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Abstract

Goal-directed actions require proper associations between stimuli and response. This has been delineated by cognitive
theory, for example, in the theory of event coding framework, which proposes that event files represent such bindings. Yet,
how such event file representations are coded on a neurophysiological level is unknown. We close this gap combining
temporal electroencephalography (EEG) signal decomposition methods and multivariate pattern analysis (MVPA). We show
that undecomposed neurophysiological data is unsuitable to decode event file representations because different aspects of
information coded in the neurophysiological signal reveal distinct and partly opposed dynamics in the representational
content. This is confirmed by applying MVPA to temporal decomposed EEG data. After intermixed aspects of information in
the EEG during response selection have been separated, a reliable examination of the event file’s representational content
and its temporal stability was possible. We show that representations of stimulus–response bindings are activated and decay
in a gradual manner and that event file representations resemble distributed neural activity. Especially representations of
stimulus–response bindings, as well as stimulus-related representations, are coded and reveal temporal stability. Purely
motor-related representations are not found in neurophysiological signals during event coding.
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Introduction
Response selection in an ever-changing environment requires
flexible representations of perceived objects, responses, and
their interrelations. One prominent theoretical framework,
the theory of event coding (TEC) (Hommel 1998, 2009, 2019;
Hommel et al. 2001a), provides a unifying perspective of how
perceptions, actions, and the translational processes between

them are represented in the mental architecture. The TEC
proposes a “common coding” mechanism (Hommel et al. 2001a)
for perceived objects (external events) and motor responses
(internal events) and strongly focuses on how these different
aspects are being represented in the cognitive system. Perceived
stimuli are represented by available features, such as color or
shape, and stored in “object files” (Treisman and Kahneman
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1984; Treisman 1996). Similarly, responses are represented by
features, such as effector or force, and stored in “action files.”
“Event files” are results of binding between object features
and action features (Hommel 1998), that is, an event file is a
network of stimulus–response (S–R) associations (Hommel 2011).
In this network, retrieval of feature representations leads to a
spreading activation in a pattern completing fashion (Hommel
2011). The main theoretical propositions of TEC have repeatedly
been demonstrated at a behavioral level by 2 phenomena: the
partial repetition benefit effect and the partial repetition cost
effect (Hommel 2004; Colzato et al. 2006b). The first effect refers
to response facilitation whenever 2 consecutive stimuli have
a high level of feature overlap, and the previously associated
response needs to be activated again. However, if the response
needs to be changed, the S–R link needs to be reconfigured,
which then leads to slower and less accurate responses—the
partial repetition cost. A series of behavioral studies enriched
our knowledge of how these effects work and how they are
related to other cognitive mechanisms (for a review, see Hommel
2019). Importantly, feature binding and retrieval of the bound
associations are identified as key processes of human action
control (Frings et al. 2020). Thus, understanding the mechanisms
behind the development and stability of event files is necessary
for a cognitive neuroscientific approach of selecting and
regulating actions. However, the neurophysiological properties
of event files are still not understood. Previous research using
established methods of fMRI/PET, electroencephalography (EEG),
and brain stimulation identified a network behind event file
coding (Elsner et al. 2002; Kühn et al. 2011; Petruo et al. 2016;
Zmigrod et al. 2016; Pastötter and Frings 2018; Chmielewski
and Beste 2019; Dignath et al. 2019; Takacs et al. 2020). These
studies draw a picture according to which inferior parietal
areas, supplementary motor areas, the dorsolateral prefrontal
cortex, and the hippocampus play important roles in event file
coding. Furthermore, event-related potential (ERP) methods have
been used to examine the time course of different cognitive
subprocesses involved during event file coding and which
functional neuroanatomical structures are associated with
these processes (Petruo et al. 2016; Opitz et al. 2020; Takacs
et al. 2020). However, crucially, these methods could not tap
into the representational content of the event files. Yet, the
central element of the TEC is how S–R links are represented
in the cognitive system (Hommel et al. 2001a; Hommel 2019).
Essentially, it is the strength of representations that is important
to consider for behavioral signatures of event coding (i.e., partial
repetition costs and benefits). In the current study, we aim to
fill this gap by investigating the time course and stability of the
representational content of event files based on EEG data.

Some methods are suitable to answer questions related to
the content and the stability of a mental representation (Haxby
et al. 2001; King and Dehaene 2014; Grootswagers et al. 2016,
2017; Fahrenfort et al. 2018; Carlson et al. 2019). Particularly,
multivariate pattern analysis (MVPA, also previously known as
multi-voxel pattern analysis) is a tool to decode the represen-
tational difference between experimental conditions based on
the observed neural patterns (Fahrenfort et al. 2018; Carlson
et al. 2019). This approach goes beyond the univariate methods
of previous ERP analyses of event file coding (Kleimaker et al.
2020; Opitz et al. 2020; Takacs et al. 2020). Specifically, in a
univariate analysis, a priori selection of an electrode or a set
of electrode is necessary, while in MVPA this subjective bias
of the researcher can be eliminated by training the classifier
on all channels (Fahrenfort et al. 2018). Moreover, ERPs repre-
sent a comparison between conditions based on averaged seg-

ments of EEG data. In MVPA, the segmented data, which can be
either raw or decomposed, is analyzed; therefore, it can identify
changes in the neural signal which does not occur in a focal
manner (i.e., limited to an electrode site). One type of MVPA
method is the representational similarity analysis (Fahrenfort
et al. 2018; Kikumoto and Mayr 2019). This has typically been
used to find correspondence between physiological and anatom-
ical constructs. In a recent study (Kikumoto and Mayr 2019),
representational similarity analysis was used to decode rule-,
response-, and stimulus-related representations based on time–
frequency decomposed EEG data. This analysis yielded cascadic
pattern of action representations (rule, stimulus, then response)
and provided evidence for a conjunctive representation of stim-
ulus and response. However, the study did not examine the tem-
poral stability of such representations, which is a major strength
of MVPA temporal generalization procedures (King and Dehaene
2014; Fahrenfort et al. 2018). Temporal generalization is a metric
of the stability of mental representations over time (King and
Dehaene 2014; Grootswagers et al. 2016; Fahrenfort et al. 2018).
That is, it tells when and for how long the decoded information
was present in the neural activity pattern (King and Dehaene
2014). MVPA applied on EEG data has been shown to be successful
to decode stimulus features, perceptual decisions, and higher-
order processes, such as conceptual and semantic categories
(King and Dehaene 2014). Therefore, temporal generalization is
a potential tool to decode the emergence and stability of event
file representations.

