
Cross-Ontology Multi-level Association Rule Mining in
the Gene Ontology
Prashanti Manda1*¤a, Seval Ozkan2,3, Hui Wang3, Fiona McCarthy4¤b, Susan M. Bridges1

1 Department of Computer Science and Engineering, Mississippi State University, Mississippi State, Mississippi, United States of America, 2 Department of Plant and Soil

Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America, 3 Institute for Genomics, Biocomputing and Biotechnology, Mississippi State

University, Mississippi State, Mississippi, United States of America, 4 Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi

State, Mississippi, United States of America

Abstract

The Gene Ontology (GO) has become the internationally accepted standard for representing function, process, and location
aspects of gene products. The wealth of GO annotation data provides a valuable source of implicit knowledge of
relationships among these aspects. We describe a new method for association rule mining to discover implicit co-
occurrence relationships across the GO sub-ontologies at multiple levels of abstraction. Prior work on association rule
mining in the GO has concentrated on mining knowledge at a single level of abstraction and/or between terms from the
same sub-ontology. We have developed a bottom-up generalization procedure called Cross-Ontology Data Mining-Level by
Level (COLL) that takes into account the structure and semantics of the GO, generates generalized transactions from
annotation data and mines interesting multi-level cross-ontology association rules. We applied our method on publicly
available chicken and mouse GO annotation datasets and mined 5368 and 3959 multi-level cross ontology rules from the
two datasets respectively. We show that our approach discovers more and higher quality association rules from the GO as
evaluated by biologists in comparison to previously published methods. Biologically interesting rules discovered by our
method reveal unknown and surprising knowledge about co-occurring GO terms.
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Introduction

The Gene Ontology (GO) is the de facto standard for describing

characteristics of gene products [1]. The rapid increase in the

number of GO annotations from about 50 annotations in 1999 to

more than 80 million by 2012 highlights the need for efficient data

mining procedures for discovery of implicit knowledge in the

annotation data [2,3,4,5,6]. We introduce an approach for mining

interesting multi-level association rules across the three acyclic

graphs used to represent the sub-ontologies of the GO: Cellular

Component (CC), Molecular Function (MF) and Biological

Process (BP).

Association Rule Mining (ARM) extracts implicit relationships

between variables in a database D = {t1, t2,…,tm} [7]. The

variables are represented as a set of binary attributes I = {i1, i2,

i3…in} called items. A set of co-occurring items accompanied by

an identifier is called a transaction. In the problem we are

addressing, each transaction corresponds to a gene product and

the attributes represent the presence or absence of a particular GO

annotation. A rule is defined as an implication of the form X?Y

where X ,Y(I and X\Y~1[7]. In our domain, the derived

rules indicate implicit co-annotation patterns among a set of genes.

Because we are mining cross-ontology rules, X?Y indicates that

when GO term X from one sub-ontology is associated with a set of

genes in the dataset, GO term Y from a different sub-ontology is

also likely to be associated with the same gene set.

Approaches for association rule mining can be broadly classified

into single level ARM and multi-level ARM [8,9,10] depending on

whether rules are mined from data at a single level of abstraction

or at different levels of abstraction. Multi-level ARM requires that

the data be represented using one or more ontologies in the form

of hierarchies or directed acyclic graphs (DAG) such as the sub-

ontologies of the GO. Terms near the top of the sub-ontologies are

typically more abstract while those deep in the DAG are more

specific. While the level of a term has been widely used as an

indicator of its specificity, various studies have shown that all terms

at the same level in the GO are not at the same specificity and

information content level [11,12]. Multi-level rule mining has the

potential to overcome this issue by mining at multiple levels of the

GO instead of focusing on a single level of detail. We show that the

three sub-ontologies of the GO exhibit different distributions of

terms across levels of abstraction in the structure of the GO and in

annotations assigned to datasets. We have developed a bottom-up

generalization procedure called Cross-Ontology Data Mining-

PLOS ONE | www.plosone.org 1 October 2012 | Volume 7 | Issue 10 | e47411



Level by Level (COLL) for mining interesting multi-level

association rules across the three sub-ontologies of the GO.

