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Abstract: Automated identification of plant diseases is very important for crop protection. Most auto-
mated approaches aim to build classification models based on leaf or fruit images. These approaches
usually require the collection and annotation of many images, which is difficult and costly process
especially in the case of new or rare diseases. Therefore, in this study, we developed and evaluated
several methods for identifying plant diseases with little data. Convolutional Neural Networks
(CNNs) are used due to their superior ability to transfer learning. Three CNN architectures (ResNet18,
ResNet34, and ResNet50) were used to build two baseline models, a Triplet network and a deep
adversarial Metric Learning (DAML) approach. These approaches were trained from a large source
domain dataset and then tuned to identify new diseases from few images, ranging from 5 to 50 images
per disease. The proposed approaches were also evaluated in the case of identifying the disease
and plant species together or only if the disease was identified, regardless of the affected plant.
The evaluation results demonstrated that a baseline model trained with a large set of source field
images can be adapted to classify new diseases from a small number of images. It can also take
advantage of the availability of a larger number of images. In addition, by comparing it with metric
learning methods, we found that baseline model has better transferability when the source domain
images differ from the target domain images significantly or are captured in different conditions.
It achieved an accuracy of 99% when the shift from source domain to target domain was small and
81% when that shift was large and outperformed all other competitive approaches.

Keywords: crop disease classification; few-shot learning; metric learning; transfer learning

1. Introduction

Since plant diseases may cause crop damage, they pose a major threat to food security
and sustainability and may lead to food shortages. Therefore, early detection and control
of plant diseases is very important. This process often requires trained human expertise
to make the correct diagnosis. However, this expertise is not always available, especially
in remote locations and small farms in developing counties. With the advancement of
consumer devices, such as smartphones, that can capture high-quality images, the develop-
ment of an effective image-based diagnostic system can greatly contribute to early disease
diagnosis and waste reduction [1]. In the literature, several studies have been proposed to
diagnose plant diseases using computer vision, machine learning, or deep learning. In this
study we are interested in deep learning-based approaches that have proven effective in
many visual recognition tasks.

A number of the techniques that have been proposed focus on diagnosing diseases of
a single crop. Esgario et al. [2] proposed an approach to classify and quantify the biotic
stress of coffee leaves. They used several Convolutional Neural Network (CNN) models
to diagnose and quantify the severity of four coffee plant diseases. They also applied
various data augmentation techniques to achieve high diagnostic results. In [3], a deep
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learning based algorithm for image-based detection of cassava plant disease has been
proposed. The authors applied the transfer learning of a pretrained CNN model to train a
linear classifier, support vector machine (SVM), and a nearest neighbor (KNN) classifier
using a dataset of cassava disease images captured in the field. Their best model achieved
an average accuracy of 93% for three diseases and two types of pest damage. A similar
approach has also been proposed for detection and diagnosis of cassava plant diseases
in [4]. The tomato crop has attracted the interest of many researchers and several techniques
have been proposed to diagnose its diseases [5–7]. An approach for diagnosing corn leaf
diseases has been proposed in [8]. A dataset collected with a smartphone camera was used
to train a custom CNN model and a good accuracy was obtained using a limited number
of test images. Likewise, approaches have been proposed using CNNs trained from scratch
or using transfer learning to classify apple plant diseases [9,10], grape plant diseases [11],
and potato plant diseases [12].

Another class of methods aims to provide general solutions that can be used to
diagnose several diseases simultaneously. Too et al. [13] performed a comparative study
to fine-tune several CNN models for identifying plant diseases. The results of this study
using the PlantVillage dataset [14] indicated that DenseNet121 [15] outperformed all other
models and achieved an accuracy score of 99.75%. PD2SE− Net was proposed in [16],
based on ResNet50 [17], to identify plant species, diagnose diseases, and estimate disease
severity. This approach achieved an accuracy score of 98% for plant disease classification.
Many similar methods of classifying multicrop diseases have been also proposed in the
literature as presented in [18,19]. Lee et al. [20] approached the problem differently, by
comparing a number of techniques for classifying plant diseases based on the common
disease name. This formulation allowed them to build a more generalizable model. In this
study, we will also evaluate this formulation in the case of learning from little data.

