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Big behavior: challenges and opportunities in a new era of deep
behavior profiling
Lukas von Ziegler1,2, Oliver Sturman1,2 and Johannes Bohacek 1,2

The assessment of rodent behavior forms a cornerstone of preclinical assessment in neuroscience research. Nonetheless, the true
and almost limitless potential of behavioral analysis has been inaccessible to scientists until very recently. Now, in the age of
machine vision and deep learning, it is possible to extract and quantify almost infinite numbers of behavioral variables, to break
behaviors down into subcategories and even into small behavioral units, syllables or motifs. However, the rapidly growing field of
behavioral neuroethology is experiencing birthing pains. The community has not yet consolidated its methods, and new algorithms
transfer poorly between labs. Benchmarking experiments as well as the large, well-annotated behavior datasets required are
missing. Meanwhile, big data problems have started arising and we currently lack platforms for sharing large datasets—akin to
sequencing repositories in genomics. Additionally, the average behavioral research lab does not have access to the latest tools to
extract and analyze behavior, as their implementation requires advanced computational skills. Even so, the field is brimming with
excitement and boundless opportunity. This review aims to highlight the potential of recent developments in the field of behavioral
analysis, whilst trying to guide a consensus on practical issues concerning data collection and data sharing.
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INTRODUCTION
Measuring behavior—the past
In preclinical research, the analysis of rodent behavior is
necessary to evaluate normal brain processes such as memory
formation, as well as disease states like neurodegenerative
diseases or affective disorders [1–4]. For centuries, the study of
animal behavior was limited by the ability of humans to visually
identify, record and interpret relevant behavioral changes in real
time [5–9]. Over the last few decades, first computerization and
then commercial platforms have stepped in to automate certain
measurements, mostly by providing accurate tracking of an
animal’s path of motion or nose-point, or by counting mechan-
ical events (beam breaks, lever presses etc.). This has been a
game changer for highly constrained experimental testing
setups, where a clear behavioral outcome is either expected or
acquired over time. Examples include various operant condition-
ing setups and more complex homecage monitoring systems
that can continuously measure predefined daily activities
[10–12]. These measures can accumulate large amounts of data
over days of continuous recording, yet they do not pose major
challenges in terms of data analysis and will not be discussed
further in this review. In contrast to these well-automated tests,
some of the most popular laboratory tests require ethological
assessments, often involving laborious and subjective human
labeling. Prime examples are tests that assess the emotional state
of an animal (e.g. the open field test or the elevated plus
maze, where animals can display a range of exploratory and risk-
assessment behaviors), social interaction tests (where two or
more conspecifics dynamically interact and display species-
specific behaviors), or tests of prey-pursuit (where the actions of

the prey and predator quickly influence each other’s behavior
output). Amongst these tests, assays of emotionality are usually
more tractable, because a single animal is recorded and
analyzed. The open field test is an illustrative example, in which
the animal is placed in a circular or square enclosure (field).
Originally only defecation was recorded as a readout of
emotionality and sympathetic nervous system activation [13].
Ambulation was soon added, yet early measurements of
ambulation relied on manually counting the number of entries
into subdivisions of a grid floor. The importance of recording
subtle, ethologically relevant behaviors like rearing, grooming,
sniffing or teeth grinding was recognized early on [14, 15], yet
the requirement to manually score these behaviors limited the
number of parameters that were reported. The advent of
computerized tracking through beam-grids or video recordings
provided automated measures of distance and time spent in
different zones of the open field. This made the open field test
one of the most widely used tests in behavior laboratories
around the world, providing a quick readout of both locomotor
activity and anxiety [16, 17]. While the number of studies using
the open field test has exploded over the last few decades, the
measurement of ethological behaviors faded into the back-
ground. In today’s behavioral neuroscience laboratories, etholo-
gical measures in the open field test are largely restricted to
scoring a few, well-characterized behaviors (e.g. rearing or
grooming), ignoring the rich behavioral repertoire the animal
displays during the 10-minute recording session [18]. While
automation has thus arguably hurt ethological aspects of
behavior, it appears that the advent of machine vision and deep
learning tools might now tip the scale in favor of ethology.

Received: 17 January 2020 Revised: 19 June 2020 Accepted: 22 June 2020
Published online: 29 June 2020

1Department of Health Sciences and Technology, ETH, Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Zurich, Switzerland and 2Neuroscience
Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
Correspondence: Johannes Bohacek (bohacekj@ethz.ch)

www.nature.com/npp

© The Author(s) 2020

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-020-0751-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-020-0751-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-020-0751-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41386-020-0751-7&domain=pdf
http://orcid.org/0000-0002-8442-653X
http://orcid.org/0000-0002-8442-653X
http://orcid.org/0000-0002-8442-653X
http://orcid.org/0000-0002-8442-653X
http://orcid.org/0000-0002-8442-653X
mailto:bohacekj@ethz.ch
www.nature.com/npp