COLL uses the structure and relationship semantics of the GO to

translate data transactions into generalized/multi-level GO

transactions before mining multi-level association rules. Monte

Carlo simulation is used to determine the appropriate level for

termination of generalization across sub-ontologies. An evaluation

of the biological significance of the rules generated by COLL when

Figure 1. Issues in generalization in the Gene Ontology.
doi:10.1371/journal.pone.0047411.g001

Figure 2. Number of terms at each level of the GO (data version 1.1.2633).
doi:10.1371/journal.pone.0047411.g002
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applied to publicly available chicken and mouse GO annotation

datasets demonstrates that our method produces more interesting

rules compared to results from previously published ARM studies

applied to the GO.

A number of research groups have used association rule mining

to identify relationships among up and down regulated genes in

gene expression studies [13,14]. These studies do not make use of

the GO and its hierarchical structure. Previous research applying

association rule mining to the GO includes studies mining single

level, multi-level and cross-ontology association rules

[15,16,17,18]. Carmona-Saez et al. [15] mine single level

associations between GO annotations and expressed genes from

microarray data integrated with GO annotation information. The

approach does not utilize the inherent information provided by the

GO structure thereby limiting the knowledge discovered.

In the area of cross-ontology association rule mining, other

groups have developed methods for cross-ontology data mining to

connect the three sub-ontologies of the GO with the goal of adding

more biological information and more annotations. Burgun et al.

[16] mine single level cross-ontology rules from publicly available

GO annotation data. Myhre et al. [17] also mine single level cross-

ontology rules connecting the three sub-ontologies and conduct an

analysis of the discovered rules by biologists to demonstrate the

utility of the rules. However, mining rules at a single conceptual

level ignores information implied by the structure of the GO and

limits the knowledge discovered.

In the area of multi-level association rule mining, Tseng et al.

[18] discover multi-level association rules between GO terms

annotated to up-regulated or down-regulated genes. Each

transaction is the set of GO annotations associated with a gene.

They achieve generalization by replacing each GO annotation

with all of the GO terms on all of the paths from the term to the

root of the ontology. This approach has two major shortcomings:

1) it will discover parent child relationships among terms that are

already known, and 2) many of the rules will involve very high

level GO terms with little information.

Other research had addressed generalization in the GO but for

applications other than association rule mining. Davis et al. [19]

describe an approach for generalizing in the GO by calculating the

information content of a node using both the ontology structure

and the annotation dataset as a metric for generalization. They use

a non-traditional definition of information content of a concept x

as Ix = Px2Ox, where Px is the information gained by not

generalizing concept x and Ox is the information lost if all the child

terms of x are generalized to x. Px and Ox are calculated using

information from the annotation dataset and the ontology

structure. They use this approach to generate automatic slim sets

from the GO, but it is unclear how this approach will work for

mining associations from multiple ontologies.

Hoehndorf et al. [20] describe a text-mining method for

discovering significant associations between two DAGs and for

conducting statistical testing of the significance of the discovered

associations. The co-occurrence counts of pairs of vertices along

with individual counts of the child vertices are used to assign scores

to the vertex pairs. An association between two vertices is

considered significant if the pair-wise score is high and the score

decreases if one of the vertices is generalized or specialized any

further indicating that the association is at the right level of

abstraction. This method was used to identify cross-ontology

associations across the GO and the Cell Ontology [21]. A

disadvantage of this method is that it is computationally intensive

since it generates all possible pairs between the vertices from the

two DAGs and computes the scores between those pairs for

multiple permutations before discovering the significant associa-

tions. The method has only been applied to text mining and not to

mining annotation data.

In summary, prior efforts in association rule mining applied to

annotation data from the GO focus on either mining multi-level

association rules or cross-ontology rules, but not both. With more

bio-ontologies being developed to describe different types of

biological data and the increasing interest in using multiple

ontologies to capture complex biological data, the ability to extract

implicit relationships between different ontologies is becoming

more important for biologists and tool developers who wish to

utilize these ontologies and the data in them [22].

Materials and Methods

Generalization in the GO
Multi-level association rule mining requires viewing the GO

annotation transactions at multiple levels of abstraction. We have

chosen to use a generalization strategy for ontology traversal

where the level of abstraction of the annotations is increased one

level at a time with the Apriori algorithm [23] applied at each

iteration. The termination level for generalization is determined

using a Monte Carlo approach.

The cross-ontology data mining algorithm (COLL) presented

below takes the following inputs:

Figure 3. Distribution of terms in the GO (data version 1.1.2633) from different levels across CC, MF and BP.
doi:10.1371/journal.pone.0047411.g003

Cross-Ontology Mining in the Gene Ontology
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1. A set of transactions TLevel = {t1, t2 … tm} where each

transaction ti has a transaction identifier ti,id accompanied by a list

of terms: Ti = ti,id, termi,1,termi,2…termi,m.

