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Acute and repeated exposures to ketamine mimic aspects of positive, negative, and

cognitive symptoms of schizophrenia in humans. Recent studies by our group and others

have shown that chronicity of ketamine use may be a key element for establishing a more

valid model of cognitive symptoms of schizophrenia. However, current understanding

on the long-term consequences of ketamine exposure on brain circuits has remained

incomplete, particularly with regard to microstructural changes of white matter tracts

that underpin the neuropathology of schizophrenia. Thus, the present study aimed to

expand on previous investigations by examining causal effects of repeated ketamine

exposure on white matter integrity in a non-human primate model. Ketamine or saline

(control) was administered intravenously for 3 months to male adolescent cynomolgus

monkeys (n = 5/group). Diffusion tensor imaging (DTI) experiments were performed and

tract-based spatial statistics (TBSS) was used for data analysis. Fractional anisotropy (FA)

was quantified across the whole brain. Profoundly reduced FA on the right side of sagittal

striatum, posterior thalamic radiation (PTR), retrolenticular limb of the internal capsule

(RLIC) and superior longitudinal fasciculus (SLF), and on the left side of PTR, middle

temporal gyrus and inferior frontal gyrus were observed in the ketamine group compared

to controls. Diminished white matter integrity found in either fronto-thalamo-temporal or

striato-thalamic connections with tracts including the SLF, PTR, and RLIC lends support

to similar findings from DTI studies on schizophrenia in humans. This study suggests

that chronic ketamine exposure is a useful pharmacological paradigm that might provide

translational insights into the pathophysiology and treatment of schizophrenia.
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INTRODUCTION

Acute and repeated exposures to ketamine, an N-methyl-
D-aspartate (NMDA) receptor antagonist, can be used to
model aspects of positive, negative, and cognitive symptoms
of schizophrenia in humans (Krystal et al., 1994; Newcomer
et al., 1999; Dawson et al., 2013; Stone et al., 2014). A
growing body of neuroimaging studies have demonstrated that
acute administration of ketamine induces symptoms in healthy
individuals comparable to an acute psychotic state, which include
delusions (Abel et al., 2003a; Corlett et al., 2013), dissociative
sensation (Deakin et al., 2008; De Simoni et al., 2013) and
emotion blunting (Abel et al., 2003b; Daumann et al., 2008).
However, a number of studies have indicated that acute ketamine
administration does not significantly impair cognitive functions
such as working memory, verbal fluency, and attention (Honey
et al., 2004, 2005; Fu et al., 2005; Daumann et al., 2008).
Furthermore, acute ketamine exposure has yielded inconsistent
findings on resting-state functional connectivity particularly
prefrontal cortex functional connectivity with subcortical brain
regions (Scheidegger et al., 2012; Driesen et al., 2013), and
these regions play an important role in executive functions
(Bonelli and Cummings, 2007). Recently, it has been postulated
that the most-reported short-term psychological effects of
ketamine dependence were “floating or circling” sensation, while
the long-term effects of ketamine dependence were memory
impairment, personality changes, and slowed reactions (Curran
and Morgan, 2000; Morgan et al., 2004; Fan et al., 2015).
Thus, chronic ketamine use may provide a more valid model
of cognitive symptoms of schizophrenia. Improved mechanistic
characterization of the effects of long-term ketamine exposure on
brain circuits is likewise crucial to a better understanding of the
etiology of cognitive symptoms of schizophrenia.

Moreover, compelling phenotypic similarity between chronic
ketamine use and schizophrenia exists in functional neural
activity or white matter alterations, particularly, in light of
disconnections involving the prefrontal cortex. In a recent
functional magnetic resonance imaging (fMRI) study, it was
reported that effects of chronic ketamine use on resting-state
functional connectivity are coupled to increased activity in the
frontal gyrus and decreased activity in the anterior cingulate
cortex (ACC; Liao et al., 2012). Our previous study has also
demonstrated that repeated exposure to ketamine in non-human
primates reduced functional neural activity in the midbrain,
posterior cingulate cortex (PCC), and visual cortex, but increased
activity in the striatum (Yu et al., 2012). Diffusion tensor imaging
(DTI) is an MRI-based neuroimaging technique that provides
information about white matter microstructure in vivo. Damages
in frontal white matter and corpus callosum have been reported
in human cocaine addicts (Moeller et al., 2007;Wang et al., 2013).
UP until now, only two clinical DTI findings have reported that
chronic ketamine exposure disrupts white matter integrity in the
frontal cortex (Liao et al., 2010; Edward Roberts et al., 2014). Liao
et al. also reported reduced bilateral frontal gray matter volume
in chronic ketamine users (Liao et al., 2011). However, exposure
to other psychoactive substances of patients with ketamine
dependencemay confound interpretation of these results. In view

