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Abstract 

Background: Identifying and assessing ligand-target binding is a core component in early drug discovery as one or 
more unwanted interactions may be associated with safety issues.

Contributions: We present an open-source, extendable web service for predicting target profiles with confidence 
using machine learning for a panel of 7 targets, where models are trained on molecular docking scores from a large 
virtual library. The method uses conformal prediction to produce valid measures of prediction efficiency for a par-
ticular confidence level. The service also offers the possibility to dock chemical structures to the panel of targets with 
QuickVina on individual compound basis.

Results: The docking procedure and resulting models were validated by docking well-known inhibitors for each of 
the 7 targets using QuickVina. The model predictions showed comparable performance to molecular docking scores 
against an external validation set. The implementation as publicly available microservices on Kubernetes ensures 
resilience, scalability, and extensibility.
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Background
Determining ligand-target binding is a vital part of the 
drug discovery process [1]. A ligand can bind to multiple 
target proteins [2] and may cause off-target effects [3, 4]. 
Knowing the off-target effects of drugs can be beneficial 
especially in the initial stages of drug discovery. To deter-
mine drug-target interactions, pharmaceutical compa-
nies and academic institutions involved in drug discovery 
apply different techniques to detect drug-target interac-
tions, including in-vitro pharmacological profiling [5]. 
However, another interesting method is to build in-silico 
target profiles for ligands [6][7], which helps in under-
standing off-target effects as well as providing a novel 
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opportunity to predict affinity of Novel Chemical Entities 
(NCEs) against a battery of targets.

A common method to construct target profiles is to 
predict them using QSAR models based on interaction 
values available for known active ligands in large interac-
tion databases like ChEMBL [8] and ExCAPE-DB [9]. Yu 
et  al. [10] presented a systematic approach for predict-
ing drug-target interactions from heterogeneous biologi-
cal data employing Random Forest and SVM. TargetNet 
[11] is a web service for making prediction based drug-
target interaction profiles using Naïve bayes based multi-
target SAR models. In TargetNet, the molecules can be 
predicted against 623 SAR models. Bender et  al. [12] 
employs Bayesian based technique to prepare seventy 
QSAR models that were used to create target profiles to 
predict adverse off-target effects of drugs. TargetHunter 
[13] is another web-based tool for predicting target pro-
files employing chemical similarity where the models 
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were trained on ChEMBL data and successful predictions 
were made on examples taken from PubChem bioassays. 
The polypharmacology browser [14] is another web-
based tool for multiple fingerprint target prediction pri-
marily based on ChEMBL bio-activity data.

A key disadvantage with QSAR based modelling stud-
ies is their dependence on experimental data from the 
large interaction databases. Normally, the data has a 
strong bias towards active compounds i.e. on-target or 
intended effects [15]. Based on this, it is counter-intuitive 
to use ligand’s on-target binding data to build target pro-
files for understanding off-target effects. So when study-
ing adverse target reactions it becomes beneficial to find 
another way than to just look at data from the databases. 
Furthermore, in some of the earlier research efforts, 
openness of the source-code and extensibility of the web 
services is not completely clear.

Another approach is to build models from molecular 
docking scores using a docking software and perform 
ligand predictions using the models. In [15], LaBute et al. 
presented an approach to predict adverse drug reactions 
using scores produced by large-scale docking on High-
Performance Computing machines. AutoDock Vina was 
used to dock 906 ligands out of which, 560 conformers 
were selected to train L1-regularized logistic regression 
models to predict 85 off-target effects. Similarly, Wal-
lach et al. [16] presents a method for logistic regression 
based model training using docking scores from eHiTS 
[17] docking software for predicting side effects of drugs. 
Building predicted target profiles based on docking 
scores is less common because the docking scores are not 
considered to represent the real drug-target affinity, but 
large training datasets allows to make better decisions 
and can cover this weakness.

One important limitation is lack of information about 
confidence on the predictions in both of the above men-
tioned approaches, i.e., ligand-target interaction based 
QSAR models and docking scores based models. Confi-
dence on predictions are of critical importance because 
off-target drug reactions can directly effect human 
health.