If we look at the literature, we can realize the effectiveness of deep learning methods
for diagnosing plant diseases. However, on the other hand, the success of these techniques
depends greatly on the availability of a good amount of data to train the models, and the
lack of data may hinder the development of these techniques. This data collection and
labeling are often challenging, either because of the novelty of the disease or because of the
high cost or lack of appropriate expertise. Therefore, the focus is on learning techniques
that can learn from small datasets, formally called few-shot learning (FSL) [21–23]. There is
a variety of FSL learning approaches that can be organized into four main categories:
metalearning, metric learning, data augmentation, and transfer learning. Algorithms in
metalearning category learn a learning strategy or a good model initialization to adjust
well to a novel, few-shot learning task [24–26]. The metric learning approaches learn a
semantic embedding space using a distance loss function. Accordingly, they map images
in a space where similar classes are close together while different classes are further
apart. Metric learning is an active area of research in which several algorithms have
been proposed such as Siamese network [27], Triplet network [28], matching network [29],
prototypical network [30], and relation network [31]. The data augmentation approaches
generate more data from novel classes to facilitate the regular learning [32,33]. This area of
research is under active development and there are a number of studies that have focused
on comparing different FSL methods. Chen et al. [23] conducted a study to compare
several metalearning, metric learning, and transfer learning methods using natural images.
In another recent study [34], few-shot learning methods were compared when there is a shift
between source and target domains. These studies showed that the performance of few-
shot learning approaches may vary depending on the source of the images and the problem
formulation. It also indicated that few-shot learning techniques based on metalearning
poorly perform when there is a significant shift between source and target domains.

Recently, some FSL-based approaches have been proposed for identifying plant species
and diagnosing crop diseases. Hu et al. [35] generate synthetic leaf images to facilitate tea
leaves disease identification. The Siamese network was used in [36] to build a classification
approach for diagnosing citrus diseases and in [37] to build a plant leaf classification
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approach. In [38], Argueso et al. introduced an enhanced approach to classify plant leaf
diseases through the use of Triplet loss [28] and support vector machines (SVM) [39].
They created the source and target domains datasets from the PlantVillage [14] dataset and
fine-tuned the last fifty layers of the Inception V3.0 model. Their results using the Triplet
loss to create an embedding space and SVM classifier for FSL outperformed the fine-tuned
model. However, these results were influenced by their fine-tuning setup because it is
difficult to optimize a large number of parameters with just a few images.

Since selection of an appropriate learning strategy and models, as well as the right
formulation of the problem, are key factors to the success of the FSL approach, the main
purpose of this study is to provide an effective plant disease diagnosis approach that can
learn from little data. The contributions of this study can be summarized as follows:

1. Development and evaluation of several FSL approaches to classify plant diseases
based on Triplet network, Deep Adversarial Metric Learning (DAML) [40] and trans-
fer learning using both linear and cosine-similarity classifiers [23]. All approaches
were evaluated using images captured under the same as well as different condi-
tions. We have found that fine-tuning of a pretrained model outperforms all other
approaches. Figure 1 shows an overview of the approaches developed in this study.

2. We investigate the impact of model complexity on the performance of the FSL ap-
proaches, ResNet18, ResNet34, and ResNet50 were used in this study. The results
showed that fine-tuning using linear classifiers benefits from increased model com-
plexity while this cannot be confirmed for other approaches.

3. We examined two different formulations in this study. In the first, we classify plants
and diseases together, while in the second we focus on diseases only. The second
formulation helped the model to achieve better results in identifying new diseases
and to better adapt to images captured under different conditions.

Figure 1. Block diagram of the developed plant disease classification approaches.

