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Meta-analysis of human gene expression in
response to Mycobacterium tuberculosis
infection reveals potential therapeutic
targets
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Abstract

Background: With the global emergence of multi-drug resistant strains of Mycobacterium tuberculosis, new strategies
to treat tuberculosis are urgently needed such as therapeutics targeting potential human host factors.

Results: Here we performed a statistical meta-analysis of human gene expression in response to both latent and active
pulmonary tuberculosis infections from nine published datasets. We found 1655 genes that were significantly
differentially expressed during active tuberculosis infection. In contrast, no gene was significant for latent
tuberculosis. Pathway enrichment analysis identified 90 significant canonical human pathways, including several
pathways more commonly related to non-infectious diseases such as the LRRK2 pathway in Parkinson’s disease, and
PD-1/PD-L1 signaling pathway important for new immuno-oncology therapies. The analysis of human genome-wide
association studies datasets revealed tuberculosis-associated genetic variants proximal to several genes in major
histocompatibility complex for antigen presentation. We propose several new targets and drug-repurposing
opportunities including intravenous immunoglobulin, ion-channel blockers and cancer immuno-therapeutics for
development as combination therapeutics with anti-mycobacterial agents.

Conclusions: Our meta-analysis provides novel insights into host genes and pathways important for tuberculosis
and brings forth potential drug repurposing opportunities for host-directed therapies.
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Background
The causative agent of tuberculosis (TB), the bacterium
Mycobacterium tuberculosis (Mtb), infects about one third
of the world’s population. In 2012, an estimated 8.6 mil-
lion individuals progressed to active disease and 1.3 mil-
lion died [1]. The prolonged duration of Mtb infection as
well as the alarming emergence of multi-drug resistant
strains makes the development of new and effective anti-
tubercular therapeutics a global health priority [2, 3].
The severity of TB is largely dependent upon the

modulation of human cellular and immunity pathways
by the Mtb pathogen. The majority of infected patients

develop latent TB (LTB) infection, in which they are
asymptomatic with no clinical evidence of disease for
years or decades [4]. During latent infection, Mtb is
phagocytosed by macrophages, which trigger host im-
mune response involving the recruitment of additional
macrophages and monocytes that ultimately form an or-
ganized structure called granuloma [5]. Mtb is dormant
and non-replicative within granuloma which suppresses
the immediate threat of active infection while evading
further immune response [6]. Approximately 5–10% of
LTB patients will go on to develop active pulmonary TB
(PTB), in which Mtb returns to the replication mode
and provokes an active host immune response. When
the granuloma breaks down, sequestered Mtb can be re-
leased into the airway and becomes transmissible to
other hosts.
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Currently, the standard TB therapy involves a regimen
of four antibiotics taken during an initiation phase of
two months and a continuation phase of 4–7 months [7,
8]. Despite a high efficacy at the onset of administration,
the confounded intervention and prolonged treatment
period present challenges for patient compliance and po-
tentially foster the emergence of multidrug-resistance of
Mtb. Thus, it is imperative to develop more effective
therapeutic approaches such as host-directed therapies.
Targeting the host has its advantages in potentially being
less susceptible to the drug resistance problem, with
greater opportunities for repositioning known drugs to
new indications.
Recent genome-wide studies of host-pathogen interac-

tions provide new insights into human genes and path-
ways modulated by pathogen infection and proliferation.
Multiple studies have generated extensive human micro-
array gene expression datasets for subjects infected by
Mtb with the overall objective of developing diagnostic
biomarkers [9–11]. For example, by comparing 14 public
human gene expression datasets for LTB, PTB and other
respiratory diseases, Sweeney et al. identified a three-gene
set that was robustly diagnostic for PTB [12]. However, to
our knowledge, no systematic search for potential host
therapeutic targets against TB has been published.
Previously, we applied integrated analysis to human

gene expression data in response to respiratory bacterial
and viral infections in order to identify novel host targets
and potential drug repurposing opportunities [13, 14]. In
this study, we performed a statistical meta-analysis on
human gene expression data available for Mtb infection
to identify common human transcriptomic signatures
characteristic of TB. The advantage of meta-analysis lies
in its capability to alleviate potential study-specific biases
and enhance statistical power to identify robust expres-
sion signature through increased sample size. We lever-
aged other evidence such as human genetic disease
associations and drug-repurposing analyses to prioritize
individual targets and compounds. We identified mul-
tiple host genes and pathways that were significantly al-
tered in TB and propose several potential drug
candidates for repurposing.

Methods
Data sources, filtering and selection
Human microarray gene expression datasets in response
to Mtb infection were retrieved from the National Center
for Biotechnology Information’s (NCBI) Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/), by searching ‘Tuberculosis’, ‘Homo sapiens’ and ‘ex-
pression profiling by array’. GEO datasets were then fil-
tered based on the following criteria: 1) the gene
expression profile was exclusively derived from human
cells of tuberculosis patients and probed using a human-

based genome array platform; 2) there was at least one
control group and patient group in the dataset, with the
control group consisting of only healthy subjects, and the
patient group consisting of patients only infected by Mtb
without other diseases such as HIV; 3) each patient and
control group had at least three samples.
Raw gene expression data, study design table and anno-

tation table of each dataset were obtained from the GEO
database and processed using ArrayStudio v8.0 (OmicSoft,
USA). All datasets retrieved are microarray datasets ex-
cept for GSE41055, which is an exon array and was ex-
cluded from further analysis. Several datasets (GSE42834,
GSE56153, GSE31348 and GSE36238) were further ex-
cluded due to both a noisy kernel density plot and low
within group pairwise correlation (correlation cutoff 0.9 as
suggested in [15], Additional file 1), but were included as
independent datasets for validation purposes. After quality
filtering, nine microarray datasets (GSE19435, GSE19439,
GSE19444, GSE28623, GSE29536, GSE34608, GSE54992,
GSE62525 and GSE65517) from either whole blood or
peripheral blood mononuclear cells (PBMCs) were
retained for further analysis.
We also searched for available datasets of individual hu-

man immune cells under in vitroMtb challenge. We identi-
fied three datasets of human dendritic cells (GSE34151,
GSE360 and GSE53143) and four datasets of THP-1 hu-
man leukemia monocytic cells (GSE17477, GSE29628,
GSE51029 and GSE57028), and processed them separately.
By comparing gene expression profiles derived from
PBMCs or whole blood to those of immune cells, we could
evaluate how well blood gene expression patterns recapitu-
late those of immune cells duringMtb infection.
Quality Control (QC) analysis was performed for each of

the nine datasets as described previously [13]. Briefly, sam-
ples that were outliers in at least two of the four assess-
ments: 1) kernel density; 2) Principal Component Analysis
(PCA); 3) Median Absolute Deviation (MAD) score and; 4)
within group pairwise correlation, were excluded from
downstream analyses. For example, samples GSM484458
and GSM484465 in GSE19439, and GSM851876 and
GSM851889 in GSE34608 were excluded because they
were outliers in both MAD score and pairwise correlation
(Additional file 2). Samples GSM484369 from GSE19435,
and GSM484609 and GSM484629 from GSE19444, were
outliers in both pairwise correlation and kernel density.
Samples irrelevant to our study design (such as samples
from sarcoidosis patients in GSE34608) were also excluded
from each dataset. In total, 106 control, 76 LTB and 131
PTB samples from the nine datasets passed the QC criteria
for statistical meta-analysis (Table 1).

