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Abstract: Aerogel materials are used in various fields, but there is a shortage of aerogel materials
with an excellent combination of mechanical properties, thermal stability, and easy preparation. In
this study, polyimide aerogel materials with superior mechanical properties, thermal stability, and
low thermal conductivity were prepared by forming a double-gel system in the liquid phase. The
amino-modified gel, prepared by coating SiO2 nano-microspheres with GO through a modified
sol-gel method (SiO2@GO-NH2), was subsequently homogeneously dispersed with PAA wet gel in
water to form a double-gel system. The construction of a double-gel system enabled the PI aerogel to
shape a unique honeycomb porous structure and a multi-layered interface of PI/SiO2/GO. The final
obtained PI aerogel possessed effective thermal conductivity (0.0309 W/m·K) and a high specific
modulus (46.19 m2/s2). In addition, the high thermal stability (543.80 ◦C in Ar atmosphere) and the
ability to retain properties under heat treatment proved its durability in high thermal environments.
The hydrophobicity (131.55◦) proves its resistance to water from the environment. The excellent
performance of this PI aerogel and its durability in thermal working environments make it possible
to be applied in varied industrial and research fields, such as construction and energy, where heat
and thermal insulation are required.

Keywords: thermal insulation; hydrophobic; thermal stability; aerogel; polyimide

1. Introduction

The overconsumption of energy is becoming a critical issue, based on engineering,
environmental, and economic challenges in modern industries [1–3]. Pursuing a novel
material with high performance and energy efficiency is a forefront research topic in terms
of industrial applications [4–7]. Aerogel, as an impressive commercial energy material,
plays a crucial role in the thermal insulation field due to its high strength and low density,
which can be subdivided into inorganic and organic aerogels. Inorganic aerogels, especially
silica-derived aerogels, have emerged as representatives of the heat insulation field because
of their highlighted inherent textural properties, and, more importantly, unprecedented
thermal stability and multifunctional use [8–13]. Despite the promising performance of
inorganic aerogels, the obvious intrinsic drawbacks, such as hygroscopicity, brittleness,
and lack of compressive modulus, inhibit their applications [14]. Compared with inorganic
aerogels, organic aerogels, which have tunable structural properties, are not stable in
thermal conditions [15–19]. Therefore, developing organic–inorganic aerogels is imperative
to achieve the desired performance. Additionally, designing an effective combination
strategy represents a critical first step in the establishment of a bridge between inorganic
and organic aerogels [14,20,21].

Many strategies have been achieved in the development of high-strength bonding
of organic–inorganic aerogels so far. The functional modification of aerogels by intro-
ducing nano-fillers has gained significant research attention [22–25]. In early studies,
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Wang et al. [26] built blocks of cellulose nanofibers and ZrP/RGO nanosheets, which pro-
vided an aerogel with ultralow thermal conductivity (0.018 W/m·K) and high Young’s
modulus (194 kPa). Moreover, Zhu et al. [27] created a modified hydroxyapatite/chitosan
composite aerogel with good mechanical properties and thermal insulation. Additionally,
recent works have exhibited an appealing tendency to form a mutually cross-linked net-
work structure by using a principal skeleton, e.g., silica [20], polyacrylonitrile [28], aramid
nanofiber [29], and sodium alginate skeleton [30], etc. However, despite the great success
of the strategies mentioned above, the industrial application practicability is still restricted
due to the complexity of the process.

In recent years, many attempts have been made to achieve dehydration of wet gel,
including regular drying, supercritical CO2, and freeze-drying, etc. Among them, su-
percritical CO2 is considered to be a better candidate in the conversion from wet gel to
aerogel, which could deliver an excellent microscopic pore structure. In early studies,
Zhang et al. [31] prepared impressive low-density (~0.2 g/cm3) aerogels using supercritical
drying. In parallel, Ana Iglesias-Mejuto and her co-workers [32] verified the compatibility
of 3D printing and supercritical CO2 drying in the field of aerogels. Despite their promising
performance, poor mechanical properties, lack of thermal stability, and complex processes
remain their fatal flaws [5]. Accordingly, there is an urgent demand for a modified method
to address the aforementioned issues by producing better performance.