Measuring behavior—the future
Over the last two years, we have witnessed a pose-tracking
revolution. Software packages based on deep learning/neural
networks allow markerless tracking of multiple, hand-picked body
points with astonishing performance [19–24]. From a data
perspective, a mouse is no longer only a body center and nose,
but has become a complex, three-dimensional skeleton composed
of moving vectors. This technology has now been merged with
supervised machine learning tools, which enable the detection
and quantification of complex, ethologically relevant behavioral
sequences with ease and human-like accuracy [25–29]. Addition-
ally, unsupervised machine learning approaches begin to reveal
the stunning repertoire of subtle behavioral sequences—often
undetectable by humans—that can be recorded with robotic
precision in simple testing arenas and in various species ranging
from rodents to insects and nematodes [30–34]. This has
spawned the field of computational neuroethology, and several
excellent reviews have revived the idea to generate a compre-
hensive behavioral personality profile, an “eth-ome” or “behavi-
ome”, in analogy to the genome [35–38]. We direct the
interested reader to these reviews, which lay out a thorough
general framework for the hopes and challenges big data brings
to behavior analysis [35, 36], and summarize the progress made
by recent attempts to leverage unsupervised and supervised
computational approaches to map the behavioral space of
animals [37, 38]. In the present review, we evaluate the various
approaches for recognizing and quantifying ethological beha-
viors using machine learning, and consider the impact of
accurate pose estimation algorithms on behavior recognition
and quantification. We focus specifically on rodent emotionality,
which poses difficult yet tractable challenges for behavioral
neuroscience and preclinical work. The findings, limitations, and
possible solutions presented here will have important implica-
tions for even more ambitious endeavors, such as deconstructing
social interactions or analyzing predator-prey dynamics. Based
on lessons learned from computational neuroethology over the
last few years, we propose practical solutions for how data could
be collected, analyzed and shared. These suggestions shall aid
the establishment of behavi-omics as a field with defined
standards and guidelines akin to genomics.

FROM HUMAN ANNOTATION TO MACHINE LEARNING
In the early 2000s, commercial platforms specialized in rodent
tracking started offering software packages that enable auto-
mated quantification of some ethological behaviors such as
grooming or rearing in the open field, or head-dipping in the
elevated plus maze [39–41]. Embarrassingly, the current con-
sensus is that these commercial systems still perform poorly when
quantifying ethological measures in comparison to human raters
[26, 42]. Thus, human scoring has remained the gold standard for
a large set of standard laboratory behavior tests, which is
extremely laborious and scales with the number of behaviors
scored. Annotating every frame in a 1 h video with high
confidence was estimated to take 22 person-hours [27]. A study
in which experienced raters annotated 13 distinct behaviors
reported a time-investment of 1 h per 5 min of annotated video
[40], and in our hands annotating a few behaviors in a 10 minute
video takes roughly 1 h [26]. In addition, several other human
factors limit the reliability and reproducibility of human scoring
(see section “The Human is the Limit”). As a consequence, the vast
majority of studies using the open field test report only automated
measures like distance moved and time spent in the center.
Even behaviors that are highly informative about the animal’s
emotional state, like unsupported rearing, have been recorded by
only a handful of studies over the past several decades [43–45].
Today, supervised machine learning offers a sensitive and reliable
solution for automatically tracking complex rodent behaviors.

Supervised machine learning
The basics. Supervised machine learning requires two prelimin-
ary steps: In the first step, video or image data is used to generate
a number of features that are used as input for the classifiers
(Fig. 1a). Most commonly, animal tracking data from commercial
software packages is used to calculate features such as “animal
length”, “animal orientation”, “animal speed” or “distance to
feeder”. These features are usually manually defined and
computed with hand-crafted algorithms, often based on the
point-tracking data from the nose and tail base. In this case,
“animal length” is defined by the distance between nose and tail
base, “animal orientation” by the relative angle of the correspond-
ing vector, “animal speed” by the change of position of the body
center over successive frames, and “distance to the feeder” by the
distance between nose point and feeder. In the second step, video
or image data is manually annotated by human raters, to assign
labels (classifications) to individual behaviors. This process is
critical, as it establishes the ground truth of what the animal is
doing at any given moment in time (see section “The Human is
the Limit” for issues related to this process). In the subsequent
machine learning step, a mathematical model (classifier) is then
trained to recognize the manually annotated classifications. It
does this by iteratively optimizing weights/parameters within
the mathematical model to increase its accuracy to predict the
classification based on the feature data. The classifiers are then
validated using a cross-validation data set to estimate its
performance on new data. The cross-validation data set is part
of the manually annotated data that was not used for training. In
the cross-validation process the overall accuracy of the classifier is
analyzed when compared to a human annotator. It is important to
establish if a classifier only “memorizes” the initial data (good
accuracy on training set, but poor accuracy on cross validation set)
or if it manages to “generalize” (good accuracy on both sets).
There are multiple methods to improve generalization, the most
frequently used ones are regularization (punishing the model for
using stronger parameter weights) and drop-out (iteratively
training the classifier while omitting random parameters in each
step). Finally, confusion matrices are often used to visualize
pairwise errors of all analyzed behaviors [46]. The confusion matrix
not only contains the accuracy of each behavior, but also displays
which behaviors are often mistaken for one another between
raters.

Different supervised approaches. First attempts to use supervised
machine learning for automated behavior recognition were made
two decades ago using single frames from a side view video
recording in combination with feed-forward neural networks [47].
From these single frames three points (nose, center, and tailbase)
were set and used to calculate features such as distances between
points and angle between vectors. However, no regularization or
drop-out was used and the data was split randomly into training
and cross validation sets. Consequently, the resulting algorithms
performed extremely well on the training set (98%), whereas the
cross-validation accuracy dropped to 76%. When different videos
were used for both sets the accuracies were further reduced to
84% (training set) and 64% (cross validation set), respectively.
Later studies started to incorporate temporal information into the
feature space and appropriate machine learning methods to
improve generalization. A 2010 study used side-view video
recording of mice in their homecage [27] and computed positional
features (i.e. distance to feeder), velocity based features (i.e. speed
of the bodycenter), and also motion based features that
encapsulate temporal information (i.e. filters that can recognize
directions of motion). They trained their classifier to recognize
eight different behaviors, using an extensive training set compris-
ing 10.6 h of annotated recording. For classification, they used a
model based on Support Vector Machines (SVM), which return
the most likely behavior at any time, in combination with a
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Hidden Markov Model (HMM), which takes transition probabilities
between behaviors into consideration. They could convincingly
show that the “human vs model” confusion matrix was similar to
the “human vs human” confusion matrix, demonstrating human-
like performance. However, there are some notable limitations to
this type of automated recognition. First of all, some of the
features rely on positional data (i.e. distance to feeder), which are
highly dependent on the set-up. Any change in the environmental
configuration would render the models unusable. Additionally, the
videos were all recorded from the side, so applying it to a test
setup with video from a different angle would require the
collection and labeling of a massive new data set. A number of
other notable studies have emerged over the last ten years, using
different types of features and machine learning methods (see
Table 1 for an overview). Most studies calculated features similarly,
using hand-crafted algorithms or filters to describe location,