Data processing and statistical meta-analysis
Data processing and statistical meta-analysis were per-
formed using the web-based tool NetworkAnalyst [16].

Wang et al. BMC Systems Biology  (2018) 12:3 Page 2 of 18

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Briefly, probe identifiers (IDs) from different microarray
platform were converted to Entrez gene IDs. If more
than one probe mapped to a gene, the average expres-
sion value of these probes was used for that gene. The
gene expression level in each comparison group was
log2 transformed and auto-scaled. Differential expres-
sion analysis for individual datasets was performed using
the limma approach [17], with a false discovery rate
(FDR)-adjusted P-value cutoff of 0.05.
The study-specific batch effects were adjusted for the

pre-processed datasets using the ComBat procedures as
described in [18, 19]. Batch effects corrected individual
datasets were then combined and a statistical meta-
analysis was performed using INMEX within NetworkA-
nalyst [16]. We chose to use the combined effect size
method for the meta-analysis which generates more con-
servative and biologically consistent results than the al-
ternative P-value combination method [18, 20]. The
random effect model that incorporates cross-study het-
erogeneity was selected for the meta-analysis because of
significant heterogeneity detected using Cochrans’ Q test
[21]. Differentially expressed genes (DEGs) were gener-
ated using an FDR-adjusted P-value cutoff 0.01 in the
meta-analysis. A subset of DEGs with absolute combined
effect size greater than 1.5 was selected for genetic vari-
ant and DrugBank analyses.

Validation of meta-analysis
To evaluate the robustness of the meta-analysis results, we
validated the DEGs in four independent datasets (GSE42834,

GSE56153, GSE31348 and GSE36238) using PCA and Par-
tial Least Square Discriminant Analysis (PLS-DA). PLS-DA
is a multivariate analysis that establishes a linear regression
model between the observed categorical variable and mul-
tiple predicting variables. Expression data were scaled to unit
variance. Collinearity was addressed using pairwise Pearson’s
correlation test. One gene was selected as representative for
each group of genes whose expression values were strongly
mutually correlated (R2 > 0.5). Significant model components
were selected by 7-fold cross validation. The model perform-
ance was evaluated in terms of R2, Q2 and the area under
the Receiver Operating Characteristic (ROC) curve
(AUC). R2 measures the percent of variation of the cat-
egorical variable explained by the model. Q2 measures
the percent of variation of the categorical variable pre-
dicted by the model through 7-fold cross-validation.
The ROC curve plots the true positive rate (sensitivity)
against the false positive rate (1-specificity) when varied
threshold is applied. The AUC values were calculated
and compared using pROC package in R [22].
To explore possible prognostic value of the DEGs, a

Kaplan-Meier survival analysis was performed using the
top 50 DEGs in the meta-analysis on the largest lung can-
cer cohort (Lung Meta-base: 1053 samples, 6 cohorts,
22 K genes) in SurvExpress [23], as significant comorbidi-
ties have been observed between lung cancer and TB [24].

Pathway enrichment analysis
Pathway enrichment analysis was performed for all
DEGs from the meta-analysis using MetaCore/MetaBase

Table 1 List of GEO datasets in the meta-analysis

Dataset Cell type PMID Platform Samples DEGs

PTB LTB Control Outlier PTB LTB

GSE19435 Whole blood 20725040 Illumina 12 0 7 1 3881 NA

GSE19439 Whole blood 20725040 Illumina 17 13 6 2 461 0

GSE19444 Whole blood 20725040 Illumina 20 20 12 0 1916 0

GSE28623 Whole blood 22046420 Agilent 41 23 35 9 3974 0

GSE29536 Whole blood 24069364 Illumina 9 0 6 0 2719 NA

GSE34608 Whole blood 22547807 Agilent 8 0 18 2 9694 NA

GSE54992 PBMC 24647646 Affymetrix 9 6 6 3 3741 0

GSE62525 PBMC 26818387 Phalanx 12 14 13 3 8719 6934

GSE65517 PBMC 25992611 Illumina 3 0 3 0 414 NA

GSE34151 Dendritic 22233810 Illumina 129 0 126 4 5716 NA

GSE360 Dendritic 12663451 Affymetrix 2 0 2 0 479 NA

GSE53143 Dendritic 24482540 Illumina 8 0 10 0 3461 NA

GSE17477 THP-1 NA Affymetrix 4 0 4 0 251 NA

GSE29628 THP-1 22675550 Affymetrix 5 0 1 0 174 NA

GSE51029 THP-1 NA Agilent 123 0 69 14 3858 NA

GSE57028 THP-1 24899504 Affymetrix 3 0 3 0 2431 NA

List of patient blood and in vitro dendritic and THP-1 datasets in this study, and the number of samples and DEGs in each dataset
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(GeneGo) v5.0 (Thomson Reuters, https://portal.gen-
ego.com/). The P-value for each of the 1480 human ca-
nonical pathways in MetaCore was generated using a
hypergeometric test with an FDR P-value cutoff of 0.01
[25]. Protein-protein interaction (PPI) network analysis
was performed based on the STRING interactome using
NetworkAnalyst [16, 26]. Experimental evidence was re-
quired with a default confidence score 0.9 for any inter-
action between two genes. The minimum network mode
was chosen for display purposes.

Genetic variant analysis
We searched for any TB-associated single nucleotide
polymorphisms (SNPs) proximal to the DEGs. Genetic
variants significantly associated with TB (genome-wide
significant P-value < 5e-8) were obtained from the
Genome-Wide Repository of Associations Between SNPs
and Phenotypes (GRASP, http://grasp.nhlbi.nih.gov/)
[27]. As usually few non-synonymous coding variants
were associated with the genes, we also searched for
regulatory SNPs for the DEGs by obtaining their enhan-
cer regions from FANTOM5, a comprehensive resource
on active transcripts, transcription factors, enhancers
and promoters in mammalian primary cell types and
cancer cell lines [28]. The genomic region in linkage dis-
equilibrium (LD) with each SNP was obtained from
SNAP (https://www.broadinstitute.org/mpg/snap/) [29].
Any overlap between the genomic locations of a DEG or
its FANTOM5 enhancers and the LD region of a SNP
would indicate a potential association between the corre-
sponding gene and the SNP.