2. p: p-value threshold for the Chi-square test.

3. s: minimum support.

4. c: minimum confidence.

5. mf_cc_terminationlevel: Level of termination for cross-

ontology categories MF R CC, CC R MF.

6. cc_bp_terminationlevel: Level of termination for cross-

ontology categories CC R BP, BP R CC.

Figure 4. A comparison of the distribution of GO annotations in the synthetic datasets generated using the three approaches and
the distribution in the target dataset in the three sub-ontologies: (a): Cellular Component, (b) Biological Process, (c) Molecular
Function.
doi:10.1371/journal.pone.0047411.g004

Table 1. Average false discovery rate of random cross-ontology rules from 50 synthetic datasets at each level of generalization.

Level of Generalization in the GO False Discovery Rate of Random Rules

MF R CC, CC RMF BP R MF, MF R BP CC R BP, BP RCC

16 0 0 0

15 0 0 0

14 0 0 0

13 0 0 0

12 0 0 0

11 0 0 0

10 0 0 0

9 0.00020 0.00032 0.00016

8 0.00150 0.00000 0.00422

7 0.00372 0.00032 0.01000

6 0.00438 0.00130 0.00924

5 0.02076 0.02088 0.01974

4 0.01724 0.03904 0.01644

3 0.01378 0.02792 0.04646

doi:10.1371/journal.pone.0047411.t001

Cross-Ontology Mining in the Gene Ontology

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e47411



7. bp_mf_terminationlevel: Level of termination for cross-

ontology categories BP R MF, MF R BP.

Cross-Ontology Data Mining Level By Level (COLL)
Output. A set of non-redundant cross-ontology rules that

satisfy the specified interestingness measure thresholds, R_Inter-

esting = {R1, R2, R3…Rp} where Ri contains a GO term as the

antecedent and a GO term from a different sub-ontology as the

consequent.
Functions. Apriori(p,s,c): Mines for association rules in the

given transaction dataset.

FindParent(term): Finds parents of a given term in the hierarchy

where the relation is is-a or part-of.

FindDeepestLevel(D): Finds the level of the deepest term in the

provided dataset.

FindLevel(term): Finds the depth of any given term.

PruneSameOntology(R): Prunes all rules where the antecedent

and consequent are from the same ontology.

FindCrossOntologyCategory(r): Returns the cross-ontology

category of the rule.
Function COLL(). level r FindDeepestLevel()

2 R_Interesting r W
minlevel = min(mf_ccterminationlevel,cc_bpterminationlevel,

bp_mfterminationlevel)

R r Apriori( TLevel, p,s,c)

R_Crossontology r PruneSameOntology(R)

R_Interesting r R_Interesting U R_Crossontology

Do while (level . minlevel)

For each ti J TLevel

For each termi,j J ti
termlevel r FindLevel(termi,j)

If termlevel = level

parentterm r FindParent(termi,j)

ti r ti - { termi,j } U {parentterm}

TLevel-1 r TLevel -1 U ti
15 R r Apriori( TLevel, p)

16 R_Crossontology r PruneSameOntology(R)

For each ri J R_Crossontology

category = FindCrossOntologyCategory(ri)

If terminationlevel(category) , level

20 Rules_temp r Rules_temp U ri

R_Interesting r R_Interesting U Rules_temp

Rules_temp r W
23 level r level-1

The GO annotations in the transactions are typically at multiple

levels in the GO hierarchy. Initially, TLevel is the original

transaction set where Level represents the depth of the deepest

annotation in the transaction set. The Apriori algorithm is applied

to the initial set of transactions to generate a set of rules. All rules

involving terms from the same ontology are pruned, and a set of

interesting rules is established. Subsequently COLL replaces all

GO annotations present at the current level with their immediate

parent(s) related via an ‘‘is-a’’ or ‘‘part-of’’ relation to form a new

transaction dataset, TLevel-1. COLL then applies Apriori to the

TLevel-1 transactions, and adds new rules to the set of interesting

rules. When both the antecedent and consequent GO terms come

from the same ontology, they are removed, leaving only cross-

ontology rules. These rules are classified into six categories

depending on the GO sub-ontologies of the GO terms in the rule.