However, regarding the ability to decode the stability of the
representational content in neurophysiological signals using
MVPA, it is important to consider that EEG signals reflect a
mixture of different sources (Nunez et al. 1997; Huster et al. 2015;
Stock et al. 2017). Particularly during response selection, different
aspects of information are intermixed in the neurophysiological
signal (Folstein and Van Petten 2008) and are processed in
parallel in overlapping brain regions (Mückschel et al. 2017a).
This is especially the case for aspects related to perceptual
processing (stimulus codes) and response selection processes
(response selection codes) (Wolff et al. 2017; Mückschel et al.
2017a; Adelhöfer et al. 2018, 2019; Chmielewski et al. 2018). Thus,
intermingled coding levels in the neurophysiological signal are
of particular relevance during event file coding since event files
establish an association/binding between these aspects. Just
recently, it was shown that standard EEG/ERP data might be
too “contaminated” by this mixture of signals to reliably capture
correlates of event file coding (Opitz et al. 2020; Takacs et al.
2020). Specifically, event file binding effects were only detectable
after applying the residue iteration decomposition (RIDE)
method (Ouyang et al. 2015a). This method allows dissociating 3
clusters of activity in the neurophysiological signal: a perception-
related S-(stimulus) cluster, a R-(reaction) cluster reflecting
motor execution processes, and a response selection-related C-
(central) cluster (Ouyang et al. 2017). RIDE postulates that differ-
ent cognitive subprocesses and associated neurophysiological
changes are present in single trials in parallel (Ouyang et al.
2011). Specifically, early subprocesses, such as stimulus feature
integration or allocating spatial attention, are more likely locked
to stimulus onset, while response preparation and evaluation
are locked to responses. However, other subprocesses and their
linked neurophysiological markers are highly variable in latency;
therefore, analyzing stimulus-locked EEG trials would inevitably
lead to a smear of components. This problem could be potentially
tackled with “de-noising” single-trial ERPs or differentiating
between mixed sources by using spatial decomposition methods
(Ouyang et al. 2015b, 2017). Another suggested solution is using
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the temporal variability of single-EEG trials to create decomposed
components or clusters (Ouyang et al. 2011, 2017). RIDE combines
stimulus- and response-related time markers and estimated
latency information to extract clusters which are either marker-
locked or non–marker-locked (Ouyang et al. 2015a). Specifically,
it separates a component cluster locked to the stimulus marker
(S-cluster) and a component cluster locked to the response time
(R-cluster). Moreover, it assumes a component with a jittered
latency which is neither locked to stimulus nor to response
markers (C-cluster). This latter one is detected by template
matching, that is, after an initial estimation of the latency of C-
cluster in single trials, S- and R-clusters are decomposed based
on this estimation alongside with the information of stimulus
and response markers. Then, the separated C-cluster is used
as a template to re-estimate its latency. To obtain the final
clusters, these steps are iterated until convergence. Importantly,
the RIDE clusters have been validated by having high consistency
in split-half analyses and being distinguishable from noise
in terms of time–frequency pattern (Ouyang et al. 2017). The
identified RIDE components are spatiotemporal, continuous
waveforms (Ouyang et al. 2017), which can be further processed
by either traditional univariate methods (e.g., ERPs, wavelet
analysis) or potentially with multivariate approaches. In case
of event file coding, applying temporal decomposition before
any classification attempt can be crucial: in recent studies, event
file binding effects explaining behavioral processes were either
solely evident in the C-cluster data (Kleimaker et al. 2020; Opitz
et al. 2020) or the effect was larger in the C-cluster than in the
undecomposed EEG (Takacs et al. 2020). This underlines that
event files reflect cognitive processes of S–R translation on a
neurophysiological level (Verleger et al. 2014; Opitz et al. 2020;
Takacs et al. 2020). Furthermore, these results strengthened the
view that event files work independently of motor programs, as
indicated by a lack of binding effects in the R-cluster (Opitz et al.
2020; Takacs et al. 2020).

Thus, it is very likely that only the temporal signal decompo-
sition can provide clarity on the neural underpinnings of event
files with a strong emphasis on the C-cluster activity (Verleger
et al. 2014; Mückschel et al. 2017a; Opitz et al. 2020; Takacs
et al. 2020). Therefore, a combination of RIDE decomposition and
MVPA will provide insights into the representational content of
and its stability in event files. Although MVPA has been tradi-
tionally applied to undecomposed time series EEG data, it is,
in theory, applicable for a variety of domains, including time–
frequency, connectivity, and decomposed EEG (Carlson et al. 2019;
Kikumoto and Mayr 2019). Especially in the context of event file
processes, the combination of methods is theoretically mean-
ingful and goes beyond previous attempts (Kikumoto and Mayr
2019), since the concatenation of the temporal decomposition
approach (i.e., RIDE) with temporal generalization MVPA provides
insights whether specific aspects of information being processed
(stimulus-related, motor response-related or processes linking
stimulus evaluation and responding) show distinct temporal
generalization profiles (cf., dissociation of effects in the S-, R-,
and C-clusters). In the current study, we aim to investigate the
temporal generalization of event file representations coded in
the neurophysiological signal not only in the undecomposed EEG
data but also in the decomposed C-, R-, and S-cluster data. To
the best of our knowledge, this is the first study to combine
the advantages of 2 contemporary methods: temporal decom-
position and temporal generalization of neural time series. Due
to the intermixed nature of the undecomposed EEG, we do not
expect that event files cannot reliably be decoded from the signal.
We hypothesize that event file representations are detectable in

the C-, and not in the R-cluster data. Furthermore, we investi-
gate the open question (see Opitz et al. 2020) whether even file
representations are detectable in the S-cluster. If they prove to
be detectable, we assume that event file representations have a
larger activation in the C-, than in the S-cluster. If successful, the
study provides the first in-depth analysis of representational sta-
bility of stimulus–response associations proposed by cognitive
theory (i.e., TEC) reflected at a neurophysiological level.