DrugBank and connectivity map analysis
Drug-target links between public compounds and the
DEGs were obtained from DrugBank Version 4.5 (http://
www.drugbank.ca/) [30]. Only launched drugs with experi-
mental or clinical evidence of direct interaction with the
encoded gene product were included. Drug-target links
were excluded if the drugs have unknown pharmacological
actions or pharmacological actions of the same direction to
the differential expression of the targets in TB signature.
Drug repurposing analysis was performed using the Con-

nectivity Map (CMAP, https://www.broadinstitute.org/
cmap/) [31]. The 250 top-ranked and 250 bottom-ranked
DEGs from the meta-analysis were used for generating
gene expression signature as recommended by Iorio et al.
[32], which was then compared against the gene expression
signatures of all Broad CMAP compounds. Significant
CMAP compounds against TB were identified based on the
following criteria: 1) The enrichment score of the com-
pound was less than 0 for inversely matched drug and dis-
ease signatures; 2) FDR-adjusted P-value < 0.05; 3) The
compound specificity was less than 0.1. The target, mech-
anism of action, therapy area and indication for each

compound were obtained from PubChem (http://pub-
chem.ncbi.nlm.nih.gov/) and DrugBank [30]. Antibacterial
compounds and compounds with no clinical use were ex-
cluded from the drug annotation.

Results
Statistical meta-analysis for differentially expressed genes
during PTB
We employed an iterative process of database querying,
filtering and computational analyses for all datasets
(Fig. 1). At the time of this study (October 2016), there
were 85 GEO microarray datasets available for TB-
related host responses (Additional file 3). After filtering
based on dataset inclusion criteria (see Methods), a final
set of nine in vivo patient datasets including nine PTB
and five LTB comparisons was selected for downstream
analyses (Table 1). We also identified three datasets of
human dendritic cells and four datasets of human THP-
1 cells under in vitro Mtb challenge, and compared their
expression signatures to the TB patient signatures. The
complete list of the 85 GEO datasets and their annota-
tions are shown in Additional file 3.
Statistical meta-analysis of the nine datasets was per-

formed using NetworkAnalyst [16]. For PTB compari-
sons, a total number of 16,703 genes common to all
nine datasets were identified and a combined master
dataset was generated. Batch effect was corrected using
the ComBat approach [19]. PCA indicates that all sam-
ples were tightly clustered according to the specific
study prior to the batch effect correction. After the cor-
rection, samples from different studies were intermixed
and now clustered primarily based on PTB and control
groups (Additional file 4). The samples do not cluster
based on sample type in either PCA plot before or after
batch effect correction (Additional file 4). A total of
1655 DEGs were identified in the meta-analysis under
an FDR-adjusted P-value cutoff 0.01 (Additional file 5).
Of these, a subset of 407 DEGs had an absolute com-
bined effect size as a reference for the log2 fold change
greater than 1.5 (Fig. 2). For LTB comparisons, no gene
was retained using the same criterion in the meta-
analysis of the five datasets.

Identification of significantly enriched pathways
The 1655 significant DEGs were then analyzed for
enriched functional pathways using MetaCore v5.0, a high
quality, manually curated protein-interaction database
supported by ‘small experiment’ evidence. In total, 90 hu-
man canonical pathways were significantly enriched from
the DEGs (FDR-adjusted P < 0.01) (Table 2), many of
which were involved in host immune response. The most
significant pathway was ‘IFN type I signaling pathway’
(FDR-adjusted P = 3e-9, Additional file 6) which is a
known host response to TB [33], with 17 DEGs in 37
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pathway components. Notably, there was significant en-
richment for several pathways more commonly associated
with non-infectious diseases. These include the leucine-
rich repeat kinase 2 (LRRK2) pathway in Parkinson’s dis-
ease (FDR-adjusted P = 9.4e-5, Fig. 3) and PD-1/PD-L1
(Programmed Death 1/PD-Ligand 1) signaling pathway
(FDR-adjusted P = 6.5e-5, Fig. 4). A few pathways were as-
sociated with other diseases such as asthma, chronic ob-
structive pulmonary disease and dermatitis, albeit all with
sparsely connected genes.
To explore the interactive relationships between the

1655 DEGs, we performed a protein-protein interaction
network analysis based on the STRING interactome
database using NetworkAnalyst [16, 26]. We obtained a
subnetwork containing 1727 edges and 740 nodes, 364
of which were DEGs (Fig. 5a). Among the DEGs, 42
genes directly interacted with each other, with LCK and
STAT3 having the highest degree of connectivity (Fig. 5b).
Among the functional partners of the DEGs, the Ubiqui-
tin C (UBC) gene was most highly connected in the net-
work by interacting with 112 other genes, 110 of which
were DEGs (Fig. 5a).

Validation of the meta-analysis
To evaluate the reproducibility of our results, we validated
the 407 DEGs with log2 fold changes greater than 1.5 in
four additional microarray datasets (GSE42834,
GSE56153, GSE31348 and GSE36238). The 407 genes
yielded a clear separation of PTB and control for all four
datasets in PCA (Additional file 7a). Using PLS-DA, the
407 genes showed good sensitivity (above 83%) and speci-
ficity (above 82%) in all four independent datasets, and
had a significantly greater AUC than a random set of 407
genes in all datasets except GSE36238, which had a small
sample size (Additional file 7b). Accordingly, R2 and Q2

measures of model quality and predictability, respectively,
were markedly greater for the 407 gene set than the ran-
dom gene set in all four datasets (Additional file 7c).
We also performed a separate meta-analysis on the in

vitro datasets available for Mtb infection. In total, 2535
and 2911 DEGs were identified for dendritic and THP-1
cells datasets respectively, from which 129 and 192 path-
ways were significantly enriched (FDR-adjusted P < 0.01,
Additional file 8). Of them, 335 genes (13.2%) in den-
dritic datasets and 414 (14.2%) genes in THP-1 datasets

Dataset collection
- ‘Tuberculosis’, ‘Homo sapiens’, 

‘Expression profiling by array’ from GEO
(n=85) Excluded (n=73)

- less than 3 samples per group (n=6)
- HIV subjects complicated (n=4)

- no human data (n=5)
- no patients data (n=4)

- no healthy control data (n=11)
- Quality control failed (n=7)

- other factors (n=36)Dataset selection
- in vivo datasets (9 PTB and 5 LTB) (n=9)
- in vitro datasets of dendritic cells (n=3)

Data processing
- Quality control (Kernel density, 

MAD, Correlation, PCA)
- Log transformation and auto-scaling

Statistical meta-analysis
- Batch effect removal (ComBat)

- Differential expression analysis (limma)
- Meta-analysis (FDR P<0.01, INMEX)

Pathway enrichment analysis

- Pathway analysis (MetaCore, FDR P<0.01)
- PPI network analytsis (NetworkAnalyst)