In this paper we introduce an extensible methodol-
ogy for predicting target profiles with confidence, where 
models are trained on docking scores. The methodol-
ogy is implemented using a microservices architecture 
with each target deployed as a Docker container (see 
Fig.  1). For orchestration we use Kubernetes managed 
by Rancher [18] providing resilience and scalability. The 
result is an open-source extendable web service, and we 
demonstrate it with a panel of 7 targets where models 
are trained on QuickVina docking scores. We also show 
in this manuscript that target profiles built using docking 

scores has predictive properties, and that conformal pre-
diction enables quantifying the confidence for each target 
in a panel.

Methods
Data and tools
We used the clean drug-like molecule library, down-
loaded from ZINC [19] in ready-to-dock SDF format, 
preprocessed according to the protocol in [19]. Two dis-
tinct datasets of ∼2.3M molecules and 200K molecules 
were randomly sampled from the clean drug-like mol-
ecule library as the modelling set and the validation set 
respectively. The modelling set was used for modelling 
and internal testing and the validation set was used for 
external testing. The molecules were described using the 
signature molecular descriptor [20]. A parallel signature 
descriptor [21] implementation with Spark was employed 
and consecutive signature heights of 1–3, i.e., an atom 
at a distance of max 3 edges, were used. An earlier study 
[22] identifies that signature heights of 1–3 works well 
with Support Vector Machine (SVM) [23] based molec-
ular classification. A fast version of Autodock Vina [24], 
i.e. QuickVina 2 [25] was used as the underlying docking 
tool.

The 7 targets 1RT2, 1E66, 1QCF, 3ERD, 3LN1, 1BNU, 
1B8O were selected from the safety-related targets in [5] 
based on availability of good 3D structures for docking 
and known inhibitors. The PDB entry for each target was 
selected based on high resolution, i.e., 2.5 Åor better [26]. 
Receptors and binding site information were downloaded 
from sc-pdb [27] database and receptors were prepared 
using OpenBabel [28]. Each receptor was docked and 
scored against its ligand from the receptor-ligand com-
plex using root-mean-square-deviation (RMSD); an 
RMSD below 2.0 Åis considered to be a successful dock-
ing [29]. Table 1 presents the final set of receptors, their 
PDB codes, resolution and RMSD against corresponding 
ligand.

A set of well-known inhibitors for each of the recep-
tors was compiled for testing purposes. The inhibitors 
were selected by reported affinity and downloaded from 
CHEMBL [8] and Drugbank.ca. [30] The average number 
of inhibitors in each set was ∼ 50 with the minimum at 43 
and maximum at 60 inhibitors. A set of 50 compounds 
with low affinity for one of the receptor with PDB-ID 
1BNU was also downloaded from CHEMBL for test-
ing purposes. A large number of less active compounds 
were found for the receptor 1BNU and therefore, it was 
the main target used for the cross reactivity. For a list of 
all the compounds used in the study and a comparison of 
the known active and inactive compounds for 1BNU, see 
Additional file 1.
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Conformal prediction
Conformal prediction is a mathematical framework 
proven to produce well calibrated predictions for given 
confidence levels, developed by Vovk et  al. in [31]. 
Instead of producing point estimates as most traditional 
learning algorithms, Conformal Prediction instead pro-
duces prediction regions or prediction sets. In classifica-
tion the predictor outputs confidence p-values for each 
class, which together with the user-defined confidence 
level produces the final prediction set. In the binary 

classification setting, classes 0 and 1 translate into four 
possible prediction sets {0}, {1}, {0,1} and Ø  (the empty 
set). The prediction sets are guaranteed to contain the 
true label of the object with a probability equal to the 
user-defined confidence level. For this guarantee to 
hold, the only assumption is that the observed data is 
exchangeable [32]. Knowing that Conformal Predictors 
always produce valid predictions, one only has to care 
about the efficiency of the predictions. The efficiency of a 
Conformal Predictor can be defined and evaluated using 
various metrics, see [33] for a thorough discussion on the 
most commonly used. We here define efficiency as the 
ratio of single-label prediction sets.