COLL produces as output a set of non-redundant cross-ontology

rules that satisfies the specified interestingness measure thresholds,

R_Interesting = {R1, R2…Rp } where Ri contains a GO term as

the antecedent and a GO term from a different sub-ontology as

the consequent.

COLL terminates generalization based on individual termination

levels for each category of cross-ontology rules. These termination

Table 2. Summary of the number of rules mined before and after pruning by COLL and the Burgun approach.

Dataset COLL BURGUN

Number of Rules Mined
Number of Cross-Ontology
Rules after Pruning Number of Rules Mined

Number of Cross-Ontology
Rules after Pruning

Chicken 178362 5368 12422 2693

Mouse (All annotations) 83602 3959 4936 1517

doi:10.1371/journal.pone.0047411.t002

Table 3. Number of rules mined by COLL at each level of generalization mined from the chicken and mouse datasets.

Level of Generalization in the GO Chicken All Annotations Mouse

All Annotations IEA AnnotationsRemoved

14 2 0 0

13 11 10 6

12 24 12 17

11 91 24 33

10 208 99 110

9 595 327 317

8 938 870 953

7 1467 1152 1562

6 2025 1465 2131

doi:10.1371/journal.pone.0047411.t003

Cross-Ontology Mining in the Gene Ontology
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levels are determined using synthetic datasets as described in the

‘Termination of Generalization’ section. COLL uses the highest

termination level of the three cross-ontology categories to terminate

the generalization and mining process. Rules from categories with

lower termination levels are subsequently pruned. It should be

noted that terms higher in the ontology have lower depth values.

Figure 1 illustrates several issues that must be addressed when

generalizing in the GO sub-ontologies. First, each term can have

multiple parents and therefore the term must be replaced by all of

its parents. This may result in multiple assignments of the same

term to a gene. The union operator is used to avoid duplicates.

The GO supports many different types of relationships [24] as

illustrated in Figure 1 adapted from QuickGO [25]. Only ‘‘is-a’’

and ‘‘part-of’’ relationships are defined to be transitive and

therefore generalization is limited to these relationships.

The GO ontology was parsed and loaded into relational

database tables. COLL is implemented in Perl and uses mySQL to

access GO data from the database. We use Christian Borgelt’s

implementation of the Apriori algorithm to mine association rules

from the transactions at each level [26]. The code for COLL and

information about other necessary components are deposited at

Dryad: doi:10.5061/dryad.nr353. The user will require appropri-

ate database tables with GO ontology data to execute COLL. The

user supplies a p-value threshold for the Chi-square test and the

Apriori algorithm prunes all rules with p-values that do not meet

the threshold. COLL also prunes any rules where the antecedent

and consequent are from the same sub-ontology of the GO.

Termination of generalization
As COLL iteratively generalizes GO annotations in the

transaction dataset one level at a time, the annotations in the rules

become more abstract. Rules at very high levels of abstraction are

less informative and more likely to have occurred by chance. We

have developed and evaluated three Monte Carlo methods for

determining the termination level for generalization. All three

approaches generate synthetic random datasets, mine the random

datasets for rules, and use this data to determine the false discovery

rate for different levels of generalization. In the first approach,

annotations are selected randomly from all three sub-ontologies in

the GO using a uniform distribution (Uniform Random). In the

second approach, selection of random annotations mirrors the

distribution of GO annotations at each level in the target sub-

ontology (Random By Ontology) while in the third approach GO

annotations are sampled with replacement from the set of all three

sub-ontologies (Sampling with Replacement). To test these

approaches, we used as our target database the gene annotation

dataset for chicken from AgBase, a website that provides gene

annotations for animal and agricultural plant gene products [27].

The chicken dataset (downloaded as of 2/9/11) contains 6259

transactions. The mouse gene annotation dataset from AgBase

(downloaded as of 12/12/11) used in additional experiments in

subsequent sections of the paper contains 22880 transactions.

The Uniform Random approach does not take into account the

fact that terms in the GO are not distributed uniformly across

different levels as shown in Figure 2. Additionally, the terms at any

given level in the GO are not distributed uniformly across the sub-

ontologies of the GO as shown in Figure 3.

The Random By Ontology approach models the GO annota-

tion distribution in the target dataset to account for the uneven

distribution of GO terms across different levels and sub-ontologies.

A three step process is used to select each random GO annotation

in the synthetic dataset. First, the distribution of GO annotations

across the levels in the ontology is used to select the level of the

GO term to be generated. Once a level has been selected, the

Table 4. Number of rules mined by COLL in each cross-ontology category.