appearance and movement of the animal. However, the detail and
depth of these features varies a lot, with some studies depending
on as few as seven features [48], while others depend on almost
100 [25]. The reported studies (Table 1) indicate that a handful of
features can contain enough information to reliably detect some
behaviors, and that there might be a marginal increase in
performance when including more features. However, it also has
to be noted that the inclusion of many manually defined features
requires extensive development time and increases the chance of
including uninformative/correlated features that can have a
negative impact on model accuracy, implying bigger may not
always be better [49].

Tracking multiple animals. In cases where multiple animals
are recorded simultaneously (e.g. for social interaction), pre-
segmentation enables the separation of the two animals. Pre-
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segmentation uses established algorithms from image processing
practices, such as the watershed algorithm, that can detect
borders between objects/animals [50]. Keeping track of the
identity of animals is still challenging, especially when animals
cross over each other or interact in close proximity), so often
different colored animals are used [29, 41, 48]. However, some
imaginative methods have demonstrated reliable markerless
animal identification for tracking groups of similar-looking
animals, such as zebrafish, in set-ups where animal overlap occurs
regularly [51]. These methods depend on purely data-driven
approaches where a “fingerprint” representation of each animal is
created in each frame by using a sequence without any animal
overlap. In this case a pixel-pixel pair analysis is used to generate
intensity vs distance and contrast vs distance density maps of
each animal. After animal crossings, the “fingerprint” with the best
match from the previous sequence is found and the animal ID is
updated accordingly. These methods can be employed in parallel
to automated behavior recognition to additionally resolve animal
identity, although it is unclear how well such an approach would
perform on mice that are not readily identifiable based on fur
patterns. Notably, progress in this area is happening fast. As we
are writing this review, a new version of the popular, free pose
estimation software DeepLabCut [19, 20] has just been released,
capable of tracking multiple animals (including ants, rodents and
primates) in simple as well as complex arenas, apparently with
astonishing reliability. Given the widespread use of this software
package, such an advance will have a major impact, and it is likely
that multiple animal tracking will soon be the new standard in
the field.

New machine learning approaches. In recent years researchers
started to adopt emerging technology from video recognition
software, employing 3D Convolutional Neural Networks (3D-CNN),
which fully prefilter and encode temporal-spatial information on
an end-to-end basis. Therefore, no custom algorithms or filters
have to be used to define features, these networks rely on video
information directly. Results in recent studies have been mixed. In
one report [52] the algorithm slightly underperformed compared
to the original study using the same data, which had used
manually selected features [27]. Another study [53] outperformed
an older study using the same data [40]. However, this was only
the case when heavy data augmentation was applied and the
performance dropped a lot when videos from different set-ups/
animals were used. A third study [54] showed a slight increase
when using 3D-CNN models pre-trained to recognize human
behaviors and retrained with mouse homecage behavior data
from a previous study [27]. However, in this study only 12 similar
side-view recordings from the same set-up are used, so it cannot
be assessed how well it would perform with a different set-up. In
parallel to these efforts, supervised machine learning methods
have also been developed to automatically recognize mouse
social interactions based on ultrasonic vocalization patterns [55],
and to recognize emotional states from facial features of mice [56].
It will be exciting to see when all these multi-level analyses
converge to construct a multi-sensory behavi-ome.

The entry barrier. Most behavioral neuroscience labs do not have
extensive knowledge in computer science, programming or deep
learning architecture. For these labs, there is a high entry barrier to
implement and reproduce the many new machine learning
approaches that have been published recently. A notable
exception is JAABA [25], a highly polished machine-learning
software that is accessible to experimenters without computa-
tional backgrounds. It allows the fully integrated annotation and
training of new classifiers to recognize new user defined
behaviors. It has been independently validated for the detection
of grooming behavior in mice [42] and for automatic analysis of fly
behavior in a study analyzing over 500 terabyte worth of videos of

400,000 flies [57]. Additionally, there is more good news regarding
the lowering of the entry barrier. The recent progress in pose
estimation algorithms (Fig. 1c) has resulted in the development of
elegant, easy-to-use software packages such as DeepLabCut
[19, 20]. These tools enable labs to devise their own point
tracking data, which can serve as a high-quality input foundation
on which one can define features and train machine learning
algorithms. Open-source platforms such as www.openbehavior.
com are important drivers for these rapid advancements [58]. For
example, user-friendly software interfaces that promise more
wide-spread implementation of state-of-the-art algorithms have
started to emerge faster than the peer-review process can handle
them [29, 59]. One of these tools is Simple Behavioral Analysis
(SimBA), a plug-and play pipeline with graphical user interface
that uses point-tracking data from DeepLabCut (or other point-
tracking solutions) to train machine learning classifiers to detect
and quantify behavioral patterns [29]. Currently SimBA focuses on
complex social interactions between different-colored strains of
rats or mice, but can be used in the simpler open field or
homecage setups to score the behaviors of single animals. As
noted above, the implementation of robust multiple animal
tracking in DeepLabCut will likely galvanize these approaches. It
will be extremely interesting to see whether the behavioral
research community starts actively implementing these tools, or if
it takes commercial all-in-one products to lower the entry barrier
sufficiently to truly impact the wider research landscape. If these
and other free machine learning tools start being widely adopted,
we will learn how well they perform in independent benchmark-
ing comparisons, and how easily the resulting algorithms transfer
to the vastly heterogeneous type of video input data generated by
labs around the world.