In this work we are using Inductive Conformal Pre-
diction (ICP), that works in the following way; training 
data is randomly partitioned into two disjoint sets called 
proper training set and calibration set. The proper train-
ing set is used to train the underlying learning model. 
The model is then used for predicting all observations 
in the calibration set and a nonconformity measure, a 
‘strangeness measure’, is used for computing how con-
forming each observation is compared to the learned 
model. We use a Mondrian approach that treats classes 
individually and has been shown to have beneficial prop-
erties when working with unbalanced datasets [34]. It is 
important to point out that conformal prediction delivers 

Fig. 1 Vision of the work.  The figure shows the vision of the work i.e. all targets would have a Docker container and these Docker containers would 
be fired up simultaneously in a Cloud environment. A compound of interest would be tested against all the targets and a target profile of the 
compound would be created

Table 1 Selection of  receptors: the  table represents 
the selected receptors and how they were selected

All the selected receptors must have resolution of 2.5 (Å) or under and RMSD of 
2.0 (Å) or under

Target class PDB entry Resolution (Å) RMSD (Å)

HIV RT 1RT2 2.5 0.46

Acetylcholinesterase 1E66 2.1 0.34

HCK Tyrosine kinase 1QCF 2 0.29

Estrogen receptor 3ERD 2.03 0.57

Cyclooxygenase-2 3LN1 2.4 0.27

Carbonic anhydrase 2 1BNU 2.15 1.21

Purine nucleoside phosphory-
lase

1B8O 1.5 0.37
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individual prediction intervals for each object predicted, 
and hence each prediction incorporates a measure of 
its confidence, implicitly offering a solution to the fuzzy 
concept of ’applicability domain’ [35]. For further details 
on conformal prediction and its use in QSAR, we refer to 
previous studies [32, 36].

Modelling
For building the machine learning (ML) models, we 
used our earlier work, an intelligent iterative conformal 
prediction based virtual screening (CPVS) [37] strategy. 
A modified version of CPVS was used for modelling, 
whereas QuickVina [25] was used for docking. CPVS is an 
SVM based, efficient, parallel, iterative virtual screening 
method. QuickVina is an opensource tool and therefore 
permits inclusions in web services to be used by every-
one. In QuickVina, a ligand with a lower score is gener-
ally considered to have better affinity against a particular 
receptor, therefore, the labelling strategy in CPVS was 
modified accordingly, i.e., ligands with low scores were 
labelled as 1 (high-affinity) and ligands with high scores 
were labelled as 0 (low-affinity). A sample dataset was 
docked and sorted by docking scores and the top 10% and 
the bottom 10% of the molecules were used for model 
training. The rest of the strategy was same as given in 
the original CPVS method [37]. The model training was 
performed in an iterative fashion until the model reaches 
the intended efficiency of 80 or above. During modelling, 
an average of ∼0.53 million ligands were docked against 
each of the 7 receptors. In comparison to the mentioned 
studies (see Table  2), the training set for modelling in 
our study was much larger, i.e., on average ∼0.11 mil-
lion ligands per receptor model. Each trained model was 
deployed as a Docker container with a REST API.

Web service
We developed a Web service with a front-end that offers 
a graphical user interface (GUI) to input one or more 
chemical compounds in SMILES format and options to 
set the confidence level for predictions. The GUI com-
municates with all individual target model microservices, 
and delivers a panel of target predictions; HIGH, LOW 
or UNKNOWN docking score. The predictions are based 
on conformal p-values, i.e. if only p-value(0) > ǫ , then 
the output prediction is HIGH, if only p-value(1) > ǫ , 
then the output prediction is LOW and if both p-value(0) 
and p-value(1) are greater or less than  ǫ , the prediction is 
UNKNOWN, where ǫ = 1 - confidence. An example of 
the predicted target profiles for two compounds is shown 
in Fig.  2. For QuickVina, a low-score prediction means 
high-affinity and vice versa. The actual p-values for the 

low-score and the high-score classifications are available 
by hovering over the prediction cells.

Once target profiles are produced, the user can select 
individual compounds and invoke the molecular docking 
functionality to dock them. The time for docking a com-
pound varies between 10 to 30 seconds on our system. 
We also provide a functionality for users to submit new 
receptors in PDBQT format to the system administrator 
and request inclusion in the system. This requires quite 
some work, and will be done as time permits.