of a paucity of knowledge about the long-term consequences
of ketamine administration in brain structures, along with
ethical concerns and technical difficulties in addressing this
issue in humans, investigation on chronic ketamine exposure in
preclinical animal models is clearly warranted.

Adolescents are socially vulnerable to drugs of abuse and
display susceptibility to the development of drug dependence
(Anthony and Petronis, 1995; Chambers et al., 2003). Despite
the high prevalence of ketamine use among adolescents and
young adults in Hong Kong and internationally (Lankenau
and Clatts, 2004; Tang et al., 2015), disproportionately little is
known about its impact on the developing brain. Again, it is
particularly challenging to evaluate the drug effects on this age
group in clinic. Non-human primates represent an excellent
animal model because they share high similarity with humans
in the pharmacokinetics and metabolism of several drugs and
more importantly their prefrontal cortex is evolutionarily closely
aligned with human counterparts (Preuss, 1995; Innocenti et al.,
2016). Given the well-established role of prefrontal cortex in
cognitive symptoms of psychosis, the aim of the present study
was to expand on previous DTI investigations by examining
potential causal effects of repeated ketamine exposure on white
matter integrity and connectivity profiles between prefrontal
cortex and subcortical brain regions in an adolescent non-human
primate model. We predicted that chronic ketamine exposure
perturbs the integrity of prefrontal cortex and its connectivity
with subcortical regions.

MATERIALS AND METHODS

Animals and Ketamine Administration
Male adolescent cynomolgus monkeys (Macaca fascicularis)
were purchased from Yunnan Laboratory Primate Inc. and all
experiments were conducted in full compliance with license from
the Ethics Committee of Shandong University. The animals were
bred from a colony of natural-habitat-reared M. fascicularis and
were kept at Hongli Animal Center (approval ID for use of
non-human primates in this study: SYXK, 20050041) in a room
maintained at temperature of 25◦C with a 12:12 h light-dark
cycle. Monkeys were individually housed in stainless steel cages
(90 × 90 × 70 cm, SCXK Su 2003-0006) with water available
ad libitum and were allowed to have visual and auditory contact
with each other. They were fed twice daily with whole grains
diet (Military Medical Animal Center of the Chinese Liberation
Army, SCXK), supplemented with fresh fruits each day. Rearing
procedures had been reviewed and approved by the Animal Care
Committee of Shandong University.

Ten monkeys were randomly divided into two groups:
Ketamine (1 mg/kg) or saline (control) was administered
intravenously for 3 months to male adolescent M. fascicularis at
4.12 ± 0.65 (mean ± standard deviation) years old (ketamine
group = 5, control group = 5). Based on studies by our group
and others (Stoet and Snyder, 2006; Yu et al., 2012; Sun et al.,
2014), ketamine dose of 1 mg/kg in an injection volume of 1 mL
in saline was chosen and freshly prepared on the day of injection.
Ketamine was given daily intravenously via arm vein under
mild physical constraints for 13 weeks (i.e., ∼3 months), while
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control monkeys were given sterile saline 1 mL. Ketamine was
not given to the monkeys 24 h before the day of DTI scanning.
No other pharmacological agents were administered to monkeys
throughout the whole experiments. Animal body weights were
recorded monthly to monitor the monkeys’ well-being.