2. Materials and Methods
2.1. Datasets

Two datasets were used for training and evaluating all few-shot learning algorithms in
this study, namely the PlantVillage dataset [14] and the coffee leaf dataset [2]. PlantVillage
dataset has 54,305 leaf images of 14 crop species and 26 diseases distributed among 38
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crop-disease pairs. This dataset contains clear images of plant leaves and each image
contains only one leaf. It also comes with preset training/testing subsets which we follow
in this study. Table 1 gives a summary of these classes and the number of images in
each class. We use this dataset in two different ways, first to classify disease-crop pairs
and second to classify disease regardless of the affected crop. In the first configuration,
32 classes (C7 to C38) are used as the source domain Ds and 6 classes (C1 to C6) as the
target domain Dt similar to [38]. In this case the source domain has 43,444 samples while
the target/novel domain has 10,861 samples. In the second configuration, we rearrange the
dataset according to the common disease name as in [20], resulting in 20 disease classes and
one healthy class. For diseases that affect more than one plant, all samples are combined
in one class under the name of this disease, and for the healthy class, about 5000 samples
were collected from all available plants. The summery of the rearranged dataset is shown
in Table 2. The three diseases with the fewest images (CD1, CD4, and CD19) were selected
from the rearranged dataset as target (novel) domain classes and the rest as the source
domain classes. The number of samples in the source domain Ds is 44,081 and in the target
domain Dt is 1278.

The coffee leaves Dataset [2] contains 1747 Images of Arabica coffee leaves captured
using different mobile phones. It contains healthy leaves as well as leaves affected by one
or more diseases (leaf miner, rust, brown leaf spot, cercospora leaf spot). Each leaf is labeled
with the predominant disease. In this study, we did not use this dataset for training and all
classes were used as target/novel domain classes. This configuration allows us to fairly
evaluate the performance of the developed models in a more realistic situation, when the
novel dataset is captured under different condition. The summary of this dataset’s classes
is presented in Table 3. Samples from PlantVillage and coffee leaf datasets are shown in
Figures 2 and 3, respectively.

Table 1. Summary of the PlantVillage dataset [14].

Class Crop Disease Samples
Train Test

C1 Apple Apple cab 504 126
C2 Apple Black rot 496 125
C3 Apple Cedar apple rust 220 55
C4 Apple Healthy 1316 329
C5 Blueberry Healthy 1202 300
C6 Cherry (including sour) Healthy 684 170
C7 Cherry (including sour) Powdery mildew 842 210
C8 Corn (maize) Cercospora leaf spot Gray leaf spot 410 103
C9 Corn (maize) Common rust 953 239
C10 Corn (maize) Healthy 929 233
C11 Corn (maize) Northern Leaf Blight 788 197
C12 Grape Black rot 944 236
C13 Grape Esca (Black Measles) 1107 276
C14 Grape Healthy 339 84
C15 Grape Leaf blight (Isariopsis Leaf Spot) 861 215
C16 Orange Haunglongbing (Citrus greening) 4405 1102
C17 Peach Bacterial spot 1838 459
C18 Peach Healthy 288 72
C19 Pepper bell Bacterial spot 797 200
C20 Pepper bell Healthy 1183 295
C21 Potato Early blight 800 200
C22 Potato Healthy 121 31
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Table 1. Cont.

Class Crop Disease Samples
Train Test

C23 Potato Late blight 800 200
C24 Raspberry Healthy 297 74
C25 Soybean Healthy 4072 1018
C26 Squash Powdery mildew 1468 367
C27 Strawberry Healthy 364 92
C28 Strawberry Leaf scorch 887 222
C29 Tomato Bacterial spot 1702 425
C30 Tomato Early blight 800 200
C31 Tomato Healthy 1273 318
C32 Tomato Late blight 1527 382
C33 Tomato Leaf mold 761 191
C34 Tomato Septoria leaf spot 1417 354
C35 Tomato Spider mites Two-spotted spider mite 1341 335
C36 Tomato Target spot 1123 281
C37 Tomato Tomato mosaic virus 299 74
C38 Tomato Tomato Yellow Leaf Curl Virus 4286 1071

Table 2. Summary of the PlantVillage dataset [14] based on disease name.