Implementation and deployment
The REST API for the web service was implemented 
using microservices and the Play 2.0 [38] web applica-
tion framework using Scala language and deployed using 
Rancher [18], an open-source platform for Kubernetes 
management, providing integrated tools for running con-
tainerized applications. Complete code for the web ser-
vice REST API and GUI is available on Github [39, 40]. 
For deploying the web service using Kubernetes, Docker 
containers were used to build an independent service for 
each receptor. Similarly a separate container was used for 
the MariaDB database that keeps the docking scores of all 
the docked ligands. A separate container was also build 
for the webservice GUI. A bash script [41] was written to 
deploy all the Docker containers. The bash script applies 
all kubernetes yaml deployment descriptors that launch 
the Docker containers. The microservice architecture 
has many advantages, e.g. independent scaling of ser-
vices based on usage, cross platform independence and 
several other inherited benefits of dockerization [42]. All 
the Docker images are available on Docker Hub [43] with 
appropriate tags [44–47]. Additionally, users can also cre-
ate Docker images for new receptors using the Dockerfile 
available at [48]. A tutorial is available in Additional file 1 
explaining how to create and execute Docker images 
locally. The webpage for the PTPAAS microservice can 
be accessed at http://ptpaa s.servi ce.pharm b.io and the 

Table 2 Training data size in earlier studies

Study Average training 
data per receptor

Yu et al. [10] 5415

TargetNet [11] 175

Bender et al. [12] 1432

TargetHunter [13] 216.6

Polypharmacology browser [14] 33.5

LaBute et al. [15] 906

Wallach et al. [16] 1236

http://ptpaas.service.pharmb.io
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models can also be accessed separately via an OpenAPI 
interface.

Results
Virtual screening evaluation
In order to verify the virtual screening process, we sepa-
rately docked well-known inhibitors (actives) for each 
of the 7 receptors using QuickVina and computed the 
enrichment factor for the inhibitors docking scores 
against the docking scores of the ligands docked during 
the modelling procedure. Enrichment factor is one of the 
most commonly used metrics for measuring the accu-
racy of virtual screening. Enrichment means where the 
position of the value is in the evaluated dataset in com-
parison to the compared dataset. The higher the enrich-
ment factor, the better the performance of docking in 
identifying known inhibitors. Figure 3 shows the docking 
enrichment results of QuickVina based CPVS for all the 7 
receptors. The black dashed line represents ideal scores, 
the grey dotted line on the diagonal represents random 
scores, whereas the blue solid line represents the scores 
of the known inhibitors. For most of the receptors, the 
results show good or satisfactory enrichment i.e. well 
above what would be scores of random ligands and rela-
tively closer to the ideal scores.

We also performed docking enrichment of inhibitors 
against docking scores of an external validation set which 
was not seen by the CPVS algorithm during modelling. 
The docking enrichment can be seen as blue solid line 
in Fig. 4. The enrichment shows satisfactory results and 
were used as baseline for evaluating model predictions.

Model evaluation
The CPVS models were evaluated using multiple meth-
ods: (i) by comparing the docking and the predicted 
enrichment on the external validation set, (ii) by polyp-
harmacology validation i.e. by predicting the activity of 

known inhibitors for multiple receptors and (iii) by com-
puting the model efficiency.

Predicted vs docking enrichment
In Fig.  4, the red line represents the predicted enrich-
ment on the external validation set and the grey line on 
the diagonal represents random predictions. To generate 
the predicted enrichment red line, we made predictions 
using the CPVS models, i.e., the p-values of the inhibi-
tors and the external validation set for being predicted as 
either a low-scoring or a high-scoring ligand. The p-val-
ues were used to compute unary enrichment values by 
the following formula:

These values were used to create predicted enrich-
ment of known inhibitors against the external valida-
tion set. In comparing the predicted enrichment (red 
solid line) to the docking enrichment (blue solid line), 
the results were satisfactory for the most of the recep-
tors except for PDB-ID 1B8O. Area under the enrich-
ment curves (AUC) was also calculated and reported in 
Fig. 4 for comparison.