Diffusion Tensor Imaging (DTI)
DTI experiments were performed on a 3-T Signa Magnetic
Resonance System (GE Company). Briefly, monkeys were
anesthetized by intramuscular injection with ketamine (10
mg/kg) and xylazine hydrochloride (Sumianxin, 0.1 mL/kg;
China Institute of Military Veterinary, Academy of Military
Medical Sciences, Changchun, China; Feng et al., 2013).
Anesthetized animals were immediately transferred to the MRI
room. Anesthesia was sustained throughout the whole scanning
period with no extra anesthetic doses being required. The
monkeys were kept in place with sponges and sand bags and were
oriented in a head-forward sphinx position. Respiration rate and
body temperature were continuously monitored during the scan.
DTI scanning was performed by using an EP/S sequence with the
following parameters: repetition time = 6 s; echo time = 89.8
ms; field of view = 14 cm; flip angle = 90◦; matrix = 256 ×

256; slice thickness = 2.6 mm. Diffusion weighted imaging (b =

1,000 s/mm2) was performed in 25 non-collinear directions with
1 non-diffusion weighted image.

Data Analysis
Fractional anisotropy (FA) was derived from diffusion data which
quantifies how strongly directional a local tract structure is.
In order to localize brain changes, group comparison of FA-
value was performed between control group and ketamine group
(p < 0.005, uncorrected). Tract-based spatial statistics (TBSS;
Smith et al., 2006) part of FSL (Smith et al., 2004) was used in
data processing. First, the raw diffusion data were preprocessed
and corrected to eliminate the effects of head movement and
eddy currents by using FMRIB Diffusion Toolbox (FDT). Then,
a binary brain mask was created by brain-extracting the no
diffusion weighting (b = 0) image by using Brain Extraction
Tool (BET; Smith, 2002) and mean FA images were created by
fitting a tensor model to the corrected diffusion data with its
brain mask. Before group comparison, all FA images were aligned
onto the MNI152 standard space by non-linear registration and
resliced into 1× 1× 1 mm3 resolution by TBSS software for later
accurate cluster quantification. A mean FA skeleton was created
such that it most represents the centers of all tracts common
to the group. The voxel-wise group statistical comparison was
performed to show which voxels on the mean FA skeleton mask
had significant difference between control group and ketamine
group. The analysis statistics was based on TBSS with threshold-
free cluster enhancement (TFCE) algorithm. TFCE method was
adopted with a non-parametric approach of permutation test
of 500 permutations (Smith and Nichols, 2009). Results were
generated based on significant threshold at uncorrected one-
tailed TFCE p < 0.005.The quantification of voxel size within a
cluster was then performed by using Xjview toolbox (http://www.
alivelearn.net/xjview). To locate the actual anatomical regions
of those significant clusters in monkey, a diffusion tensor based

white matter brain atlas for rhesus macaques was applied (Adluru
et al., 2012) onto the results as anatomical underlay.

RESULTS

Regions of Significant Difference in
Fractional Anisotropy (FA) between Groups
Group comparison between chronic ketamine administration
group and controls revealed seven different anatomical regions,
where the ketamine group had FA-values significantly lower than
that of the control group. The anatomic location and size of
these clusters with peak t-values for ketamine group and controls
are as shown in Table 1. In this table, statistical analysis found
significant FA changes (p < 0.005) between ketamine group and
controls in the right side of sagittal striatum (SS; t = 4.3829),
posterior thalamic radiation (PTR, right side, t= 3.9214; left side,
t= 7.1843), middle temporal gyrus white matter (MTG-WM, left
side, t = 4.3206), inferior frontal gyrus WM (IFG-WM, left side,
t = 3.8225), retrolenticular limb of the internal capsule (RLIC,
right side, t = 2.5386), and superior longitudinal fasciculus (SLF,
right side, t = 4.9845).

Figure 1 showed spatial distribution of the brain regions
indicating a reduction of FA (p < 0.005, TFCE-uncorrected) in
right SS in the ketamine administration group when compared
with controls. In addition, the significant regions were located
in the posterior region of the thalamic radiation. Both right
and left PTR showed reduced FA (p < 0.005) in the ketamine
administration group (Figures 2, 3). The RLIC comes from
the thalamus and more posteriorly this becomes the optical
radiation (Larry et al., 2012). Figure 6 indicated a reduction of FA
(p < 0.005) in the right RLIC in the ketamine group compared
with controls. SLF, the largest association bundles, connects to
the cortex of the frontal, parietal, occipital and temporal lobes
(Larry et al., 2012). We found reduced FA in the right SLF in
ketamine administration group (p < 0.005; Figure 7). Consistent
with a ground-breaking finding reported by Liao et al. (2010),
the present study showed decreased FA (p < 0.005) in left side
of IFG (Figure 5) and MTG (Figure 4) in chronic ketamine
administration group compared with controls. Moreover, our
previous functional image study on the same model showed
hypofunctions in the PCC and visual cortex (Yu et al., 2012).