Materials and Methods
Participants

For the behavioral analysis, a priori power analysis was con-
ducted in G∗Power (Faul et al. 2007). A minimum sample size
of N = 34 was required to sufficiently power interaction effects
given the alpha error probability is P < 0.005, and the repeated
measures are not strongly correlated with each other (r < 0.25).
Similar power analysis is not available for the MVPA. A sample
of N = 40 (16 males and 24 females, age: M = 24.7, SD = 3.2 years)
healthy young adults participated in the study. All participants
had normal or corrected to normal vision. They did not report
a history of psychiatric or neurological disorders or the use of
centrally acting medication. All participants were undergraduate
or graduate students and were financially reimbursed for their
participation. All participants gave written informed consent
prior to their participation in the study. The study was conducted
in accordance with the Helsinki Declaration. The study was
approved by the Ethics Committee of the TU Dresden.

Task

Event file coding was examined by using an event file coding
paradigm (Hommel 1998) also known as an S–R task (Colzato et al.
2006b). The task is depicted in Figure 1. The participants sat at a
distance of 60 cm in front of a 17-inch CRT screen. During the
experiments, the participants saw 3 vertically aligned boxes in
the middle of a screen. Each box measured 2.8 × 2.2 cm. In the
middle box, participants saw an arrowhead pointing to the left
or right, representing the response cue. This was then followed
by the consecutive presentation of 2 single-bar stimuli of 1.2 ×
0.3 cm. Each of these bars could be oriented either vertically or
horizontally (representing the task-relevant feature of orienta-
tion), could furthermore be either red or green (representing the
task-irrelevant feature of color), and could be placed in either
the top or the bottom box of the visual array (representing the
task-irrelevant feature of location).These lines served as Stim-
ulus 1 (S1) and Stimulus 2 (S2). In some trials none of these
features were shared between S1 and S2 (zero feature overlap
condition), other trials showed identical S1 and S2 (full feature
overlap condition), and the remaining trials shared 1 or 2 features
(partial feature overlap conditions: 1 feature and 2 feature over-
lap). Two responses (R1 and R2) had to be executed per trial by
pressing the left or right control key on a computer keyboard
with the corresponding index finger. Thus, in the task, 2 consec-
utive answers could require the same keystroke (response repeti-
tion) or 2 different ones (response alternation). The participants
were informed that there would be no systematic relationship
between S1 and R1 or between S1 and S2. Therefore, the task was
designed to investigate automatic binding effects, i.e., the inter-
actions between repetitions of stimulus features (overlapping of
stimulus features) and responses. The timing of the experiment
was as follows: In each trial, the cue initially appeared on the
screen for 1500 ms. Participants were instructed not to react
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Figure 1. Schematic illustration of the event file coding task. The figure represents the order of the stimuli during a trial. The timing of the stimuli is described in the

text.

immediately to the cue, but to withhold their reaction until S1
was presented. After the response cue, a blank screen appeared
for 1000 ms. Then S1 was displayed for 500 ms. Whenever S1
appeared, participants were expected to perform R1 (right press
when the keyword was pointing to the right and vice versa).
It is important to note that R1 was executed simultaneously
with, but independently of, the orientation, color, or position
of S1. Nevertheless, the proximity of S1 and R1 means that S1
became related to R1 (automatic binding). The display of S1 was
followed by a blank screen for 2000 ms. Next, S2 was presented
for 2000 ms or until a response was received. R2 required a
response to the orientation of S2 (vertical vs. horizontal). The
participants were instructed to press the left button when a
horizontal line was shown and the right button when a vertical
line was shown. If R1 was not correct, the trial was repeated once.
The whole session consisted of 384 trials, which exceeded the
maximum of 395 due to the repetition of the incorrect R1s. The
number of trials was determined as a factorial combination of
S2 characteristics, such as shape (2), ∗ color (2), ∗ location (2), the
repetition versus change of shape (2), ∗ the repetition vs. change
of color (2), ∗ the repetition versus change of location (2), ∗ and
the response (2). Each combination was repeated 3 times (Colzato
et al. 2006b). During the intervals between the trials, which were
jittered between 1500 and 2000 ms, a fixation cross was displayed
in the middle of the screen.

Statistical analyses on the behavioral data were carried
out with JASP. The mean accuracy (percentage of correct
answers) and the medians of the RT data (for correct responses)
were calculated for each participant and condition. Accuracy
and RT data were analyzed in two-way repeated measures
ANOVA with feature overlap (no, 1 feature overlap, 2 fea-
tures overlap, and full overlap between S1 and S2 stimulus
features) and response (repetition vs. switch) as within-
subject factors. This approach is identical to earlier studies
that investigated binding effects in event coding (Beste et al.
2016; Petruo et al. 2016). Here we report η2

p effect size for
ANOVA main effects and interactions. All post hoc tests were
Bonferroni-corrected.