The number of the known inhibitors found in the top 
10% and 20% of the docked molecules and the predicted 
ligands were also computed and presented in Table  3. 
The average number of the known inhibitors, for all the 
receptors, found in the top 20% of the predicted ligands 
was 63% whereas it was 74% for the docked molecules. In 
the top 10% of the predicted ligands, the average num-
ber of known inhibitors found were 46% whereas in the 
top 10% of the docked molecules, it was 55%. Again, the 
receptor with PDB-ID 1B8O was an exception where 

If (Plow−scoring > Phigh−scoring)

Plow−scoring ∗ (1− Phigh−scoring)

else

− Phigh−scoring ∗ (1− Plow−scoring)

Fig. 2  Predicted profiles and molecular docking. The figure shows the predicted target profiles for two compounds against 7 receptors. The 
prediction is either low-scoring, high-scoring or unknown presented in green, red and blue color respectively. The prediction models were 
developed based on QuickVina docking scores. Following QuickVina, in general, a low-score prediction means high-affinity and vice versa. An 
unknown prediction means the model has either failed to recognize a class for the compound or the compound is predicted to be part of both 
classes with the given confidence level. The p-values for the low-score and high-score class are also available by hovering over the prediction cells, 
seen here in the black placeholder. A molecule of interest can then be docked against a particular receptor using QuickVina
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only 11% of the inhibitors were found in the top 20% of 
the predicted ligands and none in the top 10%. Inspec-
tion of the PDB file for 1B8O did not reveal any obvious 
explanations for this. The docking works better for some 
receptors than others and in the case of 1B8O, not many 
inhibitors were found in the top most scoring ligands (see 
Fig.  4). This could be one reason of under-performing 
predicted enrichment for 1B8O.

The methodology was also tested for known in-actives 
against the external validation set and the results are 
shown in Fig.  5. The green line represents the docking 
enrichment of the known in-actives of the 1BNU recep-
tor against the external validation set and the magenta 
line represents the predicted enrichment of the known 
in-actives of the 1BNU receptor against the predictions 
of the external validation set. AUC was also computed 

Fig. 3 Enrichment curves for Vina docking.  In order to verify the virtual screening process, well known inhibitors for each of the 7 receptors were 
docked using QuickVina and the enrichment factor was computed for the inhibitors docking scores against the docking scores of molecules 
docked during modelling procedure. Enrichment factor is one of the most common index used for measuring the success of Virtual Screening. 
Enrichment means where the value lies in the evaluated dataset in comparison to the compared dataset. The higher the enrichment factor, the 
better the performance of docking in identifying known inhibitors. The black dashed line represents ideal scores, the grey dotted line in the middle 
represents random scores whereas the blue solid line represents the scores of the inhibitors. For most of the receptors, the results show good or 
satisfactory enrichment
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and shown in Fig. 5 for comparison. The result is satisfac-
tory, with ∼82% of the green line being below the random 
line. Similarly, the predicted enrichment for the known 
in-actives (magenta) shows encouraging results as ∼98% 
of it appears below the random line and also near to the 
docking enrichment green line.

Polypharmacology validation
Polypharmacology validation means testing the inhibi-
tion of the compounds for multiple targets or disease 
pathways. A total of 9 compounds were selected from 
CHEMBL [8] that have a reasonable level of activity for 
two receptors as given in Table 4. The results were quite 
good for 4 out of the 9 compounds that were correctly 

Fig. 4  Predicted enrichment vs docking enrichment on the external validation set. The figure presents the comparison of docking enrichment 
in blue and predicted enrichment in red whereas the grey line in the figure represents random predictions. The comparison was used to evaluate 
the performance of CPVS models. The docking enrichment was created by comparing docking scores of well known inhibitors and docking scores 
of an external validation. Similarly the predicted enrichment was created by comparing predicted p-values for well-known inhibitors and the 
external validation set. AUC was also calculated and reported in the figure for comparison. Overall the CPVS models performed well and predicted 
enrichment is comparable to docking enrichment, except for receptor with PDB-ID 1B8O, when the predicted enrichment is a little worse than 
docked enrichment. The reason could be less number of known inhibitors in the top scored molecules, seen in the left bottom corner of the 1B8O 
graph
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predicted as actives for both of the receptors and only 
one of the compound was predicted incorrectly as an 
inactive. In none of the examples, both the compounds 
were predicted incorrectly as an inactive.

Efficiency
The models were also evaluated through the measure of 
efficiency. As mentioned before, the predictions from 
conformal prediction based classification could be either 
{0}, {1}, {0, 1} or Ø. Efficiency means the percentage of 
ligands predicted as low-scoring or high-scoring, i.e., 
single predictions out of the predictions on the complete 
dataset. Table  3 presents the efficiency of each of the 7 
models that are used for predicting the target profiles. 
All the models created had an efficiency of 80 or higher 
as intended for both the modelling set and the external 
validation set. Further details about model efficiency and 
accuracy can be found in the CPVS paper [37].