Herein, we introduce a “double-gel” method in which SiO2@GO-NH2 gels were
conveniently and effectively constructed using the sol-gel method, and dispersed in an
aqueous system to form a double-gel system with poly amic acid (PAA) organic wet
gels. The aqueous system allowed the two phases to be uniformly dispersed and mixed,
while the amino modification improved the compatibility between both gels. After freeze-
drying and heat treatment, the wet gels turn into aerogels during PAA and transform
into one of the most thermally stable polymeric materials known, polyimide (PI). The
multilayered interfacial structure and the compatible dispersion of the two phases bring
superior mechanical properties, thermal insulation, thermal stability, thermal durability,
and hydrophobicity to aerogels.

2. Materials and Methods
2.1. Materials

4,4′-diaminodiphenyl ether (ODA), pyromellitic dianhydride (PMDA), tetraethyl
orthosilicate (TEOS), ammonium hydroxide solution (25%), and N,N-dimethylacetamide
(DMAc) were supplied by Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China).
Triethylamine (TEA) and (3-aminopropyl) triethoxysilane (3ATPES) were purchased from
Aladdin Reagent Co., Ltd. (Shanghai, China). Ethanol, potassium permanganate, sulfuric
acid (98%), and hydrochloric acid (36–38%) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Flake graphite was provided by Shanghai Jingchun
Reagent Co., Ltd. (Shanghai, China). All the reagents mentioned above were analytical
grade, unless otherwise indicated.

2.2. Preparation of Amino-Modified SiO2@GO (SiO2@GO-NH2) Wet Gel by Sol-Gel Method

Graphene oxide (GO) was prepared using a modified Hummers’ method [33].
SiO2@GO -NH2 wet gels were prepared using the sol-gel method. Specifically, 25 mg

of GO was added to 75 mL of 20 vol% TEOS ethanol solution, ultrasonically treated for
30 min, which ensured the system was well dispersed. Afterward, 10.5 mL of 0.1 M
hydrochloric acid was added to acidify the system and was then ultrasonically treated for
5 min to fully hydrolyze the TEOS. A total of 4.5 mL of 10.79 wt.% 3ATPES ethanol solution
was titrated slowly with slow mechanical stirring to gel the system and stirred for 24 h.
The SiO2@GO-NH2 wet gel was then obtained.
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2.3. Preparation of Polyamic Acid (PAA) Precursors and Wet Gel

Using an ice bath, 5.2630 g of ODA was dissolved in 55 mL of DMAc at 0 ◦C. After
stirring for 5 min, 4.7369 g of PMDA was slowly added to the system in batches. The
molar ratio of PMDA-to-ODA was 50:51 to control the length of polymer chains. The
product was slowly poured into DI water at 0 ◦C and washed four times with DI water
and freeze-dried at −65◦C to obtain the PAA precursor. The ether bonding of ODA and the
non-coplanar PAA chains make the PAA chains more soluble in the chosen solvent (water)
and facilitate hydrogen bonding interactions with the inorganic doped material [34,35].
The PAA precursor was mixed with water and TEA in a mass ratio of 1:10:0.5 at room
temperature and stirred at high speed for 30 min to obtain the PAA wet gel [36].

2.4. Preparation of Polyimide (PI) Aerogels

The SiO2@GO-NH2 wet gel was dispersed in 7.5 g of water by high-speed stirring
and ultrasound. This was followed by continuous stirring in an ice bath at 0 ◦C using a
slower stirring speed, while adding a total of 11.5 g of PAA wet gel in five batches. Stirring
was continued for 4 h until the system was homogeneous. The obtained organic–inorganic
dual system wet gels were poured into molds and frozen in a cold trap at −65 ◦C for 4 h,
before being freeze-dried for 48 h. The molds were pre-cooled in the cold trap in advance,
with the lowest cold trap temperature chosen to reduce the size of ice crystals in the gel
system. The obtained aerogels were heat-treated at 80 ◦C for 30 min, 110 ◦C for 30 min,
195 ◦C for 120 min, and 290 ◦C for 60 min under nitrogen protection to obtain PI aerogels
and numbered PI-1 (1 represents the addition of 1 g SiO2@GO-NH2). Similarly, a series
of PI aerogels were prepared with different ratios of SiO2@GO-NH2 wet gels to study the
effect of doping amount on the aerogel properties; the prepared PI aerogels were named
PI-0, PI-0.5, PI-1.5, and PI-2. The PI aerogels used for mechanical and thermal property
tests were prepared using specific molds. The diameter of the obtained PI aerogel was
35 ± 0.5 mm and the height was 10 ± 0.2 mm.

