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ABSTRACT

Reported outcomes, such as incidence rates of mortality and intensive care unit admission, vary widely across
epidemiological coronavirus disease 2019 (COVID-19) studies, including in the nephrology field. This variation can in part be
explained by differences in patient characteristics, but also methodological aspects must be considered. In this review, we
reflect on the methodological factors that contribute to the observed variation in COVID-19-related outcomes and their risk
factors that are identified in the various studies. We focus on issues that arose during the design and analysis phase of the
European Renal Association COVID-19 Database (ERACODA), and use examples from recently published reports on COVID-
19 to illustrate these issues.
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INTRODUCTION

In the past months, an impressive number of studies has been
published on the epidemiology of coronavirus disease 2019
(COVID-19). Many of these studies tried to identify risk factors
that predispose to developing severe COVID-19 leading to

hospitalization, intensive care unit (ICU) admission and death.
This plethora is not surprising since there is a great deal of un-
certainty surrounding this new disease. Understanding which
individuals are at risk for severe COVID-19 is critical in manag-
ing the present pandemic. For instance, current management
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strategies are to inform high-risk individuals—including
patients with chronic kidney disease (CKD)—to take strict pre-
cautions and avoid getting infected, and for healthcare authori-
ties to design preventive strategies and weigh them against
their effects on individual freedom and social-economic conse-
quences. In addition, information on high-risk groups is essen-
tial for designing adequate vaccination strategies.

The results of epidemiological COVID-19 studies vary widely
in the field of nephrology, but also in other disease areas. This
includes the point estimates of the strength of individual risk
factors associated with the development of severe COVID-19,
but also the incidence rates of endpoints under study, including
death. This variation can in part be explained by differences in
patient characteristics, such as age distribution of the studied
populations [1]. However, this is usually not the only reason for
diverging study results. Methodological aspects also play an im-
portant role and must be taken into account [2].

Readers of nephrological journals may not always be aware
of the impact of the choice of a specific study design, outcome
definition and applied method when they interpret study
results. The aim of this review is therefore to increase aware-
ness of these methodological issues. To this end, we will reflect
on existing methodological factors that are commonly applied
and that may contribute to the observed variation across stud-
ies in COVID-19-related outcomes and risk factors. We will fo-
cus on issues that arose during the design and analysis of the
European Renal Association COVID-19 Database (ERACODA),
and we illustrate this with examples from recently published
reports on COVID-19.

ERACODA

ERACODA was established in March 2020, soon after the COVID-
19 pandemic reached Europe, with the aim to gain insight into
the consequences of this disease for patients with kidney failure
treated with kidney replacement therapy (KRT) in Europe. In
this cohort study, the clinical course and outcomes—including
hospital admission, ICU admission and mortality—of KRT
patients with COVID-19 is investigated. In addition, detailed
information on patient, disease and treatment factors is gath-
ered [3].

Data are collected from adult patients who are treated with
maintenance dialysis or living with a functioning kidney allo-
graft and who are diagnosed with COVID-19. The COVID-19 di-
agnosis needs to be based on a positive result on a real-time
polymerase chain reaction (PCR) assay of nasal or pharyngeal
swab specimens, and/or compatible findings on a computed to-
mography (CT) scan or chest X-ray of the lungs. Outpatients, as
well as hospitalized patients, are included and the primary out-
come of the study is vital status at Day 28 after diagnosis.
Physicians responsible for the care of these patients are asked
to enter data of all KRT patients from their centre with COVID-
19 into the central ERACODA database, which is hosted at the
University Medical Center Groningen, The Netherlands. By 1
December 2020, almost 2400 records had been entered into this
database by 208 physicians from 128 centres in 30 countries.

SELECTION OF STUDY POPULATIONS
Bias introduced by selection

The first methodological challenge arose already in the design
phase of the study. The choice of the exact patient group to be
included is of major importance in all clinical studies, because

this may result in selection bias. Selection bias originates from
any error in the enrolment of study participants and/or from
factors affecting the study participation. As a result, the rela-
tionship between exposure and outcome may differ between
individuals who are included in the study and those who were
potentially eligible for the study, but were not included [4]. The
problem of selection bias can be illustrated by a hypothetical ex-
ample. Suppose an investigator is interested in the recovery of
CKD patients with COVID-19 who were admitted to a hospital.
The investigator sends these patients a request to complete an
extensive survey on how they are feeling 1 month after their
COVID-19 diagnosis. One can imagine that those patients who
recovered well will respond to the survey, while patients who
are still feeling ill or lack energy, will not respond. Hence, this
method of selecting study participants will lead to overrepre-
sentation of relatively healthy study participants and conse-
quently to an underestimation of the effect COVID-19 on
patient well-being.