Cross-Ontology Rule Category Chicken All Annotations Mouse

All Annotations
IEA Annotations
Removed

CC R BP 658 246 872

BP R CC 1669 1532 2129

MF R BP 1510 1240 1272

BP R MF 950 326 472

MF R CC 421 538 321

CC R MF 153 77 63

doi:10.1371/journal.pone.0047411.t004

Table 5. Number of rules mined by COLL in each confidence range.

Cross-ontology Rule Category Chicken All Annotations Mouse

All Annotations
IEA Annotations
Removed

100% 1759 593 603

90%–99% 85 539 206

80%–89% 740 590 852

70%–79% 1196 792 942

60%–69% 1581 1445 2526

doi:10.1371/journal.pone.0047411.t005

Cross-Ontology Mining in the Gene Ontology
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distribution of annotations across sub-ontologies at the designated

level is used to select a sub-ontology. Finally, an annotation is

selected with uniform probability from the set of all GO terms at

the designated level and sub-ontology.

The Sampling with Replacement approach uses all the GO

annotations in the target dataset (including duplicates across

transactions) as the background instead of all the GO terms in the

GO. GO annotations are selected with a uniform probability with

replacement from the background set.

The synthetic datasets are mined for multi-level cross-ontology

rules in all six categories: MF R CC, CC R MF, CC R BP, BP

R CC, BP R MF and MF R BP using algorithm COLL except

that minlevel for generalization is set to 1. The false discovery rate

(FDR) for each cross-ontology category at each generalization level

is computed as FDR(COi) = (COi/Ri) * 100, where COi is the

number of cross-ontology rules for cross-ontology category CO at

generalization level i and Ri is the total number of rules generated

at generalization level i. The final false discovery rate for each

cross-ontology category is the average FDR for 50 synthetic

datasets. The termination level for each cross-ontology category is

the first level of generalization where the FDR exceeds a

predetermined threshold.

Results And Discussion

The iterative generalization and mining method used by COLL

explores many multi-level GO term combinations to discover

implicit co-occurrence relationships. One of the limitations of this

approach is that some multi-level term combinations get excluded

because of the level-by-level generalization. We have explored a

different method of generalization, which conducts inferences via

transitive relationships in the GO such as ‘‘is-a’’ and ‘‘part-of’’ and

supplements annotations with all inferred ancestors. This algo-

rithm generalizes all annotations at the same time and then the

generalized transactions are mined using the Apriori algorithm. A

comparison of the results from the two methods revealed that the

rules discovered by both approaches were very similar in terms of

the quantity and the distribution across different levels of the GO.

We chose the incremental generalization and mining approach

since it discovers the more informative rules first.

Termination Level
The results shown in Figure 4 show that both the Random By

Ontology and Sampling with Replacement approaches generate

synthetic datasets with GO distributions similar to the target

dataset for all three sub-ontologies. The Uniform Random

approach does not adequately model the distribution of GO

terms in the target dataset. The Random By Ontology approach

with an FDR threshold of 0.01 is used to determine termination

levels in the remainder of the experiments.

Table 1 shows the FDR for each cross-ontology category at each

level for the chicken dataset. Based on these results, the termination

level for this dataset with an FDR of 0.01 is 6 for MF R CC, CC R
MF, BP R MF, MF R BP and 8 for CC R BP, BP RCC.

Table 6. Examples of cross-ontology rules mined from the chicken dataset.

Antecedent GO Term Name Consequent GO Term Name Cross-Ontology Category

GO:0005901 caveola GO:0031325 positive regulation of cellular metabolic
process

CC R BP

GO:0005929 cilium GO:0042058 regulation of epidermal growth factor
receptor signaling pathway

CC R BP

GO:0015491 cation:cation antiporter activity GO:0045895 regulation of protein kinase activity MF R BP

GO:0015491 cation:cation antiporter activity GO:0015707 nitrite transport MF R BP

GO:0043091 L-arginine import GO:0051139 metal ion:hydrogen antiporter activity BP R MF

GO:0002286 T cell activation involved in
immune response

GO:0043231 intracellular membrane-bounded
organelle

BP R CC

GO:0015491 cation:cation antiporter activity GO:0045859 regulation of protein kinase activity MF R BP

GO:0016459 myosin complex GO:0003774 motor activity CC R MF

doi:10.1371/journal.pone.0047411.t006

Table 7. Number of rules in each evaluation category from a random set of 25 rules mined by COLL and the Burgun approach.