2.5. Characterization

The Nicolet 570 FTIR spectrometer (Thermo Fisher Scientific, Agawam, MA, USA)
was used to obtain FTIR spectra of SiO2@GO-NH2. Microstructure pictures and EDX
maps of freeze-dried SiO2@GO-NH2 wet gels and PI aerogels were taken with a SUPRA
55 thermal field emission scanning electron microscope (Carl Zeiss, Berlin, Germany) (SEM).
ATR-FTIR spectra of PI aerogels were obtained with a Nicolet iS50 Fourier Transform In-
frared Spectrometer (Thermo Fisher Scientific, MA, USA). XRD data of PI aerogels were
provided by using an ULTIMA III X-ray diffractometer (Nippon Rigaku, Tokyo, Japan).
The DXR2Xi Confocal Laser Raman Spectrometer (Thermo Fisher Scientific, MA, USA)
provided Raman spectra of PI-0, PI-0.5, and PI-1.5 samples. The photoelectron spectra
of PI-0 and PI-1.5 aerogels were measured using the ESCALAB 250 X-ray photoelectron
spectrometer (Agawam, VG, USA). The 13C NMR data of PI-1.5 aerogel were acquired
using an AVANCE III 500 Nuclear Magnetic Resonance Spectrometer (Bruker, Fällanden,
Switzerland). The stress–strain curves of the aerogel samples were obtained using an
INSTRON-1185 (INSTRON, Norwood, MA, USA). The thermal conductivity of the aerogel
samples was investigated using a DZDR-S thermal conductivity meter (Dazhan Mechatron-
ics, Singapore). The infrared photographs of PI-0 and PI-1.5 placed on the heating stage
were taken using a DS-2TPH10-3AUF infrared camera (HIKVISION, Hangzhou Hikvision
Digital Technology Co., Ltd., Hangzhou, China). The thermogravimetric data of each
group of PI aerogels were tested using a STA449C/6/G simultaneous thermal analyzer
(NETZSCH, Westendstr, Germany). The water contact angle of each group of PI aerogel
samples was measured with a SL200A/B dynamic/static contact angle meter (Shanghai
Solon, Shanghai, China).
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3. Results and Discussion
3.1. Amino-Modified SiO2@GO (SiO2@GO-NH2) Wet Gel

The preparation process of SiO2@GO-NH2 wet gel is shown in Figure 1a. The SEM
image in Figure 2b shows uniform accumulation of silica particles on the graphene sheets,
indicating that the silica in the wet gel system is grown diffusively as nano-spheres with
graphene as the base. FT-IR spectra of SiO2@GO-NH2 gels prepared by the above ex-
perimental scheme, and general SiO2@GO gels with the replacement of 3APTES with
ammonia, are shown in Figure 1c. The peaks of both spectra contain -OH (3400 cm−1),
C=C (1630 cm−1), and C=O (1350 and 1230 cm−1) from GO, Si-O-Si- (1090 cm−1), SiO2, and
Si-O-C (1130 cm−1), which represents the interaction between SiO2 and GO. In addition
to the peaks shared in SiO2@GO-NH2, -NH2 (3260 cm−1) and C-N (1220 cm−1) are also
present. Such data indicate that 3ATPES underwent hydrolysis and co-growth with SiO2
nano-spheres during the sol-gel process in the alcohol–water system. This co-growth
process also serves to amino-modify the silica nano-spheres by functionalization through
3APTES [37].
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3.2. Preparation of PI Aerogel with Inorganic–Organic Double-Gel System

The preparation process of the PI aerogel is shown in Figure 2a. Specifically, this was to
form a uniformly dispersed SiO2@GO-NH2 system from controlled quality SiO2@GO-NH2
gel in water, using high-speed stirring and ultrasonic treatment. Figure 2b shows the
excellent processing properties of this aerogel preparation method, which can form finer
and special structures with different molds. Figure 2c–h show typical SEM photographs of
various PI aerogels. PI-1 to PI-2 formed a unique honeycomb, showing the limiting effect
of the SiO2@GO-NH2 inorganic gel network on synergistic growth of the ice crystal/PAA
linkage [38]. For comparison, PI-0 and PI-0.5 displayed a larger needle-like pore structure
due to the spontaneous growth of polymer chains in the direction of the ice crystal growth
edge during the freezing process. Typically, SiO2@GO-NH2 wet gel introduced in the
PI-0.5 system is not enough to form an inorganic gel network, making the microstructure
more similar to that of PI-0. The large pore size exhibited in PI-0 and PI-0.5 proves the
difficulty of controlling the microscopic scale of polyimide aerogels prepared using the
general freeze-drying method. In particular, the pores of PI-2 showed a lot of merging and
fragmentation. The abnormal properties of PI-2 might be caused by the excessive addition
of SiO2@GO-NH2 providing an overdone limiting effect, making it more difficult to form a
stable honeycomb structure [39].