EEG Data Acquisition and Processing
The EEG was recorded from 60 Ag/AgCl electrodes (EasyCap, Ger-
many) in equidistant positions using a QuickAmp amplifier and
the Brain Vision Recorder 1.2 software (Brain Products, Germany).
The remaining EOG channels were disabled for recording. The
ground and reference electrodes were placed at the coordinates
θ = 58, ϕ = 78 and θ = 90, ϕ = 90, respectively. The sampling rate
was 500 Hz. The data pre-processing was performed with the
Brain Vision Analyzer 2 (Brain Products, Germany) and included
the following steps: First, the data was down-sampled to 256 Hz
and bandpass filtered (IIR filter: 0.5–40 Hz with an order of
8). The down-sampled data were re-referenced to an average
reference. Then, a manual check of the data was performed to
remove technical artifacts. The remaining artifacts with periodic
effects such as blinking, eye movements, and pulse artifacts were
removed by an independent component analysis (ICA, Infomax
algorithm). Please note that the pre-processing was based on the
established protocol of our lab, which has been extensively used
for ERP, time–frequency, and connectivity research before (e.g.,
Dippel et al. 2017; Mückschel et al. 2017a, 2017b; Bensmann et al.
2019). Since MVPA is a relatively new approach to analyze EEG
data, standards for pre-processing are not available yet (Carlson
et al. 2019). However, the results were inspected to detect possible
pre-processing-related artifacts, which were previously reported
in MVPA literature (van Driel et al. 2019). Spurious, off-diagonal
above-chance activities did not appear in the results of our anal-
ysis; therefore, we concluded that pre-processing was unlikely
to create artifacts. The pre-processed data was segmented using
epochs locked on the S2 (−1000 to 1000 ms). While the binding
of the event file originally occurs after the establishment of the
S1–R1 association, the binding has traditionally been studied
with respect to retrieval, unbinding, and reconfiguration, which
is required by the S2–R2 (Hommel 1998, 2004; Kühn et al. 2011).
Only trials with correct R1 and R2 responses were included in the
segmentation. Separate segments were created for all combina-
tions of feature overlap levels (none, 1 feature overlaps, 2 features
overlap, and full overlap between S1 and S2 stimulus features)
and responses (repetition vs. alternation). On the segmented
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data, an automated artefact rejection procedure was applied in
the time window of 1000 ms before and after the S2. This process
discarded all segments with amplitudes higher than 150 μV, or
lower than −150 μV, or activities lower than 0.5 μV over a time
interval of at least 100 ms. Next, the segments were baseline
corrected based on the mean activity from −200 to 0 ms (S2
onset). The pre-processed, segmented, and baseline-corrected
data was used for temporal decomposition and for the MVPA
of the undecomposed data. On the same data, event-related
potential (ERP) analysis was performed based on previous studies
which analyzed the P3 component in event file coding (Kleimaker
et al. 2020; Takacs et al. 2020). The ERP results can be found in the
Supplementary Materials.

Residue Iteration Decomposition

RIDE postulates that different components with variable inter-
component delays can be distinguished within ERPs (Ouyang
et al. 2015a). Based on this assumption, RIDE decomposes the
single-trial ERPs into different components with static or vari-
able latencies. Depending on the timing and variability of these
components, they can be linked to different stages of infor-
mation processing. RIDE uses an iterative temporal decompo-
sition, which has already been used earlier with robust results
(Mückschel et al. 2017a; Ouyang et al. 2015b). The decomposi-
tion is applied separately for each electrode and is therefore
sensitive to the channel-specific latency variability information
(Ouyang et al. 2015a). In the current study, RIDE decomposition
was performed according to established procedures (Ouyang
et al. 2011; Verleger et al. 2014; Mückschel et al. 2017a) using
the RIDE toolbox (for manual see http://cns.hkbu.edu.hk/RIDE.
htm) in Matlab (Mathworks, Inc., Massachusetts, USA). We used
latency information related to the stimulus and response onsets
to derive the clusters S (stimulus) and R (response). The latency
information of the C (central)-cluster is estimated and iteratively
improved in each trial. RIDE requires predefined time windows to
extract the waveforms for each cluster (Ouyang et al. 2011, 2015a).
We applied the following intervals: for the S-cluster 200 ms
before S2 and up to 700 ms after the S2 presentation; for the
R-cluster 300 ms before and after R2; and for the C-cluster
150–800 ms after the S2 stimulus. These time windows corre-
spond to previous studies of event file coding (Kleimaker et al.
2020; Takacs et al. 2020). For the details of selecting the time
windows, please see Takacs et al. (2020). Using the provided
markers, RIDE uses an iterative decomposition with an L1-norm
minimization that produces median waveforms. To estimate the
S-cluster, RIDE subtracts C and R from each study and adjusts
the residual of all studies for the latency information of S. The
result is the mean waveform for all time points in the S-cluster
interval. The same procedure is used to derive clusters C and
R. The whole process is iterated to improve the estimation of
the components until they converge. For more details on the
RIDE method, see Ouyang et al. (2011, 2015b)). After obtaining
the RIDE clusters, we used them as input data for the MVPA
process.

Multivariate Pattern Analysis

We performed MVPA on the pre-processed and segmented, unde-
composed EEG and also on the RIDE decomposed data using the
ADAM toolbox (version 1.05, Fahrenfort et al. 2018) in Matlab
(Mathworks). Prior to the MVPA, the EEG data was down-sampled