Genetic analysis (GWAS)
- GRASP and FANTOM5 

(Genome-wide significant P<5e-8)

Drug repurposing analysis
- DrugBank analysis

- Connectivity Map analysis (Enrichment 
score<0, P<0.05, Specificity<0.1)

61 SNPs associated 
with 48 DEGs

- 14 DrugBank compounds
- 13 CMAP compounds

- 1,655 DEGs
- 407 DEGs with |fold 

change|>1.5

Validation analysis
- Independent datasets (n=4)

- PLS-DA with 7-fold cross validation

- 90 pathways
- 1,727 edges, 740 nodes

Fig. 1 Flowchart of the statistical meta-analysis of human gene expression in response to Mtb infection. The process consists of eight major steps
which were detailed in the grey boxes. The output of each data analysis step was indicated in the corresponding pink box. Detailed criteria for
each major step were described in Methods
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overlap with the 1655 DEGs in patient blood expression
signature (Additional files 8, 9). Some 28 pathways
(15.6%) in dendritic datasets and 44 pathways (22.9%) in
THP-1 datasets were shared with patient blood datasets,
including key pathways of IFN type I, PKR and PD-1 sig-
naling (Table 2, Additional file 9). We noted that DEGs
shared with patient blood profiles had a significantly
higher magnitude of fold change both in dendritic and
THP-1 cells than the rest of DEGs (dendritic: average
absolute fold change 1.903 versus 1.639, t-test P = 8.2e-5,
THP-1: 0.802 versus 0.735, t-test P = 9.2e-5). MetaCore
pathway enrichment of the 335 genes shared between

blood and dendritic cells identified several dendritic cell
related pathways such as ‘Antigen presentation by MHC
class I’ and ‘Role of HMGB1 in dendritic cell maturation
and migration’ among the most significant pathways
(Additional file 8).
To explore possible prognostic value of the DEGs,

we performed a Kaplan-Meier survival analysis using
the top 50 significant DEGs in the meta-analysis on
the largest lung cancer cohort in SurvExpress [23],
because significant comorbidities have been observed
between lung cancer and TB [24]. The top 50 genes
showed a significant prognostic feature on lung

Low High

Healthy Control
PTB

GSE19435
GSE19439
GSE19444
GSE28623
GSE29536
GSE34608
GSE54992
GSE62525
GSE65517

Condition

Dataset

Fig. 2 The heatmap of the subset 407 DEGs identified in the meta-analysis. For each DEG, its normalized expression value in each sample of the
nine datasets was indicated in the heatmap. Two hundred forty one genes were up-regulated and 166 genes were down-regulated. The genes
were clustered using the Ward’s method [56]. The samples were grouped first by comparison group then by individual studies
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Table 2 List of 90 significantly enriched human pathways in the meta-analysis

Map Major Process - log (P) DEGs In dendritic data In THP-1 data

Attenuation of IFN type I signaling in melanoma cells Cancer 8.53 17 Y N

Bacterial infections in CF airways CF pathways 7.66 18 N Y

Role of PKR in stress-induced antiviral cell response Immune response 6.41 18 Y Y

B cell signaling in hematological malignancies Immune response 6.29 21 N N

Bacterial infections in normal airways Immune response 5.93 16 N N

TLR2 and TLR4 signaling pathways Immune response 5.82 17 N Y

Role of CD8+ Tc1 cells in COPD COPD 4.95 14 Y Y

SLE genetic marker-specific pathways in B cells Immune response 4.74 21 N Y

Release of pro-inflammatory mediators and elastolytic
enzymes by alveolar macrophages in COPD

COPD 4.7 11 N Y

G-CSF-induced myeloid differentiation Development 4.43 11 N Y

Inter-cellular relations in COPD (general schema) COPD 4.43 11 Y Y

IL-1 signaling pathway Immune response 4.28 13 N Y

Inflammatory mechanisms of pancreatic cancerogenesis Cancer 4.25 16 Y Y

Antiviral actions of Interferons Immune response 4.25 14 N N

Role of fibroblasts and keratinocytes in the elicitation phase
of allergic contact dermatitis

Dermatitis 4.25 10 Y Y

Inhibitory PD-1 signaling in T cells Immune response 4.19 14 Y N

Role of iNKT and B cells in T cell recruitment in allergic
contact dermatitis

Dermatitis 4.07 12 N N

LRRK2 and immune function in Parkinson’s disease Parkinson 4.03 9 N N

TLR5, TLR7, TLR8 and TLR9 signaling pathways Immune response 4.03 13 N Y

Chemokines in inflammation in adipose tissue and liver in
obesity, type 2 diabetes and metabolic syndrome X

Immune response 4.03 13 N Y

Neutrophil-derived granule proteins and cytokines in asthma Asthma 3.94 13 N N

Cigarette smoke-mediated attenuation of antibacterial and
antivirus immune response

Immune response 3.92 10 Y Y

Prostate Cancer: candidate susceptibility genes in inflammatory
pathways

Cancer 3.92 10 N N

Inhibition of apoptosis in multiple myeloma Cancer 3.86 11 Y N

SLE genetic marker-specific pathways in antigen-presenting
cells (APC)

Immune response 3.79 17 Y Y

Proinflammatory cytokine production by Th17 cells in asthma Asthma 3.61 13 N N

Antigen presentation by MHC class I, classical pathway Immune response 3.53 13 Y N

NK cells in allergic contact dermatitis Dermatitis 3.43 10 N Y

Inflammatory response in ischemia-reperfusion injury during
myocardial infarction

Stem cells 3.36 8 N Y

Putative pathways of activation of classical complement system
in major depressive disorder

Complement activation 3.25 9 N N

Th1 and Th17 cells in an autoimmune mechanism of emphysema
formation in smokers

Signal transduction 3.25 9 N Y

NF-kB activation pathways Signal transduction 3.14 12 N Y

iNKT cell-keratinocyte interactions in allergic contact dermatitis Dermatitis 3.13 10 N N

Apo-2 L(TNFSF10)-induced apoptosis in melanoma Cancer 2.98 11 Y Y

IFN alpha/beta signaling pathway Immune response 2.95 8 Y N

EGFR signaling pathway Development 2.95 14 N Y

Th17 cells in CF CF pathways 2.95 12 N N

ERBB family and HGF signaling in gastric cancer Cancer 2.95 12 N Y
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Table 2 List of 90 significantly enriched human pathways in the meta-analysis (Continued)

Map Major Process - log (P) DEGs In dendritic data In THP-1 data

Interleukins-induced inflammatory signaling in normal and asthmatic
airway epithelium

Immune response 2.95 9 N N

Role of keratinocytes and Langerhans cells in skin sensitization Skin sensitization 2.87 8 N N

Transcription regulation of granulocyte development Development 2.87 9 N Y

The role of KEAP1/NRF2 pathway in skin sensitization Skin sensitization 2.87 9 N Y