Class Disease Affected Plants Samples
Train Test

CD1 Apple scab Apple 504 126
CD2 Bacterial spot Peach, Pepper bell, Tomato 4337 1084
CD3 Black rot Apple, Grape 1140 361
CD4 Cedar apple rust Apple 220 55
CD5 Cercospora leaf spot Gray leaf spot corn 440 103
CD6 Common rust corn 953 239
CD7 Early blight Potato, Tomato 1600 400
CD8 Esca black measles Grape 1107 276
CD9 Haunglongbing Citrus greening Orange 4405 1102
CD10 Late blight Potato, Tomato 2327 582
CD11 Leaf blight Isariopsis Leaf Spot Grape 861 215
CD12 Leaf mold Tomato 761 191
CD13 Leaf scorch Strawberry 887 222
CD14 Northern Leaf blight Corn 817 197
CD15 Powdery mildew Cherry, Squash 2310 577
CD16 Septoria leaf spot Tomato 1417 354
CD17 Spider mites Two spotted spider mite Tomato 1341 335
CD18 Target spot Tomato 1123 281
CD19 Tomato mosaic virus Tomato 299 74
CD20 Tomato Yellow Leaf Curl Virus Tomato 4286 1071
CD21 Healthy − 4909 1200
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Table 3. Summary of the Coffee Leaf dataset [2].

Class Predominant Disease Samples

CF1 Leaf miner 387
CF2 Rust 531
CF3 Brown leaf spot 348
CF4 Cercospora leaf spot 147
CF5 (Several with same severity) 62
CF6 Healthy 272

Figure 2. Sample images from PlantVillage dataset. For the details of different classes, check Table 1.

2.2. Learning Approaches

In this study, we aim to develop an approach that can learn from little data. This prob-
lem in the community is known as few-shot learning (FSL), which can leverage the informa-
tion learned from a large source domain dataset, Ds, to build a model that can classify novel
classes from target domain, Dt, using few samples. In FSL, the target domain has a label
space that differs from the source domain and it is formally defined as C− way/K− shots
classification problem; Classify C novel classes using K sample from each class. The idea
behind all FSL algorithms is to build a generic feature extractor or embedder, f , to map the
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image Xi to a low-dimensional feature vector fi = f (Xi, θ), θ is the embedder parameters.
This embedding trained from source data, Ds, should be general enough to be used for
classifying new classes in the target domain, Dt. Since the classification of plant diseases
differs from the classification of digits or general objects, we will develop several classi-
fication models using little data and compare them to build our final model. Details of
learning algorithms and methodologies will be presented in the following subsections.

Figure 3. Sample images from coffee leaf dataset. For the details of different classes, check Table 3.

2.3. Transfer Learning: Baseline and Baseline++

In transfer learning, a CNN model is trained using the source domain dataset and
then fine-tuned using few samples from the target domain dataset as shown in Figure 4.
In the training phase, both the feature extractor f and the classifier Gs are trained from
scratch while in the fine-tuning phase, the feature extractor is fixed and a new classifier Gt
is trained using a small target domain dataset. Similar to [23], in this study, we use two
baseline models. The first uses a linear classifier and we refer to it as Baseline and the other
uses a cosine-similarity based classifier and we refer to it as Baseline++.

The Baseline model uses a linear classifier Gs(.|Ws), Ws ∈ Rd×c is the weight matrix,
d is the dimension of the feature vector and c is the number of classes. This classifier has a
linear layer followed by a Softmax function σ as defined in Equation (1).