Evaluation Category Number of Rules in Evaluation Category

ChickenAll Annotations Mouse

All Annotations IEA AnnotationsRemoved

COLL Burgun COLL Burgun COLL Burgun

Surprisingness Unknown/Surprising 5 0 4 1 0 1

Somewhat Known 4 5 2 2 2 3

Widely Known 15 18 19 22 18 17

Meaningfulness Meaningful 16 22 19 22 19 19

Maybe Meaningful 3 2 6 2 0 3

Not Meaningful 5 0 0 0 0 0

doi:10.1371/journal.pone.0047411.t007

Cross-Ontology Mining in the Gene Ontology
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Interestingness measures and pruning strategies
We use support, confidence and the Chi-square test as measures

of interestingness during the rule mining process. A low support

threshold and a high confidence threshold were used in the mining

process. Unlike market basket applications where high support is

required [7,8,9,10,23,28], GO annotations that co-occur with a

high frequency, even the terms each occur a relatively small

number of times, are still interesting if they are not likely to occur

together by chance. The support, s of a rule X R Y is calculated as

the probability of X and Y co-occurring in the transaction dataset;

sX R Y = P(X > Y). The confidence, c of a rule X R Y is

calculated as the probability of observing Y given that X is present

in a transaction; cX R Y = P(Y|X). The Chi-square test compares

the values of expected occurrence with the value of observed

occurrence for every attribute in a transaction and reports a p-

value which can be used to infer the level of dependence between

two attributes [29,30]. Previous research on mining multilevel

association rules has used multiple support thresholds for different

levels in the hierarchy but it can be very difficult to determine how

these support thresholds should be calculated. The Chi-square test

automatically addresses this issue by using the expected and

observed occurrence counts for terms at different levels. The rules

that pass the chi-square test threshold contain GO term pairs that

occur more significantly than expected.

In addition to using interestingness measures to prune rules

while mining, the following strategies are also used to prune rules

that are biologically uninteresting:

1. Rules where the antecedent and the consequent are related by

a child-ancestor relationship are pruned. Such relationships are

implied by the true path rule in the GO and do not convey

novel information to a biologist.

2. When the result set contains two rules of the form X R Y and

X R Ancestor(Y) with a confidence difference of less than

10%, the rule of the form X R Ancestor(Y) is pruned. Given

the rule X R Y, the rule X R Ancestor(Y) is implied and thus

the more detailed version of the rule is retained.

Association Rules
We applied the cross-ontology data mining algorithm to the

chicken and mouse datasets with 0.05% support, 60% confidence

and a p-value of 0.01 for the Chi-square test and compared these

results with those resulting from applying a previously published

approach described by Burgun et al. [16]. Burgun’s approach does

not use any generalization and thus, mines single level rules. Table 2

shows that, after pruning, COLL mines 5368 and 3959 cross-

ontology rules from the chicken and mouse datasets respectively.

Our pruning strategies reduce the total number of rules by 96.99%

and 95.26% for the chicken and mouse datasets. The rules

generated by Burgun et al. are a subset of the rules generated by

COLL and do not include multi-level rules. COLL produced

substantially more cross-ontology rules than Burgun’s approach.

It is to be noted that in this study, association rule mining

discovers inherent patterns between GO annotations. These

patterns are a result of co-annotation of one or more GO terms

to a particular gene product. Therefore, the antecedent and

consequent GO terms in our cross-ontology rules are existing GO

terms from annotation data and not new terms.

COLL discovered rules at multiple levels of generalization from

the chicken and mouse datasets in all six of the cross-ontology

categories. Table 3 shows that the number of rules mined at each

level of generalization increases from level 14 to level 6. This can

be attributed to two facts. Firstly, generalization lends increased

support to co-occurring GO term pairs thereby resulting in more

rules. Secondly, the GO is more populated at levels 12 to 6, which

results in the majority of generalization taking place at these levels

thereby causing an increase in the mined rules. The number of

rules from each cross-ontology category is shown in Table 4. The

rules were categorized by their confidence values and the results in

Table 5 show that a majority of the rules have a very high

confidence level. Examples of the cross-ontology rules mined from

the chicken dataset by COLL are shown in Table 6.