Unsupervised learning
One of the key weaknesses of using supervised machine learning
solutions in behavioral research is the human factor (See section
“The Human is the Limit”). In recent years, advances in data-driven
unsupervised machine-learning methods (which require no
human labeled examples) have transformed the field and are
now at the forefront of behavioral innovation [30, 59, 60]. Their
inherent strength is that they approach the problem from a data-
perspective. Rather than by defining behaviors before tracking
them, they observe the entire dataset and look for over-
represented patterns (Fig. 1b). For an excellent description of
various computational approaches addressing this issue in
different species, we refer the reader to [38]. Here, we focus on
the rodent literature, where the most prominent study has
employed 3D cameras in combination with autoregressive Hidden
Markov Models (AR-HMM) to find sub-second clusters of short
behavior sequences, often referred to as syllables or motifs, that
act as the smallest building blocks of most behaviors [30]. Upon
visual inspection of these syllables by human observers, recogniz-
able behaviors such as “walk,” “pause,” and “low rear” could be
identified. The longest sequences that can be found with this
approach are in the sub-second range (<500ms). While it is
conceivable that some of these syllables can be interpreted as
important behaviors, longer behaviors that are built up from
multiple of these syllables in series cannot be sufficiently resolved
without any further post-hoc analyses. Other studies involving
unsupervised analyses of pose estimation data [59] found longer
syllables of up to 2 s length. They further demonstrated that pose
estimation data in combination with t-distributed Stochastic
Neighbor Embedding (tSNE) and Gaussian Mixture Models
(GMM) clustering is sufficient to resolve behavioral syllables. A
key element in this study is the dimensionality reduction that has
also been incorporated in several earlier studies [31–33, 61]. This
process compacts high dimensional data, which can contain many
correlated variables each in its own dimension. As a result, a
smaller set of variables (=dimensions) emerges that can explain as
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much of the variability as possible. Thus, this reduced dimension
description contains almost as much information as the original
description, but is greatly simplified. Dimensionality reduction is
not only beneficial for unsupervised methods, but could also be
employed for supervised approaches.

BIG DATA, BIG PROBLEMS, SMALL SOLUTIONS
As we have discussed, many different methods of supervised
behavior recognition have been devised to accurately detect
complex rodent behaviors. Methods with predefined features are
currently fairly well established, whilst end-to-end approaches for
supervised learning and unsupervised methods, are very promis-
ing but still in their infancy. Some of the major bottlenecks are
currently (a) the lack of enough publicly available, well-annotated
behavioral datasets to benchmark and compare different algo-
rithms, (b) the lack of a consensus in the field regarding set-ups,
camera positioning and optimal features of behavior recognition,
and (c) the lack of transferability of classifiers and data. Here, we
will discuss these issues and propose solutions.

The human is the limit
As all supervised machine learning classifiers are trained on data
annotated by human raters, these classifiers can only be as good
as their human counterparts. Humans are far from perfect at
tracking animal behavior, and problems such as high inter- and
inter-rater variability, observer bias and observer drift are well-
known issues [20, 42, 62–65]. Therefore, the systems trained on
the data will never be able to outperform their human instructors.
In most cases the ground truth is not perfectly defined and
contains a lot of variability. Additionally, there is currently a lack of
extensive, well-annotated data-sets, and many studies use older
labeled data from previous studies [52–54]. A potential approach
could be to create extensive, well-annotated labeling sets, which
include only examples where all raters agree with one another,
however these would omit difficult cases from the training set and
thus limit the sensitivity of the classifier. In this case experimenters
could review unclear examples together and try to reach a
consensus. However, for cases where reviewers have to draw an
arbitrary conclusion because the recording is unclear, the ground
truth cannot be established. Additionally, our human sensory
modalities likely limit our ability to recognize subtle behavioral
motifs that might be of crucial importance to the animal’s
repertoire of behavioral expressiveness, similar to our inability to
hear sounds in the ultrasonic range. While unsupervised analyses
promise a way around human bias, they are also ultimately
constrained by human interpretation. Unsupervised approaches
discover behavioral categories based on their natural statistics,
which makes these data-driven approaches particularly appealing.
Once the unsupervised approach reports a list of behavioral
categories that have been altered by an experimental manipula-
tion, it again requires human intuition to derive a meaningful
behavioral interpretation. Thus, a human experimenter has to
visually inspect examples of altered categories and connect them
to known behavioral readouts. This could be especially tricky for
short behavioral syllables that cannot be connected to any known
readout. In this case, what do we do with an altered syllable that
cannot be linked to any previous observations in the literature?
How can we ensure that they are important readouts and not
simply correlated observations due to a simpler explanation, such
as reduced motility/activity, which can be recorded with a simple
center of mass tracking? This is connected to the issue of time
segmentation, the difficulty of deciding at which point syllables
should be distinguished as separate entities, or whether multiple
syllables should be clustered into one behavior. Further, should
similar behaviors be clustered or separated (e.g. low vs high
rears)? If these two indicate the same phenotype, analyzing them
independently would not only increase variability, but also the

number of behavioral variables tested (thus hurting statistical
power, see section “The Multiple Testing Problem”). Despite these
theoretical difficulties, first attempts at deconstructing open field
behavior using an unsupervised approach suggest that well-
known behavior categories emerge, like rearing and grooming,
and that finer nuances in grooming can be detected (face groom,
head-groom, body licking, paw licking), some of which carry
biologically relevant information and respond selectively to brain
circuit interventions [30, 34, 59].