offline to 55 Hz to facilitate temporal generalization (Fahrenfort
et al. 2018). A linear discriminant classifier was trained and
tested on each time point by using a 5-fold cross-validation. That
is, the classifier was trained on 80% of the data and tested 20%
of the data, repeating this process until all data chunks have
been tested. The Area under the ROC Curve (AUC) was used as
a measure of classification accuracy. Larger area indicates more
accurate classification performance (Fahrenfort et al. 2018). The
final performance metric was computed by creating the average
of test folds. Two categories were used to train the classifier:
zero overlap with response alternation and full feature overlap
with response alternation (for a similar approach, see Akçay and
Hazeltine 2007). These 2 categories represent similar levels of
response selection (i.e., switching from the previously activated
response): With zero feature overlap, the original S–R relation
remains intact, while with full feature overlap the S–R associa-
tion needs to be unbound and reconfigured. That is, when a new
response is required (response alternation) and the stimulus is
also new (zero overlap with S1), the original binding between
S1 and R1 does not need to be retrieved and used. However,
when the S2 overlaps with S1, the original association between
S1 and R1 is reactivated. Since the required response is new
(response alternation), this original binding needs to be modified
for successful action control. That is, the difference between zero
overlap with response alternation and full feature overlap with
response alternation should necessarily provide information on
the representation of event files. In the former case, event files
do not play a role, while in the latter, the event files are retrieved
and modulated. For the sake of completion, in the Supplemen-
tary Material, we also report the classification results between
zero overlap with response repetition and full feature overlap
with response repetition conditions. In case of unbalanced trial
numbers in the categories, the majority class has been down-
sampled to avoid skewed classification (Fahrenfort et al. 2018).
All electrodes were included in the analysis. The EEG amplitudes
at individual electrode channels were used as classification fea-
tures, creating 60 features in both stimulus classes. A backward
decoding model (BDM) (Fahrenfort et al. 2018) was used for
training and computing metric on testing. Next, temporal gener-
alization matrices were calculated by using cross-classification
across time. This process is looking for clusters of contiguous
time samples that remain significant after random permutation.
In this step, the stability of the observed pattern (undecomposed
EEG, or decomposed C-, R-, and S-cluster activity) was evaluated
over time by training the model in one time point and testing its
discrimination performance in the remaining time points. Cross-
classification was repeated for every time point. As a result,
classification performance above-chance level outside the diag-
onal axis indicates sustained neural activity. Additionally, topo-
graphical maps were created based on classifier weights for the
individual electrode channels. Statistical analyses for the MVPA,
that is, group statistics and multiple correction, were performed
in ADAM (Fahrenfort et al. 2018). Two-sided t-tests against chance
level (AUC = 0.05) were performed for each time sample across
subjects. Cluster-based permutation was used as correction for
multiple comparisons. Clusters were treated as contiguously sig-
nificant t-tests. The sum of the t-values in a cluster was used to
determine cluster size. This procedure was repeated 1000 times.
For each participant and each repetition, AUC was set to chance
level before computing the t-test. Null distribution of cluster sizes
under random permutation was calculated against the observed
cluster sizes, and this comparison was used to calculate the
P-values of clusters (Fahrenfort et al. 2018).

http://cns.hkbu.edu.hk/RIDE.htm
http://cns.hkbu.edu.hk/RIDE.htm


6 Cerebral Cortex Communications, 2020, Vol. 1, No. 1

Figure 2. (A) Accuracy results across feature overlap and response-type conditions. The percentage of correct trials is shown as a function of overlapping features for

repeated and alternated responses. Repeated responses are indicated by solid lines; alternated responses are indicated by dotted lines. Error bars denote standard error

of mean. (B) Reaction times across feature overlap and response-type conditions. The mean RT is shown as a function of overlapping features for repeated and alternated

responses. Repeated responses are indicated by solid lines; alternated responses are indicated by dotted lines. Error bars denote standard error of mean.

Results
Behavioral Data

The response accuracy data is shown in Figure 2. The ANOVA
with the factors feature overlap and response type (i.e.,
repetition/alternation) on the accuracy data showed that the
main effect of feature overlap was significant (F(3,117) = 4.11,
ε = 0.739, P = 0.016, η2

p = 0.095). Responses were more accurate in
the full feature overlap (86.7% ± 1.3) than in the 2 feature overlap
conditions (88.9% ± 1.2, P = 0.038). No other pairwise differences
were significant (P > 0.118). The main effect of response type
(F(1,39) = 0.01, P = 0.916, η2

p = 0.001) was not significant. Impor-
tantly, however, the feature overlap by response interaction

was significant (F(3,117) = 69.44, ε = 0.581, P < 0.001, η2
p = 0.640).

When responses had to be repeated, accuracy increased from the
zero overlap (81.9% ± 1.8) to the 1 feature overlap (85.4% ± 1.5,
P = 0.045), to the 2 features overlap (91.2% ± 1.1, P < 0.001), and
the full overlap (95.3% ± 0.9, P < 0.001) conditions. This reflects
the usually found partial repetition benefit effect reported in
literature (Hommel et al. 2001a; Colzato et al. 2006a, 2006b, 2013).
Accuracy was better in the full feature overlap than in the 2
features overlap (P = 0.005) and in the 1 feature overlap conditions
(P < 0.001). Finally, accuracy was higher in the 2 features overlap
than in the 1 feature overlap condition (P < 0.001). When
responses had to be alternated, accuracy decreased from the
zero overlap (96.9% ± 0.6) to the 1 feature overlap (91.8% ± 1.0,
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P < 0.001), to the 2 features overlap (86.6% ± 1.6, P < 0.001), and
the full overlap (78.1% ± 2.4, P < 0.001) conditions. This reflects
the usually found partial repetition costs effect reported in
literature (Hommel et al. 2001a; Colzato et al. 2006a, 2006b, 2013).
Additionally, accuracy was worse in the full feature overlap
than in the 2 features overlap (P < 0.001) and in the 1 feature
overlap conditions (P < 0.001). Finally, accuracy was lower in
the 2 features overlap than in the 1 feature overlap condition
(P < 0.001).