In order to compare the biological relevance of the rules mined

by the two approaches, two biologists manually evaluated rules

selected from the two approaches. The biologists categorized rules

into one of the three categories for surprisingness (Unknown/

Surprising, Somewhat known and Widely known) and meaning-

fulness (Meaningful, Maybe meaningful and Not meaningful). The

surprisingness of a rule determines if the relationship was hitherto

unknown to the biologist. The meaningfulness of a rule indicates

whether or not it makes sense for the items in the rule to be co-

annotated. A brief description of these categories is as follows:

1. Surprisingness:

a. Unknown/Surprising: The rule reveals a relationship that the

biologist had no prior knowledge of.

b. Somewhat known: There is limited knowledge on the

relationship in the rule and might be useful for researchers.

c. Widely known: The relationship is an obvious one and is

common knowledge.

2. Meaningfulness:

a. Meaningful: It seems acceptable to the biologist that the items

in the rule were co-annotated.

b. Maybe meaningful: The items in the rule might be co-

annotated in specific scenarios.

c. Not meaningful: The biologist does not see the reason behind

co-annotating the items in the rule.

We conducted two evaluations with rule sets chosen using

different selection strategies. For the first evaluation (Table 7), 25

rules were chosen at random from the mouse and chicken result

sets and a biologist was asked to assign the rules to the categories

shown in Table 7. In order to evaluate the effect of annotations

inferred from electronic annotation (IEA) on rule surprisingness,

the mouse dataset was also mined after removing all IEA

Table 8. Number of rules in each evaluation category from a
set of 50 rules in a confidence range of 60–64% mined by
COLL and the Burgun approach.

Evaluation Category Mouse All Annotations

COLL Burgun

Surprisingness Unknown/Surprising 4 0

Somewhat Known 8 3

Widely Known 35 41

Meaningfulness Meaningful 39 35

Maybe Meaningful 11 11

Not Meaningful 0 0

doi:10.1371/journal.pone.0047411.t008
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annotations. Twenty-five random rules were evaluated from this

list and the results are reported in Table 7.

For the second evaluation, we selected 50 rules with lower

confidence values (60% to 64%) and 50 with the highest

confidence values (100%) from the mouse dataset with all

annotations. We noticed that the rules were largely dominated

by rules involving Cellular Component (CC R BP, BP R CC, CC

R MF, MF R CC). In order to ensure a good representation of

rules from all categories, we selected 20 rules from CC R BP, BP

R CC, CC R MF, MF R CC and 30 rules from MF R BP, BP

R MF. All of the rules with 100% confidence derived by both

methods were deemed to be widely known and meaningful by the

biologists. These rules represent commonly known biological

knowledge. The results for the evaluation of rules with lower

confidence are reported in Table 8.

Both evaluations (Table 7, 8) show that COLL discovers

unknown and surprising rules while none of the rules discovered

by Burgun are surprising. The majority of rules identified by both

approaches is biologically meaningful. However, most of the

meaningful rules identified by Burgun are widely known and no

surprising/unknown rules are discovered. In addition to discov-

ering many more rules as compared to Burgun (49% more in

chicken, 61% more in mouse) COLL discovers more unknown

and surprising rules.

The evaluation of cross-ontology rules mined after all IEA

annotations were removed revealed that no Unknown/Surprising

rules are mined by the cross-ontology data mining algorithm for

the selected subset. The biologists evaluated these rules based upon

personal, biological knowledge and literature searches. In cases

where there the GO annotation is based solely on literature, all

GO annotations will be documented and found via literature

searches. Since IEA derived GO annotations are based upon

existing annotation knowledge (such as Enyzme Commission and

SwissProt Keywords) and conserved functional motifs and

domains (InterPro), the IEA annotations in effect represent

derived biological knowledge that is applied generally rather than

from a species-specific experiment.

Conclusion

The Gene Ontology is a vast resource for understanding gene

function and there are currently more than 80 million GO

annotations available for a diverse range of species. Apart from

containing gene product information, GO annotations contain a

huge amount of implicit knowledge that can be discovered using

data mining techniques such as association rule mining. In this

study, we describe an approach for mining multi-level cross-

ontology association rules from GO annotations using level-by-

level generalization as the ontology traversal mechanism. The

cross-ontology data mining algorithm views annotation data at

varying levels of detail and captures implicit patterns of co-

occurring GO terms across sub-ontologies. We show that COLL

discovers more and better quality rules as compared to a

previously published approach that mined single level cross-

ontology rules.
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