The multiple testing problem
Supervised approaches can track large numbers of complex
behaviors in a given test, and unsupervised methods may identify
many new unexpected behavioral categories (e.g. several sub-
categories of grooming or transition patterns between behaviors).
With an increasing number of dependent variables, multiple
testing considerations become extremely important to prevent a
high degree of false positives (type-I errors), yet these considera-
tions are most often ignored [66–68]. If we evaluate five
independent behaviors in the open field test, and we find one
significant difference between two groups of mice (p= 0.05), the
chance of this being a false discovery is not 5% anymore, but
~23% (1–0.955). Mathematical tools have to be applied to correct
for multiple testing, which can be rather stringent, such as the
Bonferroni adjustment, thus greatly reducing the power of the
test. Many more animals would have to be used per group to
reveal statistically significant differences, which violates guidelines
to reduce animal numbers wherever possible [69, 70]. An false
discovery rate (FDR) correction [71] is much better at reducing
both type-I and type-II errors by analyzing the p-value distribution
of multiple observations, yet this type of analysis makes the
assumption that all tests are independent. For many behavioral
read-outs this is clearly not the case as many behaviors correlate
strongly (e.g. distance and velocity). An appropriate multiple
testing correction, such as the refined Benjamini-Yekutieli
procedure, assumes that tested variables can correlate [72].
However, even the correct statistical approach does not solve
the key issue: the more dependent variables we analyze, the more
power we need to detect differences. This argues for carefully
deciding which behaviors to analyze a priori when using
supervised models, or to limit the number of detected clusters
when employing unsupervised methods.

Data and model transferability
How well can a classifier recognize behaviors in a new data space?
For example, can a classifier trained to recognize grooming in the
open field test also recognize grooming in the elevated plus maze
or in the homecage (in the same lab)? Can a classifier trained on
how to recognize behaviors in the open field test in one lab
recognize the same behaviors equally well in an open field test
that is slightly different (in terms of lighting, size, orientation,
camera distance etc.) in a different lab? And how does
performance change when testing animals of a different sex,
age, or strain? This concept of “model transferability” is often
ignored, but might be one of the most important characteristics.
The reason the open field test is so popular, and most studies
report only distance travelled and time in center, is because it can
be easily automated and standardized across labs. If a model has
poor transferability, anyone who wants to establish a similar
workflow in their lab will face a large investment in terms of
labeling new data and then training and evaluating new
classifiers. This process is not only costly, but also limited to
researchers with a sufficiently strong computational background.
For models that use manually selected features, several

characteristics determine transferability. For example, are any of
the features position or rotation dependent? Features such as
“distance to feeder” or orientation within the arena will not allow
for easy transfer of the models into new contexts, since these
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features might either be non-existent (no feeder), or have a
different distribution in the new context (orientation). Most
studies cited here are subject to these problems. Although high
hopes have been placed in end-to-end systems, recent studies
have shown that they seem to be even less transferable [53]. One
problem with such end-to-end approaches could be that the
“data-space” is much larger than when only a few selected
features are considered (see section “Data and model transfer-
ability”). Classifiers have difficulties in generalizing when data
is presented that looks different to previously encountered data
(e.g. different illumination, different lens effects, different-looking
rodent strains). Despite these issues, the benefits of a transferable
end-to-end system would be immense, because it would
circumvent many of the biases of manual feature selection. An
ambitious solution could be to create an extensive data-set that
contains annotated videos of numerous different animals (mouse
strains, different ages, sexes, sizes) in many different set-ups,
recorded with different cameras/lenses, zoom levels, at variable
lighting conditions and with heavy data augmentation. However,
the success of such a model is hard to predict and the time-
investment would require a multi-center study with large
investment from many research groups.
Transferability also appears to be a major issue of unsupervised

methods. A pioneering study that directly modelled pixel data
found that their approach strongly depended on the size and
shape of the mouse [30]. The number and type of syllables
observed depends on these and other variable conditions. How a
syllable observed in one setting differs to the same syllable in a
second setting is unclear. How can we ensure that the same
“cutoff” point between similar syllables is found by the algorithm
each time? In addition, if data of multiple experiments from
different set-ups are included in an unsupervised analysis, how do
we prevent the algorithm from considering the same behavior in
two set-ups as separate syllables (e.g. “grooming experiment 1”
and “grooming experiment 2”)? Even If more data from the same
setup is used, unsupervised methods will necessarily increase the
number of discovered syllables [30].

One solution to the transferability problem
Powerful new pose estimation tools now enable the necessary 3D
point-tracking of multiple body points with very high accuracy
[19–23, 73]. They are easy to implement and adjust, creating a new
model to track multiple points on a freely moving mouse in a new
environment takes roughly 12 h [26], and does not require
advanced computational expertise. Therefore, rather than gen-
erating a massive dataset of annotated behavior videos to train
robust, transferrable end-to-end solutions, we propose to gen-
erate a transferable skeleton representation of the animal from
raw video data. The major advantage of this approach is that the
resulting three-dimensional skeleton representations are comple-
tely independent of the animal’s position and orientation, and also
of environmental factors such as illumination and background.
The skeleton contains vectors constructed from point-pairs. These
vectors can be used to either generate a number of features that
are fed into supervised machine learning algorithms [26], or these
features can directly form the input for unsupervised clustering, as
was recently demonstrated [59]. Absolute distance would be the
first class of features, angles between vector-vector pairs and the
angle to the Z-plane (=ground level) can be included as second
and third classes. The advantage is, that angles are scale-less by
nature, whereas distances can be scaled linearly for data
augmentation or efficiently normalized (see Box 2). This could
be the most transferable description of a freely behaving animal,
and should be able to be analysed with classifiers trained on a
completely different dataset. Additionally, in combination with
arena data (e.g. polygons, points of interest etc.), these point-
tracking data retain any important information for animal
behaviors that are dependent on specific set-ups.