Activation of ACTH production in pituitary gland in major
depressive disorder

Signal transduction 2.87 9 N N

IFN gamma signaling pathway Immune response 2.84 12 N Y

Memory CD8+ T cells in allergic contact dermatitis Dermatitis 2.84 10 N Y

MIF in innate immunity response Immune response 2.84 10 N N

The innate immune response to contact allergens Immune response 2.81 9 N N

IL-5 signaling via JAK/STAT Immune response 2.81 12 Y Y

Cytokine-mediated regulation of megakaryopoiesis Development 2.81 12 Y N

Inflammasome in inflammatory response Immune response 2.72 9 N N

TLR ligands Immune response 2.72 9 N N

Rheumatoid arthritis (general schema) Others 2.71 11 Y N

Apoptotic TNF-family pathways Apoptosis and survival 2.7 10 Y N

Neutrophil resistance to apoptosis in COPD and proresolving
impact of lipid mediators

COPD 2.64 12 Y Y

Regulation of proinflammatory cytokine production by Th2 cells
in asthma

Asthma 2.64 10 N N

Role of cell adhesion in vaso-occlusion in Sickle cell disease Sickle cell disease 2.64 10 N N

Release of pro-inflammatory factors and proteases by alveolar
macrophages in asthma

Asthma 2.64 10 Y Y

HMGB1/TLR signaling pathway Immune response 2.57 9 N Y

Role of TLR signaling in skin sensitization Skin sensitization 2.57 10 N Y

Inhibition of neutrophil migration by proresolving lipid
mediators in COPD

COPD 2.54 13 N N

Role of PKR in stress-induced apoptosis Apoptosis and survival 2.54 11 Y N

TLRs-mediated IFN-alpha production by plasmacytoid
dendritic cells in SLE

SLE 2.54 11 N Y

Role of IFN-beta in activation of T cell apoptosis in
multiple sclerosis

Multiple sclerosis 2.54 8 Y N

HSP60 and HSP70/ TLR signaling pathway Immune response 2.48 11 N Y

T cell receptor signaling pathway Immune response 2.41 11 N N

Integrin inside-out signaling in T cells Cell adhesion 2.39 13 Y N

HGF signaling pathway Development 2.37 10 Y N

Prolactin/ JAK2 signaling in breast cancer Cancer 2.32 7 N Y

IFN-gamma and Th2 cytokines-induced inflammatory
signaling in normal and asthmatic airway epithelium

Asthma 2.26 9 N Y

TNF-alpha and IL-1 beta-mediated regulation of contraction
and secretion of inflammatory factors in normal and asthmatic
airway smooth muscle

Asthma 2.26 12 N Y

Antigen presentation by MHC class II Immune response 2.26 5 N N

Integrin inside-out signaling in neutrophils Cell adhesion 2.26 13 N N

Role of B cells in SLE SLE 2.26 11 Y N

Th17 cells in CF (mouse model) CF pathways 2.26 10 N N

LPS-induced platelet activation Immune response 2.24 7 N N
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cancer survival with a Risk Group Hazard Ratio 2.01
(P = 4.16e-13, Additional file 10).

Targets with human genetic evidence
Early selection of drug targets with human genetic sup-
port for involvement with disease pathology could sig-
nificantly increase the success rate of late phase clinical
development [34]. We sought genetic evidence for the
407 DEGs in public genome-wide association study
(GWAS) datasets by looking at their individual chromo-
somal proximity to TB-associated SNPs. A total of
547 TB-related SNPs (genome wide significant P < 5e-8)
were identified in GRASP, a deeply extracted and anno-
tated GWAS database [27]. For each SNP, we overlapped
its LD region with the genomic locations of all 407
DEGs. We also searched for regulatory variants for the
genes using their enhancer regions from FANTOM5
[28]. Any overlap between the region in LD with a SNP
and the locations of a DEG or its FANTOM5 enhancers
would suggest a potential association between the SNP
and that gene. Of the 407 DEGs, 48 genes were proximal
to at least one TB-related SNP (Table 3). The most sig-
nificant variant was rs3948464 (P = 5.9e-37), located
within the gene SP110 on chromosome 2, which is a
known host genetic susceptibility for TB [35]. This was
followed by rs3129750 (P = 2.5e-22) proximal to HLA-

DPA1, PSMB8, PSMB9, TAP1 and TAP2 genes located
on chromosome 6.

Drug repurposing opportunities
We queried each of the 407 DEGs against the DrugBank
database [30] in order to identify any launched drugs
targeting these genes that might be potentially repur-
posed against TB. A total of 19 drug-target links were
identified between 14 public drugs and 16 DEGs
(Table 4). Each compound was associated with one gene
target except for Carfilzomib, which is an inhibitor for
multiple proteosome components (PSMB2, PSMB8,
PSMB9 and PSMB10), and Intravenous Immunoglobulin
(IVIg), which targets three DEGs (C5, FCGR2A and
FCGR3A) as either a receptor binder or antagonist.
CMAP is another computational tool for drug repur-

posing which utilizes the anti-correlation relationships
between gene expression signatures in diseases and drug
perturbations [31]. We used the PTB gene expression
signature to recover the anti-correlation signatures of
~5000 small-molecule compounds and ~3000 genetic
reagents from the Broad Institute CMAP library. Thir-
teen compounds were found to have a significantly anti-
correlated signature to the PTB signature (FDR-adjusted
P < 0.05, Specificity < 0.1, Table 5). Six of these drugs
were cardiovascular related therapeutics, including two
sodium channel blockers (Disopyramide, Mephenytoin),

Table 2 List of 90 significantly enriched human pathways in the meta-analysis (Continued)

Map Major Process - log (P) DEGs In dendritic data In THP-1 data

IL-18 signaling Immune response 2.15 11 N Y

Inhibition of apoptosis in gastric cancer Cancer 2.15 9 Y Y

CD8+ Tc1 cells in allergic contact dermatitis Dermatitis 2.15 7 Y N

Role of IL-8 in colorectal cancer Cancer 2.15 6 N N

Schema: Initiation of T cell recruitment in allergic contact
dermatitis

Dermatitis 2.15 6 N N

Inhibition of WNT5A-dependent non-canonical pathway in
colorectal cancer

Cancer 2.15 6 N Y

Function of MEF2 in T lymphocytes Immune response 2.15 10 N Y

Caspase cascade Apoptosis and survival 2.15 8 Y Y

Regulation of Tissue factor signaling in cancer Cancer 2.1 9 N N

Regulatory T cells in murine model of contact hypersensitivity Others 2.07 7 N N

Production and activation of TGF-beta in airway smooth
muscle cells

Signal transduction 2.07 8 N N

Development_Growth hormone signaling via STATs and
PLC/IP3

Development 2.07 8 N Y

Apoptotic pathways and resistance to apoptosis in lung cancer
cells

Cancer 2.04 10 Y Y

Cigarette smoke-induced inflammatory signaling in airway
epithelial cells

Signal transduction 2 8 N Y

IL-12-induced IFN-gamma production Immune response 2 8 N N

List of 90 significantly enriched human pathways in the meta-analysis, their major processes, −log (P-value), number of DEGs in the pathways, and whether they
were identified in in vitro dendritic or THP-1 datasets
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two voltage-gated calcium channel blockers (Flunarizine,
Adenosine Phosphate) and one ATP-sensitive potassium
channel blocker (Acetohexamide) (Table 5).