The elemental distribution on the microscopic scale of PI-1.5 was measured and ana-
lyzed using EDS. The results showed uniformity of the elements, while the microstructure
of the original aerogel can still be observed in the images of each element, especially Si. The
results observed by EDS demonstrate the homogeneity of the double-gel system, which
means that the PI and the SiO2@GO-NH2 form the aerogel honeycomb structure on the
nanoscale together.
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3.3. Chemical Structure of PI Aerogel

The ATR-FTIR infrared spectra of the aerogel materials are shown in Figure 3a. The
strong characteristic peaks at 1774 and 1710 cm−1 occurring on all spectra are attributed
to the symmetric and asymmetric stretching of the C=O group of the imide double bond.
The peak at 1375 cm−1 is attributed to the C-N stretching vibration, and a C=C stretching
vibration at 1495 cm−1 was also observed. It can be concluded that the doping of SiO2@GO-
NH2 and the double-gel network structure do not affect the chemical process of PI formation
by imidization of PAA [40,41]. Figure 3b shows typical XRD data for each PI aerogel. All PI
aerogels display characteristic polyimide amorphous structure peaks, but PI-0 and PI-0.5
have higher peak heights compared to other samples, which is related to the oriented
structure formed during the aerogel and preparation process [42]. This also proves that the
introduction of the SiO2@GO-NH2 gel changes the overall structure of polyimide aerogels.
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Figure 4a shows the Raman spectra of PI-0, PI-0.5, and PI-1.5. All three spectra
exhibited bright fluorescent signals, and the spectral bands around 1340 cm−1 can be
attributed to the C-N stretching vibration, around 1590 cm−1 to the ring vibration of PI, and
around 1740 cm−1 to the stretching vibration of C=O from PI and GO [43,44]. This may be
caused by the convergence of the D-band of rGO (1330 cm−1) and C-N stretching vibration
(1340 cm−1) with each other, the overlap of the G-band of rGO (1560 cm−1) and the ring
vibration of PI (1590 cm−1), and the enhancement of the peak signal with an increase in the
SiO2@GO-NH2 [45]. This evidence demonstrates the close association between PI chains
and SiO2@GO-NH2 within aerogels.

To further verify the chemical bond structure and elemental composition of the aerogel
material, XPS was used to analyze the PI-0 and PI-1.5 materials. The peaks of Si 2p can
be deconvoluted into two groups of sub-bands, assigned to O-Si-O (102.9 eV) and O-Si-C
(101.2 eV), representing the amino-modification by 3ATPES [37,46–48].

The solid-state 13C NMR further reveals the chemical structure described by the
previous characterizations. The peaks at 118, 123, and 136 ppm belong to graphene and
aromatic carbon peaks on the PI chains [49]. The peak at 165 ppm belongs to the carbonyl
carbon [50]. The peaks at 155 and 158 ppm, except for the observed double peaks, belong
to aromatic carbon forming ether bonds on the PI chains, which are slightly shifted due to
their chemical environment [51]. The peaks at 155 and 158 ppm belong to aromatic carbons
forming ether bonds in the PI chains.
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3.4. Properties of PI Aerogel