There were no cluster areas where the ketamine group had
FA-values higher than that of controls.

DISCUSSION

The present study provides direct experimental evidence that
chronic ketamine exposure significantly disrupts white matter
microstructures across a number of critical brain circuits. We
found that repeated ketamine exposure elicits bidirectional
reduced FA of PTR, left side of middle temporal gyrus WM
(MTG-WM) and inferior frontal gyrus WM (IFG-WM), and
also reduced FA in the right side of sagittal striatum (SS), RLIC,
and SLF. More importantly, reduced integrity of fronto-thalamo-
temporal or striato-thalamic white matter connectivity observed
in this study is consistent with, and extend the previous clinical
findings in chronic ketamine users.
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TABLE 1 | Regions with significant FA differences between chronic ketamine exposure group and controls.

Region of significant clusters Hemisphere Cluster size (voxels) Peak coordinates [x, y, z] Peak t-value

Sagittal striatum (SS) Right 7 [52, 27, 33] 4.3829

Posterior thalamic radiation (PTR) Right 27 [54, 23, 35] 3.9214

Posterior thalamic radiation (PTR) Left 12 [20, 27, 35] 7.1843

Middle temporal gyrus WM (MTG-WM) Left 4 [15, 37, 37] 4.3206

Inferior frontal gyrus WM (IFG-WM) Left 3 [23, 61, 43] 3.8225

Retrolenticular limb of the internal capsule (RLIC) Right 4 [52, 38, 38] 2.5386

Superior longitudinal fasciculus (SLF) Right 21 [54, 27, 42] 4.9845

x, y, z are co-ordinates based on the reference DTI monkey brain template FA map (Adluru et al., 2012) with its atlas (http://www.nitrc.org/projects/rmdtitemplate/). z indicates the vertical

distance from the lowest axial plane of reference image in mm, x refers to sagittal plane, y refers to coronal plane. The uncorrected p-value of all the voxels in the cluster are p < 0.005.

WM, white matter.

FIGURE 1 | Areas in sagittal striatum (SS, right side) with reduced fractional anisotropy values in the chronic ketamine exposure group compared to

controls at p < 0.005 (in red; uncorrected). The anatomical underlay is DTI-based monkey brain image template (UWRMAC-DTI271) FA map with white matter

atlas. Figure from left to right side is coronal view, sagittal view, and axial view of the images, respectively. The color bar represents the t-value.

FIGURE 2 | Areas in posterior thalamic radiation (PTR, right side) with reduced fractional anisotropy values in the chronic ketamine exposure group

compared to controls at p < 0.005 (in red; uncorrected). The anatomical underlay is DTI-based monkey brain image template (UWRMAC-DTI271) FA map with

white matter atlas. Figure from left to right side is coronal view, sagittal view, and axial view of the images, respectively. The color bar represents the t-value.

Our current DTI findings of abnormality in the IFG-WM
and MTG-WM with chronic ketamine exposure in non-human
primate are largely consistent with white matter tract patterns
observed in previous clinical imaging studies of schizophrenia
in humans (Thompson et al., 2001; Kyriakopoulos et al., 2008;
Ellison-Wright and Bullmore, 2009). In a comprehensive meta-
analysis of DTI studies on schizophrenia, Ellison-Wright et al.
(Ellison-Wright and Bullmore, 2009) summarized two locations
of FA reductions in the deep white matter of the left frontal
and temporal lobes. Disruption of fronto-temporal white matter