Discussion
We performed a meta-analysis on public human micro-
array datasets to identify host genes and pathways im-
portant for TB that might be amenable to therapeutic
modulation. In our study, a plethora of DEGs and path-
ways were identified in PTB infection. In comparison,
no known host process was identified in LTB. This is
consistent with a paucity of host immune response to
Mtb during the latent stage [4] and highlights the chal-
lenges of LTB detection and treatment.
Blood gene expression represents a mixture of im-

mune cell subpopulations, which renders the question
whether expression signatures derived from whole blood
or PBMCs could recapitulate those of individual cell
types. Overall, the similarity between gene expression
signatures of Mtb challenged patient blood and the im-
mune cell subsets was modest, which is in agreement
with previous observations of large variation in expres-
sion profiles among different immune cell types [36, 37].
Nevertheless, dendritic or THP-1 cell-types DEGs shared
with those found in blood have significantly higher fold
changes compared to non-shared DEGs, which impli-
cates that genes bearing a stronger expression signal in
individual cell type could be more readily detected in

the broader blood expression profiles. Moreover, the
finding that common genes between blood and dendritic
cells were enriched in cell type specific pathways indi-
cates that blood gene expression signatures at least par-
tially recapitulate the major signals from these immune
cell types when subjected to Mtb exposure.
Our meta-analysis supports multiple known host re-

sponses to Mtb infection and suggests several novel host
targets and drug repurposing opportunities. We identified
numerous IFN-inducible genes with the IFN-signaling
pathway most significantly enriched, which is consistent
with previous findings on the predominant response of
this pathway to TB infection [9, 10]. Among the IFN-in-
ducible genes, HLA-DPA1, PSMB8, PSMB9, TAP1 and
TAP2 were proximal to rs3129750, a highly significant
genetic variant associated with TB (P = 2.51e-22), provid-
ing genetic support for these genes as potential host
targets. PSMB8 and PSMB9 are the targets of Carfilzomib,
a proteasome inhibitor for multiple myeloma.
We found evidence for TB activation of several path-

ways more commonly associated with other non-
infectious diseases, which could be informative for drug
repurposing opportunities. For example, the LRRK2
pathway linked to Parkinson’s disease and PD-1 signaling
pathway in immuno-oncology were both significantly
enriched during PTB infection. LRRK2 was a highly sig-
nificant DEG (fold change = 1.73, FDR-adjusted P = 1.7e-
4) in the meta-analysis and directly interacts with seven

Fig. 3 Pathway map for “LRRK2 and immune function in Parkinson’s disease”. Significant up-regulation of genes was denoted as up-pointing bars
colored in red, and significant down-regulation of genes was denoted as down-pointing bars colored in blue. The length of the colored bar was
proportional to the fold change of the gene in the meta-analysis
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other DEGs in the pathway, including two components in
the NRON complex through which LRRK2 inhibits the
immune response transcription factor NFAT1 [38]. The
LRRK2 gene is associated with both Parkinson’s disease
and susceptibility to Mycobacterium leprae infection [39,
40]. A recent patient cohort analysis revealed a 1.38-fold
risk of Parkinson’s disease in TB patients independent of
other clinical factors, suggesting the co-morbidity between
the two diseases [41]. In addition, 58 genetic variants
proximal to the 407 DEGs were found to be associated
with Parkinson’s disease in public GWAS datasets (P < 1e-
4, Additional file 11), thus providing some preliminary
genetic evidence for potential common molecular mecha-
nisms shared by both diseases.
PD-1 is the key immune checkpoint receptor that me-

diates T-cell immuno-suppression in cancer. The PD-1/
PD-Ls pathway is known to inhibit T-cell effector func-
tion during PTB infection [42, 43]. Both PD-L1 and PD-

L2 genes were significantly up-regulated, and nine DEGs
in T cells were down-regulated, indicating a PD-Ls me-
diated immune suppression is likely active in tubercu-
losis. Among the existing drugs, both Muromonab and
Atezolizumab target DEGs (CD247 and CD274/PD-L1)
in the pathway (Table 4). New drugs that block PD-1/
PD-Ls interaction in order to enhance the T-cell adap-
tive immune response against tumors are revolutionizing
oncology medicine [44]. Several anti-CTLA-4/PD-1/
TIM3/LAG3 compounds are under investigation as re-
purposing candidates against TB [45] (Table 6). Our re-
sults support the hypothesis that overcoming T-cell
exhaustion could be a common therapeutic strategy for
both cancer immuno-therapy and TB [46].
To gain insight into the functional relationships be-

tween the TB-related genes, we depict a protein-protein
interaction network for the 1655 DEGs. The network
was predominated by a few hub nodes that were highly

Fig. 4 Pathway map for “Inhibitory PD-1 signaling in T cells”. Significant up-regulation of genes was denoted as up-pointing bars colored in red,
and significant down-regulation of genes was denoted as down-pointing bars colored in blue. The length of the colored bar was proportional to
the fold change of the gene in the meta-analysis
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connected to multiple other genes. Of them, the UBC
gene has the highest degree of connectivity by associating
with 112 genes, suggesting that UBC, although its expres-
sion was not significantly altered, could play a central role
in TB through regulating the expression of numerous TB-
related host factors. UBC is a stress inducible gene and is
one of the four genes encoding for human ubiquitin [47].
Mtb is known to suppress host innate immunity through
the ubiquitin system [48]. Modulating host ubiquitin path-
ways could be another important strategy to reactivate
host innate response against Mtb.
Our searches of DrugBank using the 407 DEGs re-

vealed 19 highly supported drug-target links encompass-
ing 14 drugs and 16 targets. Among these, the drug
intravenous immunoglobulin or IVIg was found target-
ing two Fc receptors and one complement component
as either an antagonist or a receptor binder, thus sup-
porting the phagocytic pathway of Mtb as a potential
druggable target. IVIg is used to treat patients with pri-
mary immunodeficiency and has been applied to a wide
range of autoimmune and inflammatory conditions [49].