Ỹ = σ
(

WT
s f (Xi, θ)

)
(1)

In the Baseline++ classifier, the weight matrix Ws consists of c, d-dimensional weight
vectors [ws1, ws2, ..., wsc]. Each weight vector, wsj, can be considered as a prototype for one
class. During the training process, the cosine similarity csij between the feature vector fi and

the weight vector wj
s is calculated as in Equation (2) and the final classification probability

is obtained by normalizing the similarity vector, [csi1, csi2, ..., csic] using a Softmax function.
In this study, we use cross-entropy loss to train and fine-tune both the Baseline and
Baseline++ models.

csij =
f (Xi, θ)Twsj

‖ f (Xi, θ)‖‖wsj‖
(2)

2.4. Metric Learning Using Triplet Network

The Triplet network [28] uses three instances of the same feature embedder with
shared weights to embed the input triplet which contains an anchor sample Xi, a positive
sample X+

i and a negative sample X−i . Anchor and positive samples are sampled from the
same class while the negative sample is sampled from a different class. This network is
trained from scratch using the source domain dataset, Ds, by minimizing the triplet loss
function [41] defined in Equation (3). The structure of the Triplet network is shown in
Figure 5. During the training phase, the network reduces the distance between the anchor
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and its positive pair while increasing the distance to the negative sample.

Lt( fi, f+i , f−i ) = max
(

0, D( fi, f+i )2 − D( fi, f−i )2 + m
)

, (3)

where, fi, f+i and f−i are the feature vectors corresponding to Xi, X+
i and X−i , respectively.

D(., .) is the Euclidean distance and m is the margin.
After training from source domain dataset, to classify plant diseases with little data,

a metric learning approach based on [22] is utilized. In this approach, the trained em-
bedder is used to extract the features of few target domain samples, Dt, and a multiclass
Support Vector Machine (SVM) [39] classifier is used for final classification. SVM solves
the classification problem by finding a set of hyper planes in the d−dimensional space
that separates samples from different classes. It tries to find the planes with the maximum
margin, or distance, from data points on both sides. In this study, one versus all multiclass
SVM classifier with linear kernel was used.

Figure 4. An overview of the transfer learning methodology.

Figure 5. The structure of the Triplet network, the three instances have the shared weights.



Plants 2021, 10, 28 9 of 15

2.5. Deep Adversarial Metric Learning (DAML)

DAML [40] attempts to improve traditional metric learning (using triplet loss) by
generating synthetic hard negatives from easy negatives. This allows the learning algorithm
to take advantage of the large number of easy negatives and increases the diversity and
representation of negative samples near the margin. It jointly trains a hard negative
generator and a distance metric by minimizing the loss function defined in Equation (4).

J( fi, f+i , f−i ) = Jgen( fi, f+i , f−i ) + λJm( fi, f+i , f−i ), (4)

where fi, f+i , f−i are the feature vectors corresponding to the anchor, positive and negative
samples and λ parameter represents the balance between the metric loss Jm and the adver-
sarial loss Jgen. The generator receives triplets ( fi, f+i , f−i ) and generates hard negatives f̃−i
and it is trained by minimizing the objective function defined in Equation (5). Accordingly,
the generator aims to create negative images close to the anchor image and similar to other
negatives and at the same time may fool the metric- learning. The triplet loss defined in
Equation (6) is utilized here for metric learning. In this study, three-layer fully connected
network was used as a feature generator and the input to the generator is a combination of
anchor, positive and negative samples and the output is a synthetic hard negative.

Jgen( fi, f+i , f−i ) = Jhard + λ1 Jreg + λ2 Jadv

= ‖ f̃−i − fi‖2
2 + λ1‖ f̃−i − f−i ‖

2
2

+ λ2max
(

0, D( fi, f̃−i )2 − D( fi, f+i )2 − α
)

,

(5)

λ1 and λ2 are two balancing parameters.

Jm( fi, f+i , f−i ) = max
(

0, D( fi, f+i )2 − D( fi, f̃−i )2 + m
)

, (6)

Similar to the metric-learning using Triplet network, feature embedder and generator
were trained with the source domain data and a multiclass SVM was used for FSL in the
target domain.