The ANOVA with the factors feature overlap and response
type (i.e., repetition/alternation) on the reaction time (RT) data
showed that the main effect of feature overlap (F(3,117) = 3.89,
ε = 0.681, P = 0.024, η2

p = 0.091) was significant. Responses were
faster in the no feature overlap (457.4 ms ± 11.1) than in the 2 fea-
tures overlap condition (468.4 ms ± 11.1, P = 0.001). No other pair-
wise comparisons were significant (P > 0.064). The main effect of
response type (F(1,39) = 0.42, P = 0.522, η2

p = 0.011) was not signif-
icant. However, again, the feature overlap by response interac-
tion was significant (F(3,117) = 33.24, P < 0.001, η2

p = 0.460). When
responses had to be repeated, RT decreased from the no feature
overlap (473.7 ms ± 11.8) to the full feature overlap condition
(454.3 ms ± 10.9, P = 0.007). Furthermore, participants were slower
in the 1 feature overlap (471.0 ms ± 11.0) than in the 2 fea-
tures overlap (462.2 ms ± 10.5, P = 0.047) and in the full feature
overlap conditions (454.3 ms ± 10.9, P = 0.003). When responses
had to be alternated, RT increased from the no feature overlap
(441.2 ms ± 11.0) to the 1 feature overlap (460.1 ms ± 10.6,
P = 0.001), 2 features overlap (475.7 ms ± 11.6, P < 0.001), and
full overlap conditions (478.4 ms ± 11.8, P < 0.001). Furthermore,
participants were faster in the 1 feature overlap than in the 2
features overlap (P < 0.001) and in the full feature overlap condi-
tions (P = 0.020). No other pairwise comparisons were significant
(p > 0.067).

Neurophysiological Data

After replicating the main behavioral effects known in the S–
R task (Hommel et al. 2001a; Colzato et al. 2006a, 2006b, 2013),
we limited the neurophysiological analysis to the focus of the
study. That is, the difference between 2 conditions: zero overlap
with response alternation and full feature overlap with response
alternation (see Multivariate Pattern Analysis). First, we present
the decoding accuracy results to report the performance of the
classification. Next, we present the temporal generalization, that
is, the stability of the event file representations. We provide this
information separately for the undecomposed EEG and for the
decomposed C-, R-, and S-cluster data. The decoding accuracy did
not reach significance for the undecomposed EEG data (p > 0.05).
The left panel of Figure 3 shows that decoding accuracy was
consequently around chance level.

Therefore, classes of no feature overlap with response
alternation and full feature overlap with response alternation
could not be reliably differentiated. Consequently, the temporal
generalization matrix (depicted on the right panel of Figure 3)
shows that there is no significant above- or below-chance activity
detected in the neural signal. The plot would indicate that
the success of the classifier when trained on the data (y-axis)
generalizes to other data points (x-axis). The scattered pattern
depicted in Figure 3 shows that event file coding processes were
not detectable in the undecomposed neural signal. The decoding
accuracy (AUC) results for the C-, R-, and S-clusters are shown in
Figure 4A.

In the C-cluster, significant differences (p < 0.05) were
found between the classes of no feature overlap with response

Figure 3. Decoding accuracy and temporal generalization matrix for the unde-

composed EEG. The top panel shows the classification performance across time

between no feature overlap with response alternation and full feature overlap

with response alternation for the undecomposed EEG. The bottom panel shows

the result of the temporal generalization.

alternation and full feature overlap with response alternation
from the onset of S2 (i.e., time point zero) to 600 ms after
the onset of S2. In the R-cluster, significant below-chance
difference (p < 0.05) was found between the 2 classes from
the stimulus onset to 300 ms and from 550 to 1000 ms. In the
S-cluster, significant above-chance difference (p < 0.05) was
found between the 2 classes from 240 to 550 ms after S2 onset.
Additionally, significant below-chance difference (p < 0.05) was
found between the 2 classes from 560 to 1000 ms. Since in
all 3 decomposed datasets the classification was successful,
in the next step, we calculated the temporal generalization
matrices to investigate the stability of the representations. The
temporal generalization results for the C-, R-, and S-clusters
are shown in Figure 4B. In the C-cluster, above-chance activity
was detected between 250 and 600 ms after the onset of S2.
Additionally, a smaller cluster was detected significantly below-
chance level between 50 and 240 ms. In the R-cluster, a transient,
quadratic cluster was detected significantly below-chance level
between stimulus onset and the end of the investigated segment
(1000 ms). Importantly, the activation was not homogenous:
classification performance was nonsignificant for a jittered
diagonal pattern between 300 and 600 ms. That is, the main
above-chance activation in the C-cluster was characterized by
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Figure 4. Decoding accuracy and temporal generalization matrix for the C-, R-, and S-cluster data. (A) Decoding accuracy for the 3 RIDE clusters. Significant time

windows (P < 0.05, after cluster-based permutation) are indicated by thicker lines. (B) Temporal generalization matrices and maps of forward transformation weights

of the decomposed EEG data. Significant samples are indicated by saturated colors. Unsaturated colors represent P-values below the multiple-comparison corrected

threshold.

an unsuccessful classification in the same time window in the
R-cluster. This mirror-reversed pattern was also observable in
the S-cluster. Specifically, in the S-cluster, above-chance activity
was detected between 250 and 550 ms after the onset of the
stimulus, similar to the main activation of the C-cluster. It was
followed by a significant below-chance activity until the end
of the segment. In sum, decoding accuracy showed successful
classification performance in all 3 temporally decomposed
clusters. The temporal generalization matrices indicated
different sensitivities to event file representations. In the C- and
S-clusters, significant above-chance activities showed stable
event file representations between 250–600 ms and 250–550 ms,
respectively. In contrast, only below-chance activation was
detected in the R-cluster.

Discussion
In the current study, we investigated how the representational
content of event files, a central element in the theory of event
coding (TEC) (Hommel 2011), is coded at the neurophysiological
level. Until now, research on neural correlates of event file coding
has focused on functional neuroanatomical regions involved
in event coding or the time course in cognitive subprocesses
(ERP-correlates) involved. Critically, the representational content

of the event files has been rarely examined at the neurophysio-
logical level (Kikumoto and Mayr 2019), although it is the strength
of representations in an event file that is of most theoreti-
cal importance from a cognitive perspective and underlies the
behavioral signatures of even file coding (Hommel 2009). Impor-
tantly, the TEC does not specify how event files are coded on a
neurophysiological level. The current study closes this gap.

