAPKs, resulting in a positive feedback to cause
and aggravate brain injury via various mechanisms including
MMP-9 activation (54, 66, 72, 83, 107, 112). An experimental
study using an endovascular perforation SAH model in mice
reported that upregulated periostin enhanced the expression of
TNC associated with activation of MAPKs p38 and ERK1/2 as
well as MMP-9, resulting in ZO-1 degradation in brain capillary
endothelial cells and the subsequent aggravation of BBB
disruption (83). In addition, recombinant full-length periostin
administration exacerbated post-SAH neurobehavioral
impairments, brain edema, BBB disruption, and TNC
induction in the post-SAH brain (83). In contrast, anti-
periostin antibody prevented post-SAH neurobehavioral
impairments, brain edema formation, and BBB disruption via
downregulation of TNC, inactivation of p38, ERK1/2, andMMP-
9, and the resultant retention of ZO-1 (83, 107). These findings
suggest that full-length periostin strongly interacts with TNC
and contr ibutes to post-SAH BBB disrupt ion and
neurobehavioral impairments via the MAPK pathway, and that
neutralizing full-length periostin may be an effective novel
therapeutic strategy for EBI after SAH (107). TNC-knockout
mice also showed the inhibition of periostin induction in the
post-SAH brain and exhibited less neurobehavioral impairments
(83). The interaction between periostin and TNC may play an
important role in post-SAH EBI and provides a new insight for
future researches (83).

Periostin also binds to integrins, leading to neuroinflammation
and BBB disruption (108). In experimental SAH, the process is at
least partly mediated by MAPK activation and upregulation of
MMP-9 (108). However, periostin-integrin binding also induces
neurogenesis via activation of the phosphoinositide 3-kinase
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(PI3K)/Akt signaling pathway and upregulation of an anti-
inflammatory cytokine TGF-b (18). The apparent discrepancy
may be resolved by future studies to clarify how periostin relates
with each integrin subtype in cerebrovascular diseases. In a clinical
setting, a higher serum periostin level at admission was associated
with worse initial neurological status, greater hemorrhage volume,
more frequent development of DCI, and worse clinical outcomes in
patients with aneurysmal SAH (116). In addition, plasma periostin
levels increased before the development of DCI, irrespective of the
presence or absence of CVS (108, 117). Therefore, periostin levels in
the peripheral blood may be a predictive marker for post-SAHDCI,
regardless of CVS development.

Galectin-3
Galectins are a family of MCPs comprised of more than 15
members of the b-galactoside-binding lectins and their
conserved peptide sequence elements in the carbohydrate-
recognition domains (CRDs) which show high affinities to b-
galactoside-containing carbohydrate moieties of glycoconjugates
(118). Galectins are classified into three types: proto-type
(galectins-1, 2, 5, 7, 10, 11, 13–20), tandem-repeat-type
(galectins-4, 6, 8, 9, 12), and chimera-type (galectin-3). Proto-
type is comprised of monomers or homodimers with the sole
CRD; tandem-repeat-type consists of N- and C- terminal distinct
CRDs connected by a single-polypeptide-chain linker; and
chimera-type has a C-terminal CRD and a N-terminal non-
CRD domain which consists of proline- and glysine-rich short
tandem repeats (118). The characteristics of chimera-type
galectin-3 is to form a bridge between different ligands and to
provide different functions (118). Recently, some studies
exhibited that galectin-3 is activated through binding to TNC
via its CRD domain (20, 118, 119). Activated galectin-3 possibly
causes the development of brain injury including
neuroinflammation after stroke (118–120). Galectin-3 induced
by pro-inflammatory mediators contributed to brain immune
responses via a major inflammatory signaling of Janus kinase/
signal transducer and activation of transcription (STAT) and
NF-kB pathways (121–123). In addition, galectin-3 is a ligand of
TLR4 and activates its downstream signaling pathways as
described above (18). In clinical settings, higher acute-stage
plasma galectin-3 levels were associated with the development
of DCI with no angiographic CVS after SAH (120). An
experimental study showed that galectin-3 might cause post-
SAH BBB disruption possibly by binding to TLR4 and activating
ERK1/2, STAT-3, and MMP-9 (124).