2.6. Deep Architectures and Experimental Setup

In all experiments, we used three CNN models having different complexities, namely,
ResNet18, ResNet34, and ResNet50 [17]. We use models of the same architecture (Deep
residual learning) but with different complexity to study the impact of model complexity
on the classification accuracy. The main idea behind deep residual learning is to use identity
shortcut connections to force each network block to fit a residual mapping H(X) = F(X) +
X, where X is the input feature and F(X) is the output of this block. This formulation,
as demonstrated by the original authors, can solve the problem of vanishing/exploding
gradient and alleviate accuracy degradation in deep networks. All residual architectures
share the same structure but have different number of blocks and layers. ResNet18 has
about 12 million trainable parameters and an output size of 512, ResNet34 has about
21 million trainable parameters and an output size of 512 and ResNet50 has about 26 million
trainable parameters and an output size of 2048. For metric learning, we use a fully
connected layer with ReLU activation function to map the backbone output to a 128-
dimensional vector.

All models were trained using the entire source domain dataset, after that each
model was fine-tuned using a small set of target domain images ranging from 5 to 50 in
increments of 5. Baseline and Baseline++ models were trained in source domain using
Adam optimizer [42] with a learning rate of 0.0001 for 30 epochs and the best model was
used for the fine-tuning phase. For metric learning using triplet loss, a margin of 1 was
used in the loss function and the model was trained using Adam optimizer with a learning
rate of 0.0001 for 15 epochs. The Deep Adversarial Metric Learning used Adam optimizer
for backbone model and generator optimization with a learning rate of 0.0001 and a margin
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of 1 for the triplet loss. The training dataset was augmented using random horizontal and
vertical flipping, rotation in a range of 0 to 30, color change (hue, saturation, brightness
and contrast) by a factor of 0.1 and center cropping.

In target domain, the baseline and baseline++ models were fine-tuned using Stochastic
Gradient Decent (SGD) optimizer with a learning rate of 0.01, momentum of 0.9, and weigh
decay of 0.001 for 100 epochs. SVM with linear kernel was used for triplet loss and DAML
methods and the soft margin parameter was set to C = 1. All experiments were repeated
100 times and the average accuracy was calculated using a query set of 50 images per class.
All experiments were conducted using PyTorch [43] deep learning framework.

3. Results and Discussion

In this study, the performance of four learning approaches and three backbone models
for classifying crop diseases from limited data was evaluated. We use two different
formulations; one considers both the classification of crops and diseases as a single task
as [38] and the other focuses on the classification of diseases only using the common
disease name as recommended by [20]. The results of all experiments will be presented in
this section.

3.1. Crop and Disease Classification

In this set of experiments, 32 classes of the PlantVillage dataset [14] were used as the
source domain data, Ds, as detailed previously. Two datasets with different characteristics
were used as the target domain data. The first one contains six different classes of the
PlantVillage dataset and the other is the coffee leaf dataset [2] which contains six classes
of coffee plant diseases and was collected under different conditions from the source
domain dataset. Figure 6 shows the results for the first target domain dataset. This figure
clearly indicates that the Baseline model outperforms all other learning approaches with
all backbone models and for all few-shot settings. It achieved the lowest error rate of
2.48% for 50 shots and 14.42% for five shots with the ResNet50 backbone model slightly
outperforming the ResNet34 backbone model. DAML comes in the second place, with a
lower error rate than Triplet network for most of the few-shot settings especially when the
number of samples is very low. Both approaches work better with the ResNet34, which
is slightly outperformed the ResNet50. The Baseline++ lags behind other approaches
significantly. The results of these experiments are summarized in Table 4.

The results of the coffee leaf dataset are shown in Figure 7 and Table 5. These results
are consistent with the previous results, as the Baseline model achieved the lowest error
rate of 20.22 for 50 shots and 35.54 for five shots with the ResNet50 backbone model and it
outperformed all other approaches. DAML, with ResNet50, is second, while Baseline++ is
the last. This figure also indicates that the large shift between the source domain and the
target domain data leads to some degradation in performance.