In practical applications, mechanical properties are often the key element in measuring
the performance of aerogels. The densities of aerogels were acquired by averaging the
results of three measurements of a 10 mm × 10 mm × 10 mm sized PI aerogel. In this
way, we further obtained the specific moduli data of PI aerogels. Although it is generally
believed that limited SiO2 nanoparticles can improve the mechanical properties of poly-
meric materials to a certain extent, an excess can also lead to a decrease in mechanical
properties [52,53]. This is because the addition of more SiO2 leads to agglomeration of
nanoparticles due to van der Waals forces and electrostatic adsorption, resulting in stress
concentration between the SiO2 and the polymer interface [54]. Although a large amount of
SiO2@GO-NH2 was added into the system during the preparation of the PI aerogel in this
study, the specific modulus of the original PI-1.5 sample still reached a relatively superior
46.19 m2/s2 while maintaining a low density (0.0441 g/cm3). There are several reasons
for this: (1) the high dispersion of SiO2@GO-NH2, (2) amino groups led to SiO2@GO-NH2
providing crosslinking sites and enhancing material compatibility, (3) the loading effect
played by GO, and (4) the improvement in the structural properties of the given substrate
by the silica-containing network [39,55]. As shown in Figure 5a, PI-0 and PI-0.5 samples
have similar stress–strain curves, probably due to the similarity in microstructure. With
the improvement in microstructure, the Young’s moduli of the PI-1 and PI-1.5 samples are
greatly enhanced. Interestingly, the two groups of aerogels are still maintained in the linear
elastic region when strain exceeds 40%. Then, there is a sharp increase in the platform
strain behavior and the densification state. This can be attributed to the energy dissipation
effect of the cross honeycomb material and graphene with good toughness values [56].
However, the linear elastic region of PI-2 produces a certain decrease with damage to the
microstructure and stress concentration, caused by excessive doping.
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As a representative of heat-resistant polymers, PI aerogels should maintain good per-
formance even after the influence of high temperatures. The PI aerogel was heat-treated at a
constant temperature of 200 ◦C in the air for 24 h to investigate the property retention of PI
aerogel after long-time heat treatment. The stress–strain curves of the heat-treated aerogels
shown in Figure 5b, and the Young’s moduli, specific moduli, and density data of the two
sets of aerogels were statistically analyzed accordingly and are summarized in Figure 5c,d.
It is not difficult to see that the moduli and specific moduli of polyimide aerogels decreased
after heat treatment, created by the relaxation of internal stress and the destruction of
the microstructure of polyimide aerogels after heat treatment [57]. However, PI-1.5 still
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maintains a good Young’s modulus (1.89 MPa) and specific modulus (41.21 m2/s2), which
proves its durability and mechanical property retention under a long-term thermal environ-
ment. PI-1.5 produces huge mechanical property improvement compared with PI-1, based
on the increase in filler content for polymeric materials, with constant microstructure and
uniform dispersion of fillers [58]. Toughening is achieved. The Young’s modulus of PI-2
(2.26 MPa) in PI aerogel preserved at room temperature without heat treatment improves
compared with PI-1.5 (2.04 MPa). With an increase in density due to destruction of the
microstructure (ρPI-2 = 0.0536 g/cm3), the specific modulus of PI-2 (42.23 m2/s2) was shown
to decrease. Instead, the Young’s modulus of PI-1.5 and PI-2 (1.97 MPa) became closer
after heat treatment. The stress–strain curves showed that the heat-treated PI-2 samples
could also be maintained in the linear elastic region at more than 40% of the strain, further
indicating the relaxation effect of heat treatment on the concentration of internal stress in
the aerogel material.

Thermal insulation is an essential indicator of the energy efficiency of PI aerogels. The
thermal resistance analysis of the aerogel material is exhibited in Figure 6. The PI-1.5 aerogel
exhibited superior thermal resistance in the original state (0.0309 W/m·K) and after heat
treatment (0.0328 W/m·K). The PI-1.5 aerogel exhibits competitive thermal conductivity
in comparison with other similar PI aerogel/foam materials (Xue et al. 0.036 W/m·K [39],
Zhang et al. 0.0311 W/m·K [51], and Jiang et al. 0.04106 W/m·K [59]). As shown in
Figure 6a, the flowers placed on top of PI-1.5 showed no significant dehydration after
15 min of burning using an alcohol burner flame. The introduction of graphene generally
leads to an increase in the thermal conductivity of the system, with the wrapping of
graphene using SiO2 preventing the formation of thermal pathways between graphene,
thus eliminating its thermal conductivity [60,61]. The dispersion interval of the thermal
resistance test data of the PI-0 sample has a larger error interval compared to that of the other
samples, which may be due to the large pore size of the PI-0 sample. Unlike the similarity
of mechanical properties, the thermal resistance of PI-0.5 (original: 0.0387 W/m·K; after
heat treatment 0.0390 W/m·K) is much better than PI-0 (original: 0.0426 W/m·K; after heat
treatment: 0.0425 W/m·K). The uniform dispersion of the inorganic gel phase in the aerogel
system forms a PI/SiO2/GO multilayer interface, which enhances the thermal resistance
(Kapitza thermal resistance) [62]. The thermal resistance of PI-1 (original: 0.0332 W/m·K;
after heat treatment: 0.0344 W/m·K) and PI-1.5 increased significantly compared to other
aerogels, suggesting that the double-gel system improves the density and microscopic pore
structure of the aerogel system. The increased content of SiO2@GO-NH2 enhanced the
Kapitza thermal resistance of the system. As shown in Figure 6d, the infrared images of
PI-0 and PI-1.5 are obtained by cutting the original aerogel samples into cylindrical test
samples of 2 cm in height and 2 cm in diameter, and then placing them on a 200 ◦C heating
stage for 60 min and photographing them using an infrared camera. PI-1.5 shows much
slower thermal diffusion than PI-0, and the thermal resistance is consistent. The superior
thermal and mechanical properties make the PI aerogel in this study a possible solution for
construction, energy, and other applications [16].