Osteopontin
Osteopontin, another MCP, seems to have inhibitory effects
against TNC in the setting of SAH (19). Osteopontin is an
acidic phosphoglycoprotein (40–80 kDa) that contains several
functional domains, allowing for integrin and CD44 receptor
binding (15, 35). Osteopontin is subjected to numerous post-
translational modifications including serine/threonine
phosphorylation, glycosylation, tyrosine sulfation, and
transglutamination, all of which regulate its functions (15).
Five distinct isoforms are generated by alternative splicing (15).
Thrombin and MMPs-2, -3, -7, -9, and -12 induce proteolytic
Frontiers in Immunology | www.frontiersin.org 8
cleavage of osteopontin (15). Osteopontin regulates homeostasis,
angiogenesis, and immune responses through the upregulation
in a variety of diverse cell types at the site of injury, stress, and
inflammation (125). An intracellular form of osteopontin was
expressed in dendritic cells and macrophages of the immune
system in response to transient ischemic injury in the brain, and
a secreted form of osteopontin promoted remodeling of the
ECMs in the brain (15). After SAH induction, osteopontin binds
to L-arginyl-glycyl-L-asparate (RGD)-dependent integrins and
exerts neuroprotective effects by alleviating CVS and BBB
disruption via induction of MAPK phosphatase-1, an
endogenous MAPK inhibitor (22). Interestingly, both
osteopontin and RGD-dependent integrin receptor antagonists
significantly inhibited the vasoconstrictive effect by recombinant
TNC fragments containing EGF-like repeats (20). The findings
suggest that RGD-dependent integrins may be involved in CVS
development, and that TNC binds to the integrins to develop
CVS. Although the mechanisms of osteopontin’s anti-TNC
effects remain poorly understood in stroke, osteopontin and
TNC share some receptors such as RGD-dependent integrins,
and therefore at least partly competitive inhibition may be the
mechanism (22). A novel multimodal nanoparticle,
simultaneous multiple aptamers and RGD targeting, which
combines triple affinity for nucleolin, RGD-containing
integrins, and TNC, has been reported as a candidate for a
targeted therapy against TNC (126): the nanoparticle would be
well worth trying in SAH and other stroke types, considering the
possible effects on both RGD-dependent integrins and TNC.
CONTRIBUTION OF GFS AND
INTEGRINS TO REGULATING TNC
EXPRESSION IN STROKE

The FN III domains 1–5, specifically domain 5 of TNC, have a
high binding affinity for multiple GFs, such as platelet-derived
GF (PDGF), vascular endothelial GF (VEGF), fibroblast GF
(FGF) including FGF-2, and TGF-b1 as well as neurotrophin-3
(Figure 1) (27, 30, 54).

PDGF
PDGF is a homodimeric, non-glycosylated, polypeptide chain
GF with a molecular weight of 28-35 kDa (127, 128). In SAH
studies, PDGF is upstream of endogenous TNC and interrelated
with TNC (66, 67, 69, 74). Exogenous TNC injections induce and
activate PDGF receptors (PDGFRs) possibly via interreceptor
interactions, which in turn upregulate TNC in the cerebral
arteries and brain (66, 69). TNC may be further upregulated
by a positive feedback on more PDGF activation via upregulated
PDGFRs and crosstalk signaling between receptors, leading to
more MAPK activation and consequent development of CVS,
neuronal apoptosis, and neurological impairments in SAH rats
(22). In rat SAH models, an intraperitoneal injection of imatinib
mesylate, a tyrosine kinase inhibitor of PDGFR, showed the
suppression of TNC induction and attenuated neurological
impairments, the development of CVS and neuronal apoptosis
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via inactivation of MAPKs such as JNK, p38, and ERK1/2 (22,
66, 69). In addition, a cisternal injection of recombinant TNC to
imatinib mesylate-treated experimental SAH rats reactivated
MAPKs to abolish the protective effects of imatinib mesylate
on neuronal apoptosis and CVS, resulting in neurological
aggravation (22, 66, 69). Thus, TNC downregulation was
demonstrated to be involved in the neuroprotective effect
mechanism of imatinib mesylate (72), and PDGFs and
PDGFRs were suggested as a potential therapeutic target to
regulate TNC expression and to prevent post-SAH EBI and
CVS (Figure 3) (67).