An in vivo mouse experiment showed the efficacy of
high-dose IVIg in substantially reducing the bacterial
load during Mtb infection [50]. Our results suggest that
this could be accomplished through enhancing the com-
plement system and inhibiting Fc receptors which subse-
quently initiate phagocytosis to clear the bacillus [51].
From our CMAP analysis, we identified several public

compounds that could be potentially repurposed for TB.
Of particular interest are two sodium channel blockers
and two voltage-gated calcium channel blockers. It has
been suggested that voltage-gated calcium channels
regulate the host immune response to Mtb by enhancing
the pro-inflammatory gene expression and activating T-
cells [52]. The sodium channel NaV1.5 encoded by
SCN5A, the drug target of Disopyramide that was top
ranked in our analysis, regulates the spatial and temporal
calcium signaling during mycobacterial phagocytosis
[53]. Indeed, studies screening host-targeted inhibitors
demonstrated the efficacy of several calcium and sodium
channel blockers in restricting mycobacterial growth
both in vitro and in macrophages [54]. Sodium or
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Table 3 List of 48 DEGs in the meta-analysis proximal to TB-associated SNPs

DEG Fold change in meta-analysis FDR P-value in meta-analysis Most significant SNP SNP P-value

SP110 1.545 8.02e-04 rs3948464 5.90e-37

HLA-DPA1 1.566 7.24e-03 rs3129750 2.51e-22

PSMB8 1.890 5.14e-08 rs3129750 2.51e-22

PSMB9 2.386 3.94e-06 rs3129750 2.51e-22

TAP1 2.332 1.03e-06 rs3129750 2.51e-22

TAP2 1.918 3.54e-04 rs3129750 2.51e-22

GBP5 3.432 1.33e-08 rs2146340 6.90e-19

CABIN1 −1.740 3.62e-03 rs2154594 7.31e-19

WDR6 −1.606 4.21e-06 rs1134591 1.62e-15

SNX10 2.000 3.23e-06 rs3814095 7.76e-15

CD5 −1.611 0.00e + 00 rs10897125 1.01e-14

CD6 −1.940 4.95e-03 rs10897125 1.01e-14

TIMM10 1.971 2.16e-08 rs2649662 2.11e-14

WARS 2.345 1.99e-07 rs1009812 2.69e-14

PSMB10 1.793 3.97e-05 rs12102971 3.17e-14

MS4A4A 1.882 3.51e-06 rs10750936 3.92e-14

C2 1.823 4.89e-12 rs2532929 4.87e-14

MICB 1.580 4.85e-04 rs2532929 4.87e-14

COX19 −1.504 1.46e-03 rs11761941 4.64e-12

FBXO31 −1.698 3.59e-06 rs10779243 8.09e-12

LAP3 2.956 1.33e-08 rs10939733 2.11e-11

CIRBP −1.523 6.03e-04 rs2285899 2.41e-11

PCSK7 −1.824 8.45e-04 rs1060211 3.98e-11

BLK −1.715 7.73e-09 rs2254546 8.30e-11

GBP2 2.435 1.48e-05 rs12121223 3.38e-10

GBP3 1.561 1.46e-04 rs12121223 3.38e-10

OAS1 1.832 3.46e-05 rs10774671 3.72e-10

BAZ1A 1.540 3.94e-03 rs799486 4.69e-10

ZBTB40 −1.500 6.38e-03 rs7544210 5.12e-10

CSTA 1.771 1.14e-04 rs10934559 5.86e-10

PBX4 −1.880 6.00e-06 rs1859287 7.42e-10

CCR7 −2.382 5.14e-08 rs11659024 7.69e-10

C6orf136 −1.502 1.34e-03 rs1317834 1.13e-09

MDC1 −1.595 2.24e-09 rs1317834 1.13e-09

ITGAM 1.607 5.77e-07 rs749671 1.17e-09

CD19 −1.658 1.60e-03 rs7185232 1.21e-09

ACSS1 −1.717 7.23e-06 rs6138553 1.79e-09

SQRDL 2.003 1.62e-09 rs1980288 2.82e-09

SCO2 1.909 2.96e-03 rs12148 2.92e-09

ACTA2 1.553 8.68e-04 rs1800682 3.81e-09

FAS 1.867 7.49e-06 rs1800682 3.81e-09

GMFG 1.836 2.11e-03 rs10412931 6.74e-09

MAP4K1 −1.981 4.81e-03 rs10775533 8.63e-09

ENTPD1 1.871 2.26e-05 rs10882657 9.31e-09
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calcium channel blockers such as Carbamazepine and
Verapamil are under investigation for TB treatment [45]
(Table 6). Further experimental validation of both IVIg
and ion channel blockers is merited to explore their ap-
plication in TB host-directed therapies.
Previously, we performed meta-analysis of human

gene expression datasets to identify host targets and
drug repositioning opportunities against respiratory bac-
terial and viral infections [13, 14]. In this study, we ap-
plied an overall similar strategy to identify same
opportunities for the treatment of TB. Despite an overall
common data analysis methodology, there are multiple
novelties in the current study compared to our early
work in respiratory bacterial and viral infections. First,
instead of using a vote-counting method with arbitrary

cutoffs on the number of studies in which a gene was
declared significant, we employed the combining effect
size method of the statistical meta-analysis which
essentially yields one single biologically interpretable
measure - the pooled effect size (and P-value) of differ-
ential expression. The combining effect size method has
been suggested as the most comprehensive approach for
meta-analysis of two-class gene expression microarrays
[55]. Second, we assessed the robustness of the meta-
analysis results by cross-validation in other independent
patient blood datasets, and comparison to in vitro cell
type specific datasets. Third, additional genetic evidence
from public GWAS datasets was used in this study to
further prioritize individual DEGs as potential thera-
peutic targets for TB. Fourth, a PPI network was

Table 3 List of 48 DEGs in the meta-analysis proximal to TB-associated SNPs (Continued)

DEG Fold change in meta-analysis FDR P-value in meta-analysis Most significant SNP SNP P-value

KIF1B 1.506 2.03e-04 rs11121555 2.21e-08

PGD 1.768 1.49e-05 rs11121555 2.21e-08

EEF1D −1.584 2.57e-03 rs11136344 2.56e-08

OLIG1 −1.528 1.13e-05 rs1044213 3.89e-08

The DEGs were ranked by the P-value of the most significant SNPs

Table 4 List of launched drugs in DrugBank targeting DEGs in the meta-analysis

DEG Fold change Drug name Pharmacological action Indication

PSMB8 1.890 Carfilzomib Inhibitor Multiple myeloma

PSMB9 2.386 Carfilzomib Inhibitor Multiple myeloma

PSMB10 1.793 Carfilzomib Inhibitor Multiple myeloma

PSMB2 1.590 Carfilzomib Inhibitor Multiple myeloma

FCGR2A 1.517 Intravenous Immunoglobulin Antagonist Immunodeficiencies, autoimmune and
inflammatory disorders