network may contribute to cognitive deficits in schizophrenia
(Kubicki et al., 2007). Even though abnormalities in the white
matter have not been found consistently in schizophrenia
patients in methodologically varied studies, the frontal white
matter seems to be commonly affected. Recently, Zalesky et al.
(2011) showed that a fronto-parietal/occipital network may
represent the key macro-circuit affected in schizophrenia, while
an aberrant network structure of bilateral inferior frontal cortex
and temporal has been reported in schizophrenia patients
(van den Heuvel et al., 2010). These findings suggest that
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FIGURE 3 | Areas in posterior thalamic radiation (PTR, left side) with reduced fractional anisotropy values in the chronic ketamine exposure group

compared to controls at p < 0.005 (in red; uncorrected). The anatomical underlay is DTI-based monkey brain image template (UWRMAC-DTI271) FA map with

white matter atlas. Figure from left to right side is coronal view, sagittal view, and axial view of the images, respectively. The color bar represents the t-value.

FIGURE 4 | Areas in middle temporal gyrus WM (MTG-WM, left side) with reduced fractional anisotropy values in the chronic ketamine exposure

group compared to controls at p < 0.005 (in red; uncorrected). The anatomical underlay is DTI-based monkey brain image template (UWRMAC-DTI271) FA map

with white matter atlas. Figure from left to right side is coronal view, sagittal view, and axial view of the images, respectively. The color bar represents the t-value.

FIGURE 5 | Areas in inferior frontal gyrus WM (IFG-WM, left side) with reduced fractional anisotropy values in the chronic ketamine exposure group

compared to controls at p < 0.005 (in red; uncorrected). The anatomical underlay is DTI-based monkey brain image template (UWRMAC-DTI271) FA map with

white matter atlas. Figure from left to right side is coronal view, sagittal view, and axial view of the images, respectively. The color bar represents the t-value.

schizophrenia patients have a less organized brain networks with
a reduced central role for the key frontal hub, which results in
limited integration of information between brain regions.

Consistent with the view of “hypofrontality” in schizophrenia
(Wolkin et al., 1992), a growing number of brain imaging
studies have shown that the frontal white matter abnormalities
may be as a fundamental change in patients with chronic drug
dependence (Nestler, 2005; Wang et al., 2013). Animal studies

by our group and others have shown that apoptosis of neuronal
cells in the frontal cortex is induced by chronic exposure to
ketamine (Zou et al., 2009; Yeung et al., 2010; Sun et al., 2014).
To date, however, there have been only two clinical studies
examining white matter integrity in chronic ketamine users
(Liao et al., 2010; Edward Roberts et al., 2014). Liao et al.
(2010) first reported that white matter changes with reduced
FA in the bilateral frontal and left temporo-parietal cortices are
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FIGURE 6 | Areas in retrolenticular limb of the internal capsule (RLIC, right side) with reduced fractional anisotropy values in the chronic ketamine

exposure group compared to controls at p < 0.005 (in red; uncorrected). The anatomical underlay is DTI-based monkey brain image template

(UWRMAC-DTI271) FA map with white matter atlas. Figure from left to right side is coronal view, sagittal view, and axial view of the images, respectively. The color bar

represents the t-value.

FIGURE 7 | Areas in superior longitudinal fasciculus (SLF, right side) with reduced fractional anisotropy values in the chronic ketamine exposure group

compared to controls at p < 0.005 (in red; uncorrected). The anatomical underlay is DTI-based monkey brain image template (UWRMAC-DTI271) FA map with

white matter atlas. Figure from left to right side is coronal view, sagittal view, and axial view of the images, respectively. The color bar represents the t-value.

associated with chronic ketamine use. Later, Edward Roberts
et al. (2014) partially replicated the findings reported by Liao
et al., which revealed a reduction in axial diffusivity in the right
side of prefrontal white matter in chronic ketamine users. They
further observed that the connectivity between caudate nucleus
and lateral prefrontal cortex pathway was positively associated
with dissociative experiences in ketamine users (Edward Roberts
et al., 2014). Our findings are also in partial agreement with
those studies, as the brain areas of abnormality observed in this
study were also located in the left side of frontal lobe (IFG-
WM) and temporal lobe (MTG-WM). The absence of an effect
of ketamine on right side of frontal lobe in this study may be
because a shorter duration of ketamine exposure or the use of
only male animals in our experiment. A second consideration
is that all the subjects in our study started to receive ketamine
during adolescence, which is a stage of development known to
involve brain plasticity (Blakemore and Choudhury, 2006). In
addition, frontal lobe deficits may well be associated with the
ketamine-related memory defects and cognitive symptoms in
schizophrenia patients. Our research group have demonstrated
that chronic exposure to ketamine impaired working memory in
mice, which was correlated with dysfunction of GABA signaling
system in the prefrontal cortex (Tan et al., 2011). However,

further investigation including studies on working memory
symptoms combined with neuroimaging is needed to better
understand the neuropathological roles of the frontal lobe in
chronic ketamine users.