(a) ResNet18 (b) ResNet34 (c) ResNet50

Figure 6. Classification based on both crop and disease types (PlantVillage target domain dataset), mean error as a function
of the number of shots per class, K, for 4 learning algorithms and 3 backbone models.
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Table 4. Classification based on both crop and disease types (PlantVillage target domain dataset),
the lowest error for 5, 25, and 50 shots is highlighted in bold.

Approach ResNet18/(Shots) ResNet34/(Shots) ResNet50/(Shots)
5 25 50 5 25 50 5 25 50

Baseline 17.78 5.58 4.24 14.6 4.38 2.52 14.42 3.98 2.48
Baseline ++ 39.48 20.92 14.58 44.22 18.4 13.16 43.62 19.92 14.02
Triplet Network 18.06 8.04 5.06 18.1 7.8 4.28 18.14 6.74 4.8
DAML 18.38 7.9 5.52 16.54 6.7 4.46 16.84 7.82 4.92

(a) ResNet18 (b) ResNet34 (c) ResNet50

Figure 7. Classification based on both crop and disease types (coffee leaf [2] target domain dataset), mean error as a function
of the number of shots per class, K, for 4 learning algorithms and 3 backbone models.

Table 5. Classification based on both crop and disease types (Coffee leaf [2] target domain dataset),
the lowest error for 5, 25, and 50 shots is highlighted in bold.

Approach ResNet18/(Shots) ResNet34/(Shots) ResNet50/(Shots)
5 25 50 5 25 50 5 25 50

Baseline 44.78 29.46 25.08 36.68 25.76 22.66 35.54 22.62 20.22
Baseline ++ 54.96 43.84 38.38 56.7 38.5 33.32 60.12 38.32 32.7
Triplet Network 43.02 27.6 23.5 45.9 28.9 23.96 47.14 30.74 24.48
DAML 43 28.2 23.58 42.52 27.14 21.78 43.82 28.58 23.14

3.2. Disease Classification Based on Common Disease Name

Since the same disease may affect more than one crop, the focus of these experiments
will be on classifying diseases regardless of which plant is affected. This formulation is
more realistic in the real world, where the farmer knows which crops he is growing but
wants to learn about the diseases that afflict them. Eighteen classes of the rearranged
PlantVillage dataset, as in Table 2, were used as the source domain dataset. Three new
diseases from the PlantVillage dataset were used as the first target domain dataset and
coffee leaf dataset as the second target domain dataset.

The results shown in Figure 8 for the first target domain dataset (based on disease
name) indicate that the baseline model outperformed all other approaches. It achieved
a very low error rate even with a very few shots. The DAML and Triplet network ex-
change are second place based on the number of samples and the backbone model, but
they fall behind the baseline model by a large margin, especially in the case of very few
shots. The summary of these results is shown in Table 6. For the coffee leaf dataset, the
classification results based on the disease name are shown in Figure 9. Here, we can
see the consistent performance of the baseline model and the DAML approach. Baseline
model achieved the lowest error rate of 19.44 for 50 shots and 34.28 for 5 shots while
DAML achieved an error rate of 22.2 for 50 shots and 42.6 for 5 shots. Table 7 shows the
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classification results for this dataset.

(a) ResNet18 (b) ResNet34 (c) ResNet50
Figure 8. Classification based on the common disease name (rearranged PlantVillage target domain dataset—see Table 2),
mean error as a function of the number of shots per class, K, for 4 learning algorithms and 3 backbone models.

Table 6. Classification based on the common disease name (rearranged PlantVillage target domain
dataset—see Table 2), the lowest error for 5, 25, and 50 shots is highlighted in bold.