The thermal properties of PI aerogels are discussed further by thermogravimetric
analysis. The TGA data of PI aerogels were tested and analyzed, and are shown in Figure 7.
PI-0 and PI-0.5 showed similar weight loss changes at 0–500 ◦C and the curves of both
almost overlapped. The aerogel microstructure and other factors produce improvement
with the addition of SiO2@GO-NH2, causing decreased weight loss rates of PI-1 and PI-1.5
at 0–500 ◦C compared to PI-0 and PI-0.5. The decomposition temperatures of PI-0, PI-0.5,
PI-1, and PI-1.5 were 522.45, 539.30, 548.88, and 543.80 ◦C, respectively, when the weight
loss reached 5% in the Ar atmosphere. While in the air, they were 384.03, 440.55, 457.22,
and 496.03 ◦C. The improvement in thermal stability demonstrates the strong interaction
between organic and inorganic components in the double-gel system [63]. In contrast,
the weight loss rate and decomposition temperature (392.12 ◦C in Ar atmosphere and
248.35 ◦C in Air atmosphere) of the PI-2 aerogel at 0–500 ◦C produced a considerable
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decrease, indicating that the excess SiO2@GO-NH2 for the disruption of the microstructure
of the PI aerogel instead reduced the thermal stability of the aerogel [64].
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If the PI aerogel can absorb moisture from the environment, the thermal insulation
property could also reduce. As shown in Figure 8, the hydrophobicity of the PI aerogel was
studied by measuring the water contact angle. Due to the capillarity caused by the poor
microscopic structure of PI-0, the PI-0 aerogel absorbed all the tested droplets, indicating
intrinsic hydrophilicity. The PI-0.5 sample had a water contact angle of 27.03◦, indicating
that the SiO2@GO-NH2 gel could provide the hydrophobicity of the PI aerogel. The
water contact angle of PI-1 and PI-1.5 produced a tremendous leap. More specifically, the
water contact angle of PI-1.5 reached 131.55◦, which testifies to its high hydrophobicity.
The controlled pore structure of aerogels allows an increase in surface roughness, thus
improving the hydrophobicity of the aerogel surface. However, with heat treatment, the
water contact angles of the PI aerogels all decreased. The increasing hydrophilicity can be
attributed to the introduction of oxygen-containing functional groups or changes in the
microstructure [12,65].
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4. Conclusions

In summary, a double-gel system polyimide aerogel material was discussed in this
study. A SiO2@GO-NH2 amino-modified wet gel was first fabricated via a novel sol-
gel method, to obtain a SiO2 uniformly coated GO material. Then, the PAA gel and
SiO2@GO-NH2 gel were homogeneously dispersed under the liquid phase, to provide the
double-gel system. After a series of subsequent treatments, the prepared PI aerogel had
a microscopic porous honeycomb structure and multiple-layer interface, which provided
good thermal resistance. The strong compatibility and binding of SiO2@GO-NH2 with
PI also improved the low density (0.0442 g/cm3), high specific modulus (46.19 m2/s2),
effective thermal insulation properties (0.0309 W/m·K), high thermal stability (543.80 ◦C
in Ar atmosphere), high hydrophobicity (131.55◦), and ability to maintain performance
after prolonged exposure to thermal environments. The performance improvement was
due to the scientific introduction of SiO2@GO-NH2 and the construction of the double-gel
system. The easy preparation process and superior performance make it suitable for wide
applications within various industrial and research fields requiring thermal insulation.
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