Even when there is no selection bias on individual study
level, like in population-based registries that do not take sam-
ples but report on the entire population, the choice of the study
population has significant implications for its comparability
with other studies that investigate the same outcome. For in-
stance, some of the recent papers on COVID-19 describe out-
comes in the general population [5, 6], whereas others report on
disease-specific populations, such as patients with a history of
cardiovascular disease or with diabetes mellitus [7, 8]. It can be
expected that analyses based on disease-specific cohorts yield
higher mortality rates than those based on cohorts from the
general population. The same is true for studies that included
only hospitalized patients versus those that included all
patients with a COVID-19 diagnosis, including those who were
not admitted to a hospital.

Example 1: Williamson et al. published one of the largest
studies on COVID-19 in Europe, which was based on Open
SAFELY, a health analytics platform that covers �40% of the
National Health Service population in the UK [5]. The investiga-
tors included over 17 million individuals in their recent study,
of whom almost 11 000 died of COVID-19. The primary outcome
of the study was death from COVID-19. In this study design,
COVID-19-related mortality is not only determined by the risk
of death for individual patients once diagnosed with COVID-19,
but also by their risk of being infected with severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) at all [2, 5]. This risk
of getting infected may vary between subgroups in the study
population. For instance, people with assumed risk factors for
mortality may have shielded themselves to prevent infection.
As a result, these assumed risk factors become less strongly re-
lated with mortality when compared with a situation in which
people have no assumptions on what risk factors for mortality
might be.

In studies that include only patients who are infected with
SARS-CoV-2, the risk of getting infected does not play a role.
Consequently, the mortality rates in the study by Williamson
et al. were 100- to 1000-fold lower when compared with other
reports that reported mortality among infected patients [2, 5].
This makes comparison of outcomes of these different types of
study populations complicated.

The study design used by Williamson et al. could explain, at
least in part, some of their findings. For instance, the finding
that South Asian and Black people had a 43–48% higher risk of
COVID-19-related death than White people even after adjust-
ment for comorbidities or other known risk factors. This higher
mortality risk in non-White ethnic groups could be interpreted
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as a genetic preponderance to a more severe disease course.
However, it could also reflect a higher risk of infection due to
differences in standards of living or occupational exposure. For
instance, it may be that non-White people live with more peo-
ple of more generations per household, or have a profession
with more close physical contact to other people. This will in-
crease transmission rates and therefore mortality rates when
expressed as percentage of the overall population instead of
when expressed as percentage of diseased persons.

Case ascertainment

A second important issue is how patients infected with SARS-
CoV-2 are identified. Testing protocols and accuracy may have a
large impact on the results [9].

In some studies, patients are classified as having COVID-19
based merely on clinical symptoms, while in others patients
must (also) have a positive PCR assay of nasal or pharyngeal
swab specimens and/or a CT scan or chest X-ray showing ab-
normalities compatible with the disease. For example, in
ERACODA, the COVID-19 diagnosis needs to be based on a posi-
tive result on a real-time PCR assay of nasal and/or pharyngeal
swab specimens, and/or compatible findings on CT scan or
chest X-ray of the lungs, whereas the ERA-EDTA Registry in
their recent study included also patients with a clinical diagno-
sis only [3, 10, 11]. This latter group may be expected to be less
ill or even not to have COVID-19. This may explain at least in
part the lower mortality rate in the ERA-EDTA Registry when
compared with ERACODA. On the other hand, making a positive
test result mandatory may also lead to bias, since only a small
fraction of the population has been tested [12]. This was espe-
cially an issue in the early days of the pandemic when there
was a shortage of testing capacity. Testing was therefore mostly
performed in patients with severe symptoms and among those
in high-risk groups. Including in a study only those patients
who tested positive will therefore have led in these early studies
to a higher proportion of cases with a severe course of disease
when compared with later studies that also included asymp-
tomatic patients with a positive PCR [12], and thus to higher
mortality rates. Also the risk factor profile is likely to be differ-
ent in patients with a clinical diagnosis in which the physician
did not ask for confirmation by a PCR test, since these patients
were generally younger and had fewer comorbidities [2]. The ef-
fect of this type of bias is expected to have diminished over
time, because more and more testing capacity has become
available.