Approach ResNet18/(Shots) ResNet34/(Shots) ResNet50/(Shots)
5 25 50 5 25 50 5 25 50

Baseline 2.52 0.9 0.52 3.46 0.56 0.28 5.08 1.018 0.66
Baseline ++ 16.7 9.6 6.94 19.08 9.68 6.56 23.58 8.24 3.98
Triplet Network 11.64 5.06 2.4 13.04 4.14 2.48 9.1 3.18 1.32
DAML 13.84 5.1 3.18 10.18 2.74 1.62 11.66 3.44 2.32

(a) ResNet18 (b) ResNet34 (c) ResNet50
Figure 9. Classification based on the common disease name (coffee leaf [2] target domain dataset, mean error as a function
of the number of shots per class, K, for 4 learning algorithms and 3 backbone models.

Table 7. Classification based on the common disease name (coffee leaf [2] target domain dataset), the
lowest error for 5, 25, and 50 shots is highlighted in bold.

Approach ResNet18/(Shots) ResNet34/(Shots) ResNet50/(Shots)
5 25 50 5 25 50 5 25 50

Baseline 38.766 25.88 23.08 36.7 24.5 21.14 34.28 22.56 19.44
Baseline ++ 47.38 36.38 33.34 45.5 36.24 33.46 49.42 35.28 30.76
Triplet Network 47.22 31.18 26.08 47.06 29.48 24.58 50.72 31.26 25.3
DAML 42.54 28.56 23.86 42.6 27.12 22.2 45.78 29.3 25.34

The results presented in this study show that we can use a good baseline model
trained from a large source domain dataset to build a model that can learn from little data.
Compared to the other approach, the baseline model can take advantage of the complexity
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of the backbone model to build a good representation of the features. Choosing the right
backbone model and learning strategy is also important. Formulating the problem based
on the name of the common disease can lead to better and more consistent results and
enhances generalization of the model.

In a previous study [38], Argueso et al. indicated that metric learning using triplet
loss outperformed the transfer learning strategy by a large margin. However, in their
study they have tuned 50 Inception V3 [44] layers which cannot be achieved with a few
samples and we believe that this is the main reason this model fails. Table 8 shows the
comparison of the baseline model, the triple network with the ResNet50 backbone that
was used in this study and the work of Argueso et al. [38]. This comparison shows that
although a ResNet50 backbone trained from scratch using source domain data enhances
Triplet network performance, the baseline model outperforms all other approaches. This is
due to the fact that many diseases affect a small portion of the plant leaf, which hinders
accurate representation of these diseases in the embedding space of the metric learning
techniques. However, the baseline model directly extracts the features that allow it to
distinguish different diseases, especially in the second formulation.

Table 8. Comparison of the baseline model (the best performing model), Triplet network (ResNet50),
and Triplet network Argueso et al. [38].

5-Shots 25-Shots 50-Shots

Baseline (ResNet50) 85.58% 96.02% 97.52%
Triplet Network (ResNet50) 81.86% 93.26% 95.20%
Argueso et al. [38] 72% 85% 88%

4. Conclusions

In this study, we developed several approaches for classifying plant diseases that can
learn from little data. Transfer learning, Triplet network, and Deep Adversarial Metric
learning (DAML) were used to build these approaches. The evaluation of these approaches
demonstrated the efficiency of transfer learning using a good baseline model. It achieved
a very high accuracy of 99% for new classes when the source and target domain data are
captured under the same condition and a reasonable accuracy of 81% for novel dataset
that is captured under different conditions. It can generalize well and beat all competitive
approaches. We also found that DAML can enhance the traditional metric learning by
generating hard samples and increases the data diversity. Selection of the appropriate
model and learning strategy is also essential to the success of the FSL approach. Therefore,
developing a disease classification method regardless of the plant can perform better and it
is more appropriate for real applications than the usual method, which is to classify both
disease and plant type together. Finally, we believe that focusing only on the affected part
of the plant might lead to better classification results, especially for diseases that affect a
small portion of the leaf.
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