VEGF
VEGF, a member of a family of secreted polypeptides with a
highly conserved receptor-binding cystine-knot structure similar
to that of the PDGF, is a homodimeric protein (34–46 kDa) that
stimulates the formation of blood vessels (129). Although TNC
regulates VEGF expression in tumors, no studies have reported if
VEGF directly induces TNC (74, 130). In mice, VEGF enhances
BBB permeability in normal brain as well as brain with
inflammatory diseases (74). Neutralization of VEGF
downregulated VEGF receptor-2, a major mediator of the
kinase activity effects of VEGF, in association with suppression
of TNC expression and MAPKs activation (69, 73, 131). Taken
together, TNC may be involved in VEGF-induced BBB
disruption in SAH (Figure 3) (72).

FGF-2
FGF-2 belongs to the FGF family and exhibits several isoforms
with molecular weights ranging 18–34 kDa (132–135). FGF-2 is
highly expressed in the brain and regulates a variety of cell
functions including proliferation, morphogenesis, and
suppression of apoptosis (27, 136, 137). FGF-2 is secreted by
damaged neurons, and the synergistic action with TGF-b1,
which is also upregulated in response to an injury, stimulates
the expression of TNC (138). TNC binds to FGF-2 and promotes
survival of oligodendrocyte precursor cells by enhancing FGF
receptor-mediated signaling and blocking bone morphogenic
protein signaling (139). A recent study showed that
recombinant FGF-2 activated PI3K and Akt, leading to
suppression of neuronal apoptosis after SAH (132). Thus,
administration or augmentation of FGF-2 may be a promising
therapy to reduce post-SAH neuronal apoptosis via activation of
the FGF receptor/PI3K/Akt signaling pathway (132). However,
the action of FGF-2 on TNC after stroke has not
been investigated.

Integrins
Integrins are a superfamily of cell adhesion receptors that
primarily recognize ECMs and cell-surface ligands, and are
composed of a and b subunits that form 24 known
combinations (140). Five members of the integrin family that
recognize TNC as a ligand have been identified: isoforms a2b1,
a8b1, a9b1, avb3, and avb6 (140, 141). All the integrins except
for a9b1 bind to the FN III repeat sites of TNC, while a9b1 binds
to the fibrinogen globe (20, 140). Integrin avb3 is expressed on
endothelial cells and activates the downstream signaling that
Frontiers in Immunology | www.frontiersin.org 9
involves MAPKs, proinflammatory mediators such as ILs, and
MMP-9; however, the role of the integrin avb3 signaling
pathway in stroke has not been investigated (19, 37, 83, 106,
140, 142–145). Activated integrin avb3 induces internalization
of ZO-1 and occludin, disrupts vascular endothelial-cadherin
localization, and increases expression of MMP-9 (146).
Therefore, activation of integrin avb3 may be involved in BBB
disruption. In contrast, b1 integrins form laminin-binding,
collagen-binding (a2b1), RGD-binding (a8b1), or ECMs-
binding (a9b1) heterodimers (147–150). The b1 integrins are
increased in cerebral blood vessels in ischemic cortex, and induce
angiogenesis as well as leukocyte adhesion and migration
following ischemic stroke (147, 151). In addition, increased b1
integrins in neuronal cells were associated with neuronal
adhesion, and neurite outreach and regeneration (151). Thus,
it has been demonstrated that b1 integrin signaling is required
for neurovascular formation and recovery as well as endothelial
cell migration, proliferation and blood vessel formation
following transient ischemic stroke in mice (152). Therefore,
b1 integrin may be a therapeutic target for ischemic stroke and
other pathological conditions through modulating angiogenesis
(152). On the other hand, a2 integrins have been reported to be
associated with an increased risk for ischemic stroke (151).
Activation of a2b1 integrin prevents endothelial cells from
proliferating through binding to laminin (153). In addition,
overexpression of integrin a2b1 was associated with ischemic
stroke and myocardial infarction by clot formation, while its
absence results in a prolonged bleeding time within safe limits
(154). Therefore, inhibition of integrin a2b1 may be a potential
therapy for ischemic stroke. The expression and the role of
integrins a8b1, a9b1, and avb6 have not yet been elucidated
following stroke (147). At present, it is unknown if integrins
influence TNC expression.
OTHER THERAPEUTIC CANDIDATES FOR
TNC-INDUCED BRAIN INJURY
FOLLOWING STROKE