Although a 3D skeletal representation is intriguing, it also
comes with several caveats that need to be addressed. First, data
has to be presented in an undistorted format (Box 1) and has to
be sufficiently standardized (Box 2). Further, the set of points
included in the tracking has to be sensible and retain as much
information as possible. For example, tracking the nose, head-
center, headbase, bodycenter and tailbase enable a fairly
accurate in silico modeling of the spine. This can pick up
behavioral syllables such as head direction or body curvature
through angles between spine vectors, and stretching/hunching
through distances between spine points. If we move from 2D
tracking to 3D tracking, further syllables such as rearing can be
determined fairly accurately through observation of angles
between spine vectors and the z-plane. However, the perfect

Box 2 Normalization and standardization of features generated
from point-data

To ensure transferability of models, features used to train classifiers must be
independent of the setup. If the feature “body length” is calculated based on
point tracking data (e.g. distance from nose to tail), the resulting length will
depend on the camera location relative to the animal. This feature cannot be
readily transferred and needs to be normalized or standardized. In contrast,
features such as angles (in rad) or true/false checks are perfectly transferable.
There are two commonly used approaches for machine learning, min-max
normalization and z-score standardization. Min-max normalization linearly
transforms data so they fall into the range [0,1], setting the maximum value to
1 and the minimum value to 0. For comparison across datasets this can be
dangerous, since outliers will define the range and have a strong effect on the
mean value of the data of a given feature. Z-score standardization rescales based
on a normal distribution, where 0 is set to the mean value of a given feature and
one standard deviation is rescaled to ±1. There are two advantages to
standardized data. First, it is more comparable across set-ups, since it will correct
any set-up specific scaling alterations (i.e a zoom factor or a mouse size factor).
Second, it optimizes the training speed of most types of classifiers that use
iterative processes such as gradient descent, since the upgrade function can use
the same learning rate for all features. Standardization parameters (mean value
of features and standard deviation of features) should be determined for each
set-up across multiple normally behaving wild-type mice and should then be
included into the feature-data object (Fig. 2d) to enable appropriate re-scaling. In
addition to correcting for spatial differences, temporal differences between
setups have to be corrected for as well. Most accurate classifiers will incorporate
temporal information (i.e. how the pose changes over multiple frames), but the
sequence of a 15 fps recording will look different to a classifier than a 25 fps
recording. An easy solution is to linearly interpolate data acquired with different
fps to match the classifiers trained for a specific fps. For slower recordings,
additional data has to be generated where tracked points of inferred frames are
linearly placed between the positions in recorded frames, whereas for faster
recordings data has to be removed. Inevitably, different research questions
require different frame rates (e.g. whisker recording vs. locomotor tracking). In
order to pick up a signal with a set frequency, the sampling frequency should be
at least twice as fast, as stated in the Nyquist–Shannon sampling theorem [78],
however for complex behaviors having at least ten data points per occurrence is
preferred. Therefore, it reasonable to believe that there should potentially be
more than one standard framerate, one for standard entire body rodent behavior
(~25–30fps, assuming behaviors are longer than 500 ms) and one for fast
behaviors, such as sniffing or whisking ~200fps for ~15 Hz).

Box 1 Dealing with lens distortions
Coordinates from point-tracking algorithms depend on the x- and y-pixels in the
video images. Many lenses have distortions, sometimes clearly visible, sometimes
less noticeable but still present. Distortions are problematic because they alter
lengths and directions of vectors, especially in the periphery (see Fig. 2b),
therefore slightly altering the pose-description. From a data-perspective, the
same behavior looks different in the periphery than in the center of the field.
Distorted videos can still be used for training classifiers, but much more training
data is required to reach a high accuracy. Long-focus lenses solve this issue, as
they have almost negligible lens distortions. However, they have to be placed
much further away, making setups more cumbersome. Wide angle lenses can be
placed much closer but are subject to very strong distortions. For wide angle
lenses software solutions can undistort the videos before they are used as input
for point tracking (Fig. 2b). Alternatively, the distortion can be removed from the
data directly. This requires one or multiple calibration frames to be imaged with
the same set-up. Sophisticated point-tracking methods such as deeplabcut
fortunately incorporate solutions for undistortion [19].
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set of tracked body points (if such a universal description exists
for rodents) needs further investigation. Since features generated
from point-data do not have to include all points (Fig. 2d, e),
tracking more points than required is not detrimental to machine
learning, but requires more human labelling [26]. A sensible
approach for point optimization would be to start with a broad
selection of body points, then successively drop points and
assess the accuracies of the resulting classifiers. An overarching
analysis could reveal which points are the most important for the
largest groups of behaviors. Automated types of feature
selection (Guyon 2003) could be employed on the full point-
set, and points associated with most redundant/uninformative
features dropped. For ease of transferability, the point data
should be stored and shared with a representative and
unambiguous description of the point set, and the criteria used
to set them. Here we propose a set of points that contains the
nose, headcenter, headbase, bodycenter and tailbase (the spine
points), as well as the ears, hips, shoulders and paws (see Fig. 2a).
These, in combination, should enable a description of the most
important axes of movement and have proven efficient for
recognizing and dissociating supported and unsupported rears,
two very similar behaviors in the open field test [26]. Only six
body points were sufficient to dissociate different forms of
grooming activity (which are difficult to score for humans) in a
recent effort to combine point-tracking with unsupervised
behavior recognition in the open field [59].