Example 2: The choice to include only symptomatic or to in-
clude also asymptomatic patients who had a positive PCR test
may lead to different outcomes in patients treated with dialysis
and those who are living with a functioning kidney transplant
(KTx). Haemodialysis (HD) units have increasingly implemented
routine screening procedures, leading to identification of
patients with COVID-19 who do not (yet) have any signs or
symptoms of the disease. On the other hand, KTx recipients
and peritoneal dialysis (PD) patients are usually only tested for
COVID-19 when they present with symptoms, which is con-
firmed by the findings from ERACODA (Figure 1). Especially in
HD patients, there will be a difference in mortality rates when
only symptomatic patients or also asymptomatic patients with
a positive PCR are included. The former will lead to a higher,
and the latter to a lower mortality rate. How the patient popula-
tion is defined will therefore affect the comparison of mortality
rates in dialysis versus transplant patients. For a fair compari-
son of the effect of treatment modality, a comparison can

therefore best be made in patients who are identified by symp-
toms in both groups in a similar manner.

DEFINITION OF OUTCOME PARAMETERS
COVID-19-related mortality

The outcome that has most often been studied in relation to
COVID-19 is, without any doubt, mortality. Mortality can be
expressed in many ways, for example by mortality rates, case
fatality rates and infection fatality rates. For most of the meas-
ures used to express COVID-19-related mortality one needs (i)
the number of deaths from the disease and (ii) the number of
cases. As was discussed in the previous section, the number of
cases suffers from selective testing and from variation in testing
policies across studies, across countries and over time [12]. Data
on mortality are in general reliable but can still be subject to
limited comparability due to a significant reporting lag (registra-
tion authorities can be slow when reporting the number of de-
ceased subjects for a certain period), and potential under- or
over-reporting [12]. Each of the ways to express mortality
(Table 1) leads to different results and has a different interpreta-
tion, as is shown by Example 3.

Example 3: Suppose that from the 20 million people in a
country, 750 000 individuals were diagnosed with COVID-19 be-
tween 1 March 2020 and 1 March 2021. Within this (calendar)
year, 15 000 of them died from the disease. If we would calculate
the mortality rate, this would be 15 000/20 000 000 � 1000 ¼ 0.75
per 1000 individuals per year. Alternatively, if we chose to pre-
sent the case fatality rate in the year between March 2020 and
March 2021, this would be 15 000/750 000 ¼ 2.0%. In reality, more
than 750 000 individuals will have been infected with the virus,
since part of infected patients are known to be asymptomatic or
were not tested for some other reason. Thus, the total number
of infected people could for instance be around 900 000 (estima-
tion based on [13]). As a result, the infection fatality rate is lower
than the case fatality rate: 15 000/900 000¼ 1.7%. Most studies,
and also the popular media, use the case fatality rate to express
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mortality, because it is easy to obtain and understand [10, 11].
However, to compare the severity of a new viral disease with
that of other longer existing viral diseases, such as influenza, it
may be better to compare infection fatality rates. The latter is
more difficult to calculate, but is not affected by the availability
of test capacity, which especially at the start of an epidemic
may be limited.

In addition to the chosen measure for mortality, the time pe-
riod in which mortality is assessed is important. Most studies
choose Day 28 mortality because this measure is easily under-
standable and also used in many clinical trials. Other studies,
however, report on in-hospital mortality until discharge, which
is longer than 28 days in many COVID-19 cases. In contrast, in-
fection fatality rate is defined as fatality rate until the viral dis-
ease and its sequelae have fully recovered, which is a measure
that is independent of hospital admission and of follow-up du-
ration. Infection fatality rate will therefore be higher than in-
hospital mortality, which in turn will be higher than Day 28
mortality.