TNC expression can be reduced by several medications,
including cilostazol, steroids, and non-steroidal anti-
inflammatory drugs (NSAIDs) (Figure 3) (32, 103, 155). An in
vitro study found that cilostazol, an anti-platelet and peripheral
arterial vasodilating agent, is a selective inhibitor of
phosphodiesterase type III with pleiotropic actions that include
the inhibition of inflammatory reactions (18, 155). Blockage of
phosphodiesterase type III can inhibit induction of TNC at the
transcriptional level by activating the cyclic adenosine
monophosphate–protein kinase A signaling pathway (103,
155). In patients with aneurysmal SAH, 300 mg/day cilostazol
treatment almost completely suppressed the elevation of plasma
levels of TNC variants containing alternatively spliced FN III B
and C domains at days 1–12 after SAH onset, and prevented the
development of DCI and chronic shunt-dependent
hydrocephalus, resulting in improved clinical outcomes (103,
156). TNC is induced by inflammation, and TNC itself can
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induce inflammatory reactions (58, 66, 157). Therefore, some
anti-inflammatory medications are also associated with reduced
TNC expression. For example, steroids and NSAIDs suppressed
TNC expression in macrophages and human vascular smooth
muscle cells in vitro and in arterial smooth muscle cells in vivo
(32). With respect to inflammatory signaling, in a rat model of
SAH, a MAPK JNK inhibitor SP600125 reversed the
vasoconstrictive effects of TNC, and a MAPK p38 inhibitor
SB203580 abolished TNC-induced TLR4 upregulation and
TNC’s vasoconstrictive effects (73).

Angiotensin II is a well-known potent inducer of TNC but the
potential mechanisms have not been identified (158). Drugs that
inhibit the effects of angiotensin II such as angiotensin II receptor
blockers (ARBs) may block vascular TNC expression (159). In a
model of carotid artery stent implantation in hypercholesterolemic
rabbits, an ARB candesartan cilexetil prevented in-stent neointimal
hyperplasia, which was associated with a decrease in macrophage
infiltration and TNC expression in the arterial wall: the
immunostaining study showed that TNC was induced in a
limited area around the stent struts, but the expression
disappeared by the ARB treatment (109). ARBs may suppress in-
stent restenosis after carotid artery stenting via anti-inflammatory
effects through TNC inhibition (109). Eplenerone, an aldosterone
receptor antagonist, also inhibited the development of inflammation
and fibrosis associated with reduced TNC expression in an
angiotensin II-induced hypertension model in mice (160).

Inhibition of Rho-kinase also suppressed expression of TNC
in smooth muscle cells in hypertensive rat pulmonary arteries
(161). In a clinical setting, a Rho-kinase inhibitor hydroxyfasudil
is commonly used to prevent CVS after SAH in Japan, although
the levels of TNC have not been measured (20).

Currently, Neuradiab® (81C6 anti-TNC antibody; Bradmer
Pharmaceuticals, Inc.) and double-stranded RNA directed
Frontiers in Immunology | www.frontiersin.org 10
against TNC have been reported as candidates for anti-TNC
directed therapy (126). Further evidence would facilitate the
development of therapeutic agents targeting TNC.
CONCLUSIONS

TNC potentially plays a key role in pathophysiological changes
via neuroinflammation and appears to be a future therapeutic
target in patients with stroke. However, the protective and
detrimental roles of TNC with respect to each disease and the
stage have not been completely unveiled. If TNC is set as a
therapeutic molecular target, the therapeutic (time) window
should also be addressed. Current evidence shows that TNC
can be a biomarker to predict secondary injuries following
stroke. Further studies to determine the underlying molecular
mechanisms of TNC-induced pathophysiological changes and
the regulation of TNC expression are warranted.
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