Data storage, memory and computational requirements
Data storage. Despite an exponential drop in the cost of
storage media, long-term storage of raw video data can still be a
challenging issue. If raw video data is kept at all, tape-based
storage is the most economical solution, rendering the original
video recording inaccessible to other researchers. Moving to
high resolution, high frame rate and multiple angle recordings
further increases memory demands. A full day (24 h) worth of 3D
recording using three camera angles would require almost 45GB
of data storage (full HD with mp4 compression). Storing these
amounts of data is no problem nowadays, but if such data
streams are collected daily or weekly, storage will become
challenging for most labs (published data needs to be archived
for many years). Our proposed approach of using point-data for
tracking, training and distribution (see section “One solution to
the transferability problem”), solves this issue. Data size grows
linearly with the number of points tracked and remains in a
manageable magnitude. One day of continuous 3D tracking
would reach 35MB per tracked point (assuming 25 fps, 4 values
per point: x,y,z and likelihood, all in single precision). Therefore,
20 points would result in a 3D data description of 700 MB
per day of continuous recording. Adding more points is cheap
and enables a fairly complex time-resolved reconstruction of an
animal in 3D.

Working memory. All methods that use feature selection (such as
various pose estimation approaches) will immensely reduce the
amount of data that needs to be loaded into working memory. A
highly compressed, low resolution video with uniform background
requires ~2 KB per frame. If a video is pre-processed with an
algorithm that determines 20 features, all numeric single precision
(4 bytes per feature), the memory of the feature data per frame is
0.1KB. Therefore, using features, a whole day of recording data at
25 fps can be represented with ~200 MBs (a size even low-end
systems can easily load entirely). For end-to-end systems this
number explodes, as these models do not work with compressed
data directly, so videos have to be decompressed before any
computation is performed. Frequently, the animal part of the
videos is re-segmented into a more manageable size, for example
224 × 224 pixels [53]. After resegmentation, a black scale
representation with an intensity depth of 256 levels (=1 byte
per pixel) now requires ~50 KB of working memory per frame. A
day’s worth of recording (24 h) thus requires ~100 GB for data
representation. On top of that, end-to-end systems have been
shown to work best with data augmentation [53]. Therefore, this
number could easily reach hundreds of GBs. Expensive systems
with immense amounts of accessible working memory are
necessary to efficiently handle and train models with this amount
of data.

Computation. Computationally, the bottleneck for most super-
vised and unsupervised methods is training the classifiers or
clustering the data. The computational load depends on other
variables such as learning rate, number of iterations/epochs and
more, which themselves depend on the data depth, complexity
and variability. It is thus hard to estimate the computational need
of each model, but obviously larger data sizes are accompanied by
greatly increased computational needs during the training phase.
Therefore, end-to-end models, which use raw video data as input,
are the most demanding solutions [74] and often require access to
expensive systems such as multi-GPU desktop computers or cloud
services to efficiently train. Whereas models with more manage-
able feature dimensions can be trained on a standard desktop
computer.

The need for consortia. New technologies that improve behavior
tracking are emerging extremely rapidly, yet without standardized
practices for data acquisition, processing and sharing. What is