FCGR3A 1.632 Intravenous Immunoglobulin Antagonist Immunodeficiencies, autoimmune and
inflammatory disorders

C5 1.981 Intravenous Immunoglobulin Binder Immunodeficiencies, autoimmune and
inflammatory disorders

C5 1.981 Eculizumab Antibody Antibody against C5

IL1B 1.629 Canakinumab Binder Familial Cold Autoinflammatory Syndrome
and Muckle-Wells Syndrome

IL1B 1.629 Gallium nitrate Antagonist Hypercalcemia, non-hodgkin’s lymphoma

JAK2 2.756 Ruxolitinib Inhibitor High-risk myelofibrosis

JAK2 2.756 Tofacitinib Antagonist Rheumatoid arthritis

TLR7 1.899 Hydroxychloroquine Antagonist Malaria

CD19 −1.658 Blinatumomab Activator Refractory B-cell precursor acute
lymphoblastic leukemia

CD247 −1.586 Muromonab Binder Prevention of organ rejection

CD274 1.674 Atezolizumab Antibody Urothelial carcinoma

IL23A −1.621 Ustekinumab Antibody Management of moderate to severe
plaque psoriasis

POLB 1.888 Cytarabine Inhibitor Acute non-lymphocytic leukemia

S1PR1 −1.956 Asfotase Alfa Agonist Hypophosphatasia
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employed to obtain protein-protein interaction modules
important in TB and generate novel targets (i.e. UBC)
that may play a role in regulating the expression of mul-
tiple TB-related host factors. Fifth, with respect to drug
repurposing analysis, CMAP analysis was performed to
generate additional hypotheses based on anti-correlation

relationships between gene expression signatures in dis-
eases and drug perturbations (Table 5).

Conclusions
In summary, our meta-analysis provides new insights
into host genes and pathways important for TB infection

Table 5 List of significant public compounds in CMAP analysis

Compound P-value Specificity Therapy area Pharmacological action Indication Target

Disopyramide 0 0.0006 Cardiovascular Sodium channel blocker Arrhythmia SCN5A, ORM1

Biperiden 0.0005 0.0984 Neurological Muscarinic acetylcholine receptor
antagonist

Parkinsonism CHRNA2, CHRM1

Remoxipride 0.0036 0.0164 Neurological Dopamine receptor D2 antagonist Schizophrenia DRD2

Suramin sodium 0.0101 0.0129 Anti-infective Topoisomerase inhibitor African trypanosomiasis P2RY2, SIRT5, FSHR

Flunarizine 0.0133 0.0119 Cardiovascular Voltage-gated calcium channel
blocker; sodium channel antagonist

Migraine, epilepsy HRH1, CACNA1G, CACNA1H,
CACNA1I, CALM1

Adenosine
phosphate

0.019 0.0007 Cardiovascular Calcium channel blocker Arrhythmia Unknown

Ranitidine 0.0332 0.049 Miscellaneous Histamine receptor H2 antagonist Peptic Ulcer HRH2

Chloropyramine 0.0355 0.0523 Miscellaneous Histamine H1 receptor antagonist Antiallergic agent HRH1

Acetohexamide 0.0408 0.0508 Cardiovascular Blocking of ATP-sensitive K+ channel Diabetes mellitus type 2 KCNJ1

Dobutamine 0.0411 0.0665 Cardiovascular Adrenoreceptor agonist (beta1) Cardiac decompensation ADRB1

Mephenytoin 0.0441 0.0444 Cardiovascular Sodium channel inhibitor Seizures SCN5A, ALB

Testosterone 0.0476 0.0783 Miscellaneous Androgen receptor agonist Hypogonadism AR, ALB, SHBG, NPPB

Dienestrol 0.0483 0.0982 Miscellaneous Estrogen Atrophic vaginitis ESR1

Table 6 List of TB host targets or compounds proposed in this study

Examples of current therapies under investigation Targets and compounds proposed in this study

Compounds Targets/
Pathways

Evidence [45] Compounds Targets/
Pathways

Evidence

Aspirin Arachidonic
acid metabolism

Upregulation of lipoxin X4
production to reduce TNF-α
levels and achieve eicosanoid
balance during chronic
inflammation.

LRRK2 inhibitor LRRK2
pathway

LRRK2 pathway significantly upregulated
in TB. LRRK2 genetically associated with
susceptibility of M. leprae infection.
Cormobidities between TB and
Parkinson’s disease.

Anti-CTLA4/PD-
1/TIM3/LAG3

Modulation of
aberrant T-cell
activity

Blockade of immune checkpoint
pathways to restore T- and B-cell
activity.

PD-L1 inhibitor
(Atezolizumab)

PD-1/PD-L1
pathway

PD-1/PD-L1 significantly upregulated
in TB, and inhibit TB-specific T-cell and
macrophage functions.

Valproic acid Histone
acetylation

Removal of acetyl groups of lysine
residues on histones to allow DNA
unwinding and gene transcription.

Carfizomib PSMB8,
PSMB9,
PSMB10,
PSMB2

PSMB8, PSMB9 significantly upregulated
in TB, with strong genetic association
with TB infection.

Statins Disruption of
cholesterol
homeostasis

Abrogates production of
endogenous cholesterol.

Intraveneous
Immunoglobulin (IVIg)

FCGR2A,
FCGR3A, C5

FCGR2A, FCGR3A, C5 significantly
upregulated in TB. Efficacy of IVIg in
reducing bacterial load in TB infection.

Verapamil/
Carbamazepine

Modulation of
ion efflux
channels

Modulation of activity of voltage-
gated channels to maintain cellular
ionic balance and homeostasis.

Disopyramide SCN5A,
ORM1

Top compound in CMAP analysis.
SCN5A regulates spatial and temporal
calcium signaling during Mtb
phagocytosis.

Metformin Mitochondrial
respiration

Interrupts the mitochondrial
respiratory chain and induces
ROS production.

Flunarizine HRH1,
CACNA1G,
CACNA1H,
CACNA1I,
CALM1

Top compound in CMAP analysis.
Potential efficacy in restricting Mtb
growth.

List of TB host targets and compounds proposed in this study as well as examples of current repurposed drugs under investigation for TB host-directed therapies
(full list refer to [45])
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and brings forth potential drug repurposing opportun-
ities for host-directed therapies (perhaps as potential
combination therapies with anti-mycobacterium drugs).
The potential host targets and compounds proposed in
the study were listed in Table 6. Several testable hypoth-
eses from our study are: 1) LRRK2 inhibition reduces
Mtb load in macrophages; 2) blocking PD-L1 reactivates
T-cell exhaustion against Mtb infected dendritic cells
and; 3) ion-channel blockers as repurposed drugs to en-
hance T-cell activation and suppress Mtb growth in
macrophages. Experimental validation of these hypoth-
eses would be the next step taking forward the proposed
targets and compounds into the drug development
pipeline.
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