When the length of follow-up time is discussed, it is also im-
portant to consider when the counting starts. Does follow-up
start at the day of a positive screening test, at the first day of
symptoms or at the day of a positive test when having symp-
toms? This choice may lead to differences in follow-up time of
several days and hence to differences in mortality when 28-day
mortality is used. In case of screening for COVID-19 (even in
subjects without symptoms), lead-time bias can occur, meaning
that the survival time of patients with a positive test falsely
seems longer than that of symptomatic patients because of the
earlier diagnosis. In contrast, when for symptomatic patients

the day of a positive test result is used as starting point of
follow-up, this leads to a relatively short survival time when
compared with the situation where start of symptoms was the
starting point of follow-up. Finally, bias can occur because
patients are missed who have already died before a diagnosis
could be made.

Other outcomes related to COVID-19

Other frequently studied clinical outcomes in relation to
COVID-19 are hospitalization and ICU admission. It is important
to note that these outcomes may not necessarily reflect the se-
verity of the disease. In particular, the outcome of ICU admis-
sion has important caveats. In ERACODA, we observed that
mortality in dialysis patients was higher than in transplant
recipients, whereas dialysis patients were less often admitted
to the ICU [11]. This may suggest that treatment limitations
played a role in dialysis patients. Such limitations could be
based on an assumption of futility of ICU admission, justified or
not justified, but also on a lack of ICU capacity, which occurs if
the healthcare system is flooded.

STATISTICAL ANALYSIS
Sample size

Most observational studies start without an a priori sample size
calculation and without definition of a clinically meaningful ef-
fect size [14]. Consequently, studies that are similar in their de-
sign and research question, but have different sample sizes,
may obtain similar point estimates for the association of a risk

Table 1. Measures that can be used to express COVID-19-related mortality

Measure Definition Strengths and weaknesses

Probability of death Percentage of deaths at a certain time point calculated
using the Kaplan–Meier method for survival analysis

Strength: observations can be censored in case of loss to
follow-up/in absence of information on vital status
before the end of follow-up; this allows inclusion of
all available information

Weakness: the number of infected cases is not taken
into account

Mortality rate Number of deaths from COVID-19 in the population,
scaled to the size of that population, per unit of time

Typically expressed as cases per 1000 individuals per
year (also person-years can be used)

Strengths: can easily be calculated and interpreted; suit-
able for comparison of populations because it is
scaled to the total population size

Weaknesses: the number of infected cases is not taken
into account; time to death (early or late) or loss to
follow-up is not taken into account

Case fatality rate Proportion of deaths from COVID-19, compared with the
total number of people diagnosed with the disease for
a particular period

Represents a measure of disease severity; most often
used for diseases with limited-time courses, such as
outbreaks of acute infections

Strength: can easily be calculated and interpreted
Weaknesses: asymptomatic and otherwise undiagnosed

cases are not taken into account; often calculated
while the individual outcome (recovery or death) is
known only for a proportion of infected patients

Infection fatality rate Proportion of deaths from COVID-19 compared with the
total number of infected people—including those who
are asymptomatic and undiagnosed—for a particular
period

Similar to case fatality rate, but aims to estimate the fa-
tality rate in both the sick (with detected disease) and
healthy (with undetected disease) groups of infected
people

Strengths: includes the whole spectrum of infected peo-
ple, from asymptomatic to severe; recommended as a
more reliable parameter for evidence-based assess-
ment of the SARS-CoV-2 pandemica

Weakness: it may be difficult to capture asymptomatic
and undiagnosed subjects

aThe Centre for Evidence-Based Medicine, Global COVID-19 Case Fatality Rates, CEBM.
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factor with the outcome, but lead to different conclusions. In
larger studies, a narrower confidence interval (CI) will be found
then in smaller studies, resulting in a higher chance of the ef-
fect of the same risk factor to be found statistically significant,
whereas the clinical relevance of such a risk factor can some-
times be questioned.

Missing data

Any dataset may suffer from missing data, but this is especially
a problem in studies that collect a large set of variables. The
problem is often ignored when researchers perform a so-called
complete case analysis, in which only subjects with complete
data for all covariates used in the analysis are included. This
may not be a problem when the data are missing completely at
random, which means that the value of the variable that is
missing is not related to the reason that data is missing.
Unfortunately, this is often not the case and not all studies are
large studies. Missing data therefore can introduce bias. A re-
cent and reasonably sophisticated method for dealing with
missing data, which may help to overcome some of this bias, is
multiple imputations [15]. This method predicts missing values
using information that is available for the same patient. The ad-
vantage of the method is that it gives unbiased results when
data are missing at random, meaning that the probability of
missing data is unrelated to the actual missing value.