Box 3 Practical benefits of machine learning approaches for
quantifying behavior

Machine learning approaches have already revolutionized the detection,
quantification and analysis of animal behavior. We elaborate on this throughout
the review, while also emphasizing current limitations and the challenges ahead.
Here, we summarize the advantages of machine learning by categorizing its
contributions into automation and exploration.
Automation. Supervised machine learning approaches provide a powerful
means to automate laborious tasks, thus saving valuable time for researchers and
standardizing analysis. Typically, a research lab can make a one-off investment by
establishing a detailed annotation of behavior videos for a given task, and then
all future data can be analyzed using the same algorithm. This not only saves
time, but allows for important standardization as it avoids differences between
raters to impact the results. While transferability of algorithms between labs is
currently still an issue (see section “Data and model transferability”), it will
certainly soon be possible to transfer fully trained (ideally community-curated)
classifiers between labs. This would eliminate both the initial work investment,
and between-lab variation that arises from different raters and from subtle
differences between definitions of behaviors. Prominent examples include the
successful quantification of (1) unsupported vs supported rears [26] and (2)
grooming activity in the mouse open field test [42], 3) complex social interactions
between two rodents [29], and (4) multiple fly behaviors to successfully correlate
them with the activation of thousands of genetically targeted neuron
populations [57].
Exploration. The unique advantage of unsupervised approaches is the ability to
identify previously unrecognized behaviors or behavioral syllables, and to afford
an unbiased “exploration” of datasets based on statistical clusters that explain
between-group variability. Prime examples are the identification of short
behavioral syllables that form building blocks of rodent behavior and can be
correlated with activity in specific neural pathways [30, 34], and the identification
of different subtypes of grooming behavior in the open field test, which are
difficult for humans to accurately detect [59].
(Un)constrained behavior. So far machine learning approaches have mainly
been employed in unconstrained tests where mice can freely express behaviors
(e.g. open field, elevated plus maze, free social exploration). However, these
approaches could also be used in more constrained “task-based” designs, where
mice are e.g. trained to press levers or use memory cues to explore specific
places or objects in a maze. While the primary outcome measures will depend on
straight-forward tracking (e.g. number of lever presses or time spent investigat-
ing a specific object), additional ethological variables could easily be recorded
and analyzed using (un)supervised approaches. For example, rather than only
measuring time investigating objects in the novel object exploration task, rears
and stretch-attends toward the novel object could yield measures of risk-
assessment and approach-avoidance conflict, in addition to an isolated measure
of memory strength. For a detailed discussion regarding the potential of big data
in bridging the gap between constrained and unconstrained behavior testing, we
refer the reader to an excellent perspective article by Gomez-Marin et al. [35].
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Fig. 2 Proposed workflow for high-fidelity, transferable behavior recording. a A high-fidelity point-set is selected that retains most of the
animal information for the least storage space required. b Behavioral tests are recorded from multiple perspectives with synchronized
cameras. Pose estimation algorithms such as DeepLabCut are used to track the defined points. Undistortion is applied either to the videos
directly or to the data. c Tracked point data is used to create a behavior tracking data object that contains all essential information about the
behavioral test that can be used for any post-hoc analysis. This object is used for long-term storage in online repositories. d Behavior tracking
data objects can be used to create a feature data object that contains all features that are important to recognize a selected behavior. Setup-
specific normalization factors are contained within the feature object to allow easy transferability. e Feature objects are used in combination
with existing classifiers to automatically track behaviors, or a new classifier can be trained in combination with manually annotated training
data. f Example data comparing the proposed workflow to commercial solutions (Ethovision XT 14, TSE Systems) and humans. Supported
rearing behavior is recognized with human accuracy when using features generated from 2D (top view) point-tracking data (adapted from ref.
[26]. g Correlation between three human raters, the machine learning classifiers, and the commercial systems from the same study.
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lacking are (1) quality standards and data formats for publicly
sharing behavioral data, (2) the necessary online repositories, and
(3) guidelines that require authors to deposit published data
online. In comparison, the field of genomics has resolved these
issues through consortia. There are clear rules how genome/
transcriptome sequencing data is recorded, saved and distributed
in a transparent way that allows other researchers to access
unprocessed, raw data and reanalyse them with their own
methods and meta analyses. The main idea was to settle on a
raw data format that is data independent, i.e. it does not depend
on specific genome or transcriptome assembly. In transcriptomics,
‘.fastq’ files are saved. They contain every individual sequencing
read that was measured, and includes corresponding quality
metrics. Whenever a study is published, these unprocessed files
are deposited in an online repository, such as the gene expression
omnibus, where they cannot be altered or removed anymore and
are accessible for anyone [75]. These standards are enforced by
journals and reviewers. For behavior, there needs to be a similar
system where a data-independent measurement produces raw
data that is then shared efficiently and can be reanalyzed by a
different research group with little effort. While the smallest unit in
genetics are individual nucleotides, the smallest units of behavior
remain unknown. There are good arguments for uploading raw
videos, which should become a standard in the field, yet there
is one key issue with uploading videos alone. Videos vary
dramatically in terms of quality, and it makes no sense to
standardize video recordings as they depend on experimental
setups. Videos will have different resolution, frame rate, angles,
brightness etc., which makes them data-dependent and thus
difficult to analyze with general data processing pipelines. Further,
single videos are not very informative, since they are biased by
perspective. Uploading videos from multiple perspectives that
enable 3d reconstruction of movement could solve this issue, yet
would still not enable others to feed these data into standardized
pipelines. A solution based on point-tracking data could be to
share processed 3d pose estimations of a high-quality reference
point-set. These would contain time-resolved pose data of
individual animals and would enable fast and efficient meta
analyses with the advantage of a strong data compression and
simplification at the cost of being not completely data indepen-
dent. Such a stipulatory data format would also address the lack of
large, well-annotated and standardized behavior data-sets, as it
would enable researchers to collaborate at producing well
polished data-sets that contain annotated examples from many
different set-ups, mouse lines and mouse models. This would
help develop better supervised and unsupervised algorithms,
which depend
on large and well-annotated datasets to be trained and

validated. Benchmarking different machine learning models
would become easier, and we could test how well models transfer
between labs or setups. Finally, as easy-to-use machine learning
tools with intuitive user interfaces for behavior analysis are
emerging [25, 29, 59], combining them with a standardized data
format would enable a seamless integration of emerging
technologies into the labs of behavioral researchers.

FUTURE DIRECTIONS AND CLINICAL APPLICATIONS
Behavior assessment is one of the cornerstones of preclinical
research, as changes in animal behavior are the main readout
before new compounds can enter clinical trials. Therefore,
advancements in our ability to reliably detect and quantify
ethograms in laboratory rodents and other species will ultimately
impact human health. The field of behavioral research is currently
experiencing the rapid innovation and implementation of new
technologies. These advances bear incredible potential, not only
to enable large scale and fully automated analyses, but also to
increase the quality of the data and the depth of the information

that can be extracted from a single behavioral experiment (see
Box 3). Nonetheless, the field faces major challenges: First, the
large number of novel variables makes it harder to interpret the
outcome of an experiment and requires more sophisticated
statistical tools for analysis. Second, these novel approaches
generate large amounts of complex data, the analysis of which
require high-performance computing resources and advanced
knowledge in computer science and deep learning architecture.
Third, as these approaches begin to be implemented by different
groups, many new issues emerge: repositories for sharing raw
behavior data—and the necessary consortia and guidelines—are
not available, the lack of standardization leads to issues in
transferability (between different laboratories, tests, or setups),
and the absence of benchmarking datasets makes quality
assessment difficult. Finally, whilst a few research groups push
the boundaries of what is technically feasible, the entry barrier to
deploy these tools is still too high for the large majority of
research labs, which generates two parallel worlds of behavioral
analysis. Going forward, behavioral scientists will have to adapt
new skills to implement new technologies, and we urgently need
to form consortia to establish timely standards and guidelines that
enable data sharing and foster reproducibility. As a group, we
need to learn from fields like genomics to unlock the full potential
of behavi-omics.
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