Regarding that behavioral data, the analysis replicated the
well-known effects of event file binding (Hommel 2004; Colzato
et al. 2006a). Namely, participants were the most accurate and the
fastest when features of consecutive stimuli were highly over-
lapping and responses needed to be repeated (partial repetition
benefit). However, participants’ speed and accuracy deteriorated
when their response had to be altered and there was a high
stimulus feature overlap (partial repetition cost). Thus, partici-
pants’ behavioral performance was modulated by the formation
of event files: pre-established bindings led to response facilita-
tion, while unbinding caused an inhibitory effect (Hommel 2004;
Colzato et al. 2006a). Thus, event files are crucial elements to
understand the cognition of action control (Frings et al. 2020).
The decoding of the event files’ representational content, using
MVPA, revealed several theoretical important findings:

Decoding of event file representations was around chance
level when the classification was applied to undecomposed EEG.
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It appears that in the EEG, an intermix of different signals related
to parallel processing and coding of different aspects of informa-
tion during response selection (Mückschel et al. 2017a) presents
a general challenge in analyzing event file coding in neurophys-
iological data. Crucially, this makes sense from the perspec-
tive of TEC. Namely, the TEC assumes a complex architecture,
which involves the existence of action, object, and event files,
all of them connected and represented in parallel in a network
of feature codes (Hommel et al. 2001a, 2001b; Hommel 2019).
However, in the undecomposed neural signal, the elements of
TEC are not necessarily distinguishable from each other (Folstein
and Van Petten 2008; Kleimaker et al. 2020; Opitz et al. 2020;
Takacs et al. 2020). Several findings have suggested that there are
different coding levels intermingled in the EEG signal that play
specific roles during response selection and cognitive control
(Mückschel et al. 2017a, 2017b; Chmielewski et al. 2018). Sepa-
rating these intermingled coding levels requires dedicated signal
processing methods, such as temporal decomposition (Ouyang
et al. 2011, 2015a). While other methods, such as spatial decom-
position, are also available, recent studies of event file coding
and response selection (Verleger et al. 2014; Mückschel et al.
2017a; Opitz et al. 2020; Takacs et al. 2020) proved that temporal
decomposition is useful to obtain reliable and meaningful com-
ponents from the mixed signal. Corroborating this, the results
from the MVPA analysis based on the RIDE-decomposed EEG
data yielded successful decoding of event files. Crucially, the 3
RIDE clusters (S, C, and R) are characterized by 3 distinguishable,
and partly opposed, temporal generalization patterns. These
differences highlight how response- and stimulus-related and
translational aspects contribute to the representations of event
files.

Specifically, the C-cluster showed evidence for a sustained
and temporally sustained neural activity during event file coding.
As shown in Figure 4, the sustained activation was reflected in
a diagonal matrix pattern between 250 and 600 ms after the
second stimulus presentation, that is, when the original S–R
association needed to be retrieved and reconfigured. The above-
chance activation indicates that event files were represented
in the brain in a time window corresponding to both the N2
and P3 ERP components. Previous ERP research proposed that
N2 and P3 can be both implicated in event file coding (Petruo
et al. 2016, 2018; Kleimaker et al. 2020; Opitz et al. 2020; Takacs
et al. 2020), which is in line with findings suggesting that
modulations in the N2/P3 time window are generally found
during response selection processes (Ullsperger et al. 2014).
The current findings of a temporal jittered and a smoothed
activation pattern both horizontally and vertically indicate
that neural activity gradually evolves during event file coding,
suggesting that there is no categorical nature of event files. This
potentially indicates that event files are activated in a gradual
manner and that it takes about 350 ms to open, operate, and
close event files. As the activation spreads in the network of
feature codes, the event file slowly becomes more stable, and
when it is not needed anymore, the activation gradually fades
away. This relative instability of event file representation is
important, because only a certain level of instability of task-
related representations facilitates the generalizability of these
representations to other domains (Robertson 2018). Generaliza-
tion requires common features across representational contents,
which is suggested to be only possible when the episodic
trace for features is partially instable (Robertson 2018). Event
files have been considered to reflect episodic (memory) traces
(Hommel 2009; Frings et al. 2020), and it has also proposed that

generalizability through feature codes is an important capability
of event files (Hommel et al. 2001a; Kikumoto and Mayr 2019). The
current study is the first to show these aspects on a level of tem-
poral generalizability and suggest that event file representations
are coded by a specific aspect in the neurophysiological signal
from 250 to 600 ms. This time window corresponds only partially
to a recent study’s finding (Kikumoto and Mayr 2019), in which
conjunctive representations of stimulus–response associations
arose right after the stimulus presentation and lasted until the
response execution. This difference can be a result of the choice
of methods. In the study of Kikumoto and Mayr, representa-
tional similarity analysis was used based on time–frequency
decomposed data. The 5 frequency bands and the 20 included
electrodes resulted in 100 features, which might provide a lower
precision than the temporal generalizability of segmented EEG
data. The finding in the C-cluster, which has been suggested
to reflect stimulus–response transition/association processes
(Verleger et al. 2014; Ouyang et al. 2017; Opitz et al. 2020;
Takacs et al. 2020), is well in line with the theoretical framing
of event files on a cognitive level (Hommel 2009). Yet, the
main activation between 250 and 600 ms was embedded in
above- and below-chance activations. The exact functional
meaning of such recurring neural activity pattern remains an
open question (King and Dehaene 2014). For instance, it has
been suggested that neuronal assemblies firing at stimulus
onset fall below baseline firing rates after the stimulus onset
(Carlson et al. 2011). In the current study, the time intervals of
the early activities do not correspond to stimulus onset-offset.
Rather, a pre-stimulus above-chance activity led to a transient
below-chance performance after the stimulus presentation.
Importantly, in case of a C-cluster, we should also not expect
strictly stimulus-driven processes to be present in the signal, as
those are decomposed in the S-cluster (Ouyang et al. 2011, 2015a;
Mückschel et al. 2017a). However, in the C-cluster, response
selection mechanisms related to an anticipation of the response,
and then the suppression of it when the response had to be
alternated, could potentially be reflected by the early reversing
components. This has direct relevance to the findings in the
R-cluster:

In the R-cluster, the temporal generalization showed a ramp-
ing activity starting from the stimulus onset. Like the C-cluster,
this was preceded by an above-chance activation just before
the stimulus onset. The change between above- and below-
chance activities probably reflects that neurons active during
the above-chance time window became inactive afterward (King
and Dehaene 2014). This pattern might be interpreted in that
a previous motor representation is active but becomes sup-
pressed after the S2 presentation. Since the R-cluster reflects
motor execution-related processes (Ouyang et al. 2011, 2015a;
Mückschel et al. 2017a), this further strengthens the possibility
that response selection mechanisms are behind the early above-
chance activation. As we only included trials with response
alternation to the analysis, the previously primed response (R1)
and the anticipations triggered by it had to be suppressed (for
an analysis with response repetition trials, see Supplementary
Material). This was potentially reflected by the below-chance
activity following the stimulus presentation. While this transient
change was only briefly presented in the C-cluster data, it was
dominant in the R-cluster. Importantly, the below-chance acti-
vation had a unique shape: The ramping, rectangular activation
pattern had a jittered diagonal area of nonsignificant activation.
Curiously, this nonsignificant activation was characterized by a
time window of 300–600 ms, roughly corresponding to the main
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activation pattern in the C-cluster data. This might suggest that
event file representation as presented in the C-cluster data is
independent from R-cluster activities. That is, event files are cog-
nitive representations, defined by S–R translation processes, not
including a representation of the motor execution process. This
is in line with the notion that event files cannot be explained only
by response-related mechanisms (Colzato et al. 2006a; Hommel
2019; Opitz et al. 2020). The finding of an opposed pattern of
representations in the C-cluster and the R-cluster also explains
why no reliable MVPA result was obtained on the undecomposed
EEG data.

In contrast to the R-cluster’s profile, the S-cluster showed a
pattern like the C-cluster activation. Namely, representations
were detectable between 250 and 550 ms after the stimu-
lus onset, corresponding to the time window of the main
above-chance activity in the C-cluster. Moreover, the S- and
C-cluster activations showed a similar temporal generalization
pattern. However, the S-cluster activation was smaller both
vertically and horizontally than the C-cluster’s main activation.
The activation in the S-cluster potentially indicates that
stimulus-level representations contribute to the event files.
However, as the activation had a smaller area both horizontally
and vertically, the stimulus level may be represented to a lesser
extent than S–R translation processes. This interpretation is in
line with previous ERP results (Kleimaker et al. 2020; Opitz et al.
2020; Takacs et al. 2020), which showed that event file coding is
predominantly related to C-cluster activation.

Overall, the 3 temporally decomposed clusters showed both
similarities and dissimilarities with each other that delineate
propositions of TEC at the neurophysiological level: The TEC pro-
poses that perceptual contents and action plans are equally rep-
resented by integrated networks of feature codes (Hommel et al.
2001a, 2001b). These so-called event files refer to the features of
the represented event, that is, the neural firing pattern should
reflect the event itself, and not the stimulus or motor codes sep-
arately (Hommel et al. 2001a, 2001b; Hommel 2019). In turn, stim-
ulus and motor codes are not similar to each other. The current
findings partially corroborate with these predictions. Indeed, the
stimulus and motor codes indicated by the S- and R-cluster data
were non-similar. However, the similarity of the main activation
in the C- and S-clusters in comparison to the R-cluster would sug-
gest that event files rely more on the stimulus codes than on the
motor codes. It is important to note that the current study does
not propose to eliminate the role of action representations from
event files. Rather, it draws a picture that event files at the neural
coding level have more in common with the perceptual aspect
than with the motor code. The opposed relationship between the
C- and R-cluster activations may suggest that event files and
motor response specifications (action files) are intertwined dif-
ferently than event files and stimulus feature specifications
(object files). How the code sharing between file types takes
place on a neurophysiological level remains an open question
for future studies. Furthermore, the current study’s design is not
suitable to distinguish 2 core aspects of action control: the initial
binding of features and the retrieval of them (Frings et al. 2020).
Thus, we also could not identify of how event file representa-
tions contribute to these different stages of information process-
ing. This should be addressed in future research with different
paradigms.

Conclusion
Altogether, the current results provide first-hand evidence of the
stability of event file codes at the neurophysiological level. This

was achieved concatenating temporal EEG signal decomposition
methods and MVPA. We show that undecomposed neurophysi-
ological data is unsuitable to decode event file representations,
because different aspects of information coded in the neuro-
physiological signal reveal distinct and partly opposed dynamics
in the representational content. This is confirmed by applying
MVPA to temporal decomposed EEG data. After intermingled
coding levels have been separated, a reliable examination of the
event file’s representational content is its stability over time. This
provides important insights suggesting that the temporal stabil-
ity of event file processes shows distinct profiles depending on
the aspect of information being processed (i.e., stimulus-related,
motor response-related, or processes linking stimulus evaluation
and responding [stimulus–response bindings]). We show that
representations, particularly of stimulus–response bindings, are
activated and decay in a gradual manner. The relative instability
during activation and decay could indicate the generalizabil-
ity of event files, that is, event files can potentially influence
information processing outside of their original context, as well.
Moreover, event file representations resemble distributed rather
than a focal neural activity. Especially representations of stimu-
lus–response associations, as well as stimulus-related represen-
tations, are coded and reveal temporal stability. Purely, motor-
related representations are not found in neurophysiological sig-
nals during event coding.
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