Although it is advised that manuscripts mention specifically
which proportion of study data was missing and how missing
data were dealt with, this is unfortunately often not reported.
Moreover, strategies to solve the problem of missing data, in-
cluding multiple imputations, are not always applied (and/or
described).

Adjustment for confounders

An important part of statistical analyses is how investigators
deal with (potential) confounding. Confounding is the ‘mixing’
or ‘blurring’ of effects that happens when an investigator tries
to assess the effect of an exposure on an outcome, but then

actually measures the effect of a factor other than the exposure
[16]. Such a factor is called a confounder when the following
three criteria apply: (i) the variable is causally associated with
the outcome or, in other words, it is a risk factor for the out-
come; (ii) the variable is associated with the exposure; and (iii)
the variable is not an effect of the exposure and is not a factor
in the causal pathway of the disease [17]. Figure 2 illustrates an
example of confounding in the association between COVID-19
and death, which is applicable to patients with kidney failure,
but also to individuals from the general population.

Because confounding obscures the real effect of an exposure,
it is important to eliminate it. This can be achieved using vari-
ous approaches, for example by randomization, matching and
stratification. Probably the most common way to control for
confounding in observational studies is by adjusting for the (po-
tential) confounding factors—that fulfil the three aforemen-
tioned criteria—in multivariable models. It is an efficient and
reliable method, but it is essential to keep in mind that overad-
justment can be a problem. Often researchers tend to adjust for
as many factors as possible, sometimes without carefully think-
ing about causal aspects of the association. Consequently, they
may falsely adjust for factors that are not confounders, but
mediators, which may lead to unreliable effect estimates.
Furthermore, with limited number of events and a long list of
confounders, there may not be enough variability in data, which
may result in unrealistically small or large estimates of the as-
sociation between a risk factor and outcome.

The choice of the variables included in the multivariable
model can have strong influence on the resulting effect esti-
mates, i.e. hazard ratios (HRs) for Cox regression analysis and
odds ratios for logistic regression analysis.

Example 4: The study based on OpenSAFELY suggested that
males have a 78% higher risk of getting infected and dying from
COVID-19 when only age is included in the multivariable model
(HR ¼ 1.78), and a 59% higher risk when a fully adjusted model
is used (HR ¼ 1.59) [5]. This suggests that in the general popula-
tion male sex is a major risk factor for contracting the disease
and subsequent mortality. In contrast, it seems that in the

Exposure:
COVID-19

Outcome:
COVID-19

related death

Confounders
e.g. socio-economic

status

Mediators
e.g. disease

severity

Relationship of interest

FIGURE 2: Example of confounding in the association between COVID-19 (exposure) and death (outcome).
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dialysis population male sex is a much weaker risk factor, al-
though the HRs for (male) sex as a risk factor for mortality in
studies focusing on COVID-19 in this patient group varied to
some extent [10, 11].

When we further investigated these differences, it turned
out that the variation could—in large part—be explained by var-
iation in the variables included in the multivariable models. In
the ERACODA and in the ERA-EDTA Registry study, the HRs for
male sex were exactly equal at 1.23 when adjusted for age only
[10, 11]. The strength of ERACODA is that it collects many addi-
tional variables that can be used to explore causal pathways.

Because we were interested in the cause of this difference,
we performed a so-called mediation analysis. It appeared that

smoking was a strong mediating factor. Males were more often
smokers than women, and smoking was causally associated
with COVID-19 mortality. Hence, when the factor smoking is in-
cluded in the multivariable model, the effect of male sex
becomes weaker, suggesting that male sex is not a strong intrin-
sic risk factor per se, but that the risk attributable to male sex is
an indirect effect of the fact that men smoke more often.