Discussion
Target profiles are utilized to understand the off-tar-
get effects of drugs in early stage of drug development. 
In this work, we present a new way to build prediction 
based target profiles. We build conformal prediction 
based machine learning models using the docking scores 
produced by QuickVina. The process was validated 
through virtual screening and model evaluation and 
overall recorded comparable results. Hence, the main 
finding is that building efficient models for predicting the 
target profiles are possible through docking scores.

Although previous studies with predictions of ligand-
target binding using the docking scores are available, a 
tool or a web service for predicting target profiles based 
on docking scores is unavailable to the best of our knowl-
edge; the available web services make use of interac-
tion values from databases. Our work opens up a new 
direction of using docking scores for predicting target 
profiles and it would be interesting to compare the two 
approaches in the future and investigate hybrid system.

The PTPAAS system can be instantiated on other infra-
structures such as public cloud providers or on-prem 

Fig. 5  Validating the model for the known in-actives for the receptor 
1BNU. The figure presents the comparison of the docking enrichment 
in green and the predicted enrichment in magenta for the known 
in-active compounds. The comparison was used to validate the 
performance of the 1BNU receptor model for the known in-active 
compounds. The docking enrichment was created by comparing 
the docking scores of the known in-actives and the docking scores 
of the external validation set. Similarly the predicted enrichment 
was created by comparing the predicted p-values for the known 
in-actives and the p-values for the external validation set. AUC was 
also calculated and reported in the figure for comparison. Overall, 
the 1BNU model performed well and the predicted enrichment 
was comparable to the docking enrichment. The green line for the 
docking enrichment, which was below the random grey line, also 
confirms the validity of the virtual screening evaluation

Table 3 The table represents the model efficiency of predictions on the complete modelling set (from which training set 
was taken) and the external validation set

The last four columns represents the predicted and the docking enrichment factor for inhibitors, i.e., the percent inhibitors found in the top 10% and 20% of the 
database search

PDB entry Eff 
on modelling 
set (%)

Eff on ext. 
val. set (%)

Inhibitors in top 10 
(%) predicted ligands

Inhibitors in top 10 (%) 
docked molecules

Inhibitors in top 20 
(%) predicted ligands

Inhibitors in top 
20 (%) docked 
molecules

1RT2 93 97 32 31 68 68

1E66 93 94 60 52 67 70

1QCF 86 93 65 65 73 79

3ERD 93 92 65 58 78 69

3LN1 98 98 50 82 68 86

1BNU 87 87 47 55 75 78

1B8O 94 94 0 43 11 73

Average 92 94 46 55 63 74
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infrastructures (e.g. a company intranet), our deployment 
at http://ptpaa s.servi ce.pharm b.io should be seen as a 
reference instance. The system has been designed with 
extensibility in mind, and new models can be deployed 
as micro services using Docker containers. Such new 
services (comprising models for new receptors) can be 
deployed in a similar way as shown for the reference 
instance on Kubernetes (code and instructions available 
on [41]). In Additional file 1 we show how users can build 
models using our previous method [37] and then use the 
models to create service for a new receptor. Instructions 
are provided to deploy and add the Docker container for 
a new receptor to the service [39].

Openness and accessibility are important in science, 
and hence we switched from OEDocking used in the 
original CPVS method to QuickVina for docking in this 
study. The move to QuickVina was quite simple and 
suggests that the proposed methodology can be used 
with different docking methods with ease. However, 
QuickVina is slower and thus restricted us to build lim-
ited number of models especially with large datasets. In 
the future, we would like to add more receptor models, 
and we encourage the community to contribute to this 
goal.

Conclusion
In this paper we present a new methodology for build-
ing predicted target profiles using conformal prediction 
and docking scores from virtual screening. The method 
was validated through docking of well known inhibitors 
for each of the 7 receptors. Virtual screening enrichment 
graphs and model efficiency suggests that docking score 
based predicted target profiles are a new viable option. 
The method is made available as a web service with the 
primary objective to provide predicted target profiles 
whereas molecular docking is also provided to dock 
ligands of interest.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1332 1-020-00464 -1.

Additional file 1. The file contains a step by step tutorial for running 
the CPVS API on a local system. It also explains the process of preparing 
new Docker images for new receptors. Secondly, the file contains various 
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