The strength of risk factors for COVID-19-related mortality
in general changes with increasing absolute risk in the popula-
tion under study. In high absolute risk populations, classical
risk factors may show a much weaker association compared
with a relatively low-risk population. For example, risk factors
lose strength of their association with outcome in older popula-
tions. We illustrate this using ERACODA data in Figure 3, where
the associations of obesity, diabetes mellitus, coronary artery
disease and chronic lung disease with mortality are presented
for two age categories: <65 and �65 years. This figure shows
that the HRs for the associations are in general weaker in the
older than in the younger age group. When comparing the rela-
tive strength of risk factors, it is therefore important to take
note of the baseline absolute risk of the populations under
study.

Finally, for the interpretation of results from multivariable
models, it is important to distinguish between aetiological
and prognostic studies [17]. In aetiological studies, the aim is
to investigate a causal relationship between risk factors and
an outcome, and in this perspective confounding and knowl-
edge of the pathophysiology of the disease process leading to
outcome play a fundamental role. In contrast, prognostic re-
search aims to predict the probability of an outcome as well
as possible, and in that case the pathophysiology of the out-
come is not necessarily an issue. In this review, we focused
on aetiological studies and their interpretation. It is, however,
important to realize that multivariable models in prognostic

Table 2. Summary of the most important methodological factors that can be accountable for variation in outcome in COVID-19-related studies

Methodological factor Points of attention Practical considerations

Choice of study
population

Specific entry criteria may lead to selection bias
General population versus disease-specific population

Selection bias may lead to the identification of spurious
risk factors

Disease-specific populations, e.g. only patients on dialy-
sis, will have a higher mortality

Case ascertainment Inclusion of only symptomatic patients or also asymp-
tomatic patients

Differences in criteria for COVID-19 diagnosis, e.g. diag-
nosis based on positive PCR assay or merely on clini-
cal suspicion

Asymptomatic patients will have lower mortality
Check what the definition of start of follow-up is be-

cause this may cause lead time bias

Definition of outcomes Different measures to express mortality lead to different
results and interpretations

Differences in time period of studies may influence
results

Other outcomes (hospitalization, ICU admission) do not
always reflect disease severity

See Table 1
Time period: 28-day (hospital) mortality will be lower

than total in-hospital mortality, differences in start
day of follow-up may cause lead-time bias

Other outcomes: hospitalization, ICU admission

Sample size Too small
Imprecision: wide CIs; unable to detect a clinically rele-

vant risk factor
Very large
Very narrow CIs; may lead to identification of risk fac-

tors with questionable clinical relevance

Do not confuse statistical significance and clinical rele-
vance, and try to reason from point estimates
whether associations may be clinically relevant

Missing data Incomplete information
May lead to errors in statistical analysis, especially

when missingness is not at random
Often not reported

Check whether missingness is at random. If not, con-
sider resultant bias

Best solution: use of multiple imputation

0 1 2 5
Hazard ratio

Risk factors
Obesity

< 65 years
≥ 65 years

Diabetes
< 65 years
≥ 65 years

Coronary artery disease
< 65 years
≥ 65 years

Chronic lung disease
< 65 years
≥ 65 years

1.43 (0.89, 2.29)
1.33 (1.01, 1.74)

1.53 (1.02, 2.30)
1.38 (1.11, 1.71)

1.87 (1.21, 2.91)
1.33 (1.07, 1.66)

1.36 (0.69, 2.70)
1.15 (0.86, 1.55)

HR (95% CI)

FIGURE 3: Unadjusted HRs with 95% CI for COVID-19-related mortality in sub-

groups of patients aged <65 and �65 years who are included in ERACODA.
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studies may look very similar, but have a completely different
interpretation. Prognostic modelling involves predictors that
should not be read and interpreted as risk factors or
confounders.

IMPLICATIONS AND CONCLUSIONS

Because reported outcomes in studies on the epidemiology of
COVID-19 in patients with kidney disease vary widely, careful
comparison of study methods is warranted when drawing con-
clusions for clinical practice and designing public health poli-
cies. To be able to correctly interpret the reported findings, one
should be aware of the influence of (potential) differences in
study design, included study populations, outcome definitions
and applied methods. In this review, we discussed the most im-
portant methodological factors (summarized in Table 2) that
can play a role in COVID-19-related studies in the field of ne-
phrology. It is essential to keep in mind that the variation in
reported COVID-19-related outcomes across studies may not be
true differences, but just apparent differences caused by these
methodological issues.
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