Both IFG-WM and MTG-WM lie laterally to the SLF (Adluru
et al., 2012), the major white matter connection between the
prefrontal and parietal/temporal cortices, which are functionally
related to verbal working memory performance (Hazlett et al.,
2008; Karlsgodt et al., 2008). Edward Roberts et al. (2014)
reported reduced axial diffusivity in the right side of SLF in
ketamine users. In addition, recent evidence has demonstrated
that activities in the right IFG network connected by SLF,
especially in the right hemisphere, play prominent roles in
corporeal awareness during illusion (Amemiya and Naito, 2016).
Patients with first-episode paranoid schizophrenia exhibited
reduced FA in the right SLF and right internal capsule (Guo
et al., 2012). In line with these findings, decreased FA in the
right SLF in our study may implicate fronto-parietal white matter
disconnectivity in symptoms associated with chronic ketamine
exposure in monkeys.

White matter FA in bilateral PTR, a region encompassing fiber
pathways that connects the caudal parts of thalamus with the
occipital and parietal lobes, was reduced in monkeys chronically
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exposed to ketamine. This association tract is of interest because
it plays a key role connecting visual and motor processes,
and is an integral part of neural network regulating cognitive
performance (Cremers et al., 2016). Bilateral FA reduction in the
PTR has been reported in patients with schizophrenia (Peters
et al., 2010; Melonakos et al., 2011; Melicher et al., 2015).
However, Edward Roberts et al. (2014) found impairment only
on the right side of PTR in chronic ketamine users. Our results
encourage further investigation into the role of this projection in
ketamine use.

The sagittal striatum, which includes a large part of both
the inferior longitudinal fasciculus and inferior fronto-occipital
fasciculus, projects to the frontal and limbic cortices (Adluru
et al., 2012). Striatum and its cortical connections are critical
in the pathogenesis of the complex cognitive symptoms of
schizophrenia (Simpson et al., 2010). There is corroborative
evidence from animal models and clinical investigations that
sensorimotor gating function is modulated by cortico-striato-
thalamic circuitry (Hazlett et al., 2008; Li et al., 2009, 2010). In
the present study, compromised white matter tract integrity seen
on right side of striato-thalamic connections, specifically tracts
including RLIC and PTR, supports white matter alterations in the
brain of chronic ketamine users as reported by Edward Roberts
et al. (2014). These white matter alterations in the brain may also
contribute to the dissociative experiences reported by chronic
ketamine users (Edward Roberts et al., 2014). Moreover, reduced
FA in RLICwas reported to be associated with negative symptoms
in patients with schizophrenia (Arnedo et al., 2015).

CONCLUSION

The results of the present study confirm chronic ketamine
use during adolescence causes brain damage in areas known
to be involved in neurodevelopment during adolescence, in
particular, fronto-thalamo-temporal white matter connection
(Alcauter et al., 2014; Xiao et al., 2016). Based on clinical findings
on chronic ketamine exposure, our study has systematically
surveyed major brain regions posited to have reductions
in white matter integrity. More importantly, the current
observations of reduced white matter in eitherfronto-thalamo-

temporal or striato-thalamic networks involving white matter
tracts including the SLF, PTR, and RLIC echo findings in
human DTI studies on schizophrenia. These results furnish
a rational basis for studying chronic ketamine exposure of
adolescent brain as a pharmacological paradigm and may yield
translational insights into the pathophysiology and treatment of
schizophrenia.

LIMITATIONS

Firstly, we acknowledge that the sample size of the current
study was modest. Our findings are nonetheless promising, being
the first direct evidence for establishing the casual effects of
chronic ketamine exposure on microstructure integrity of white
matter tracts in adolescent non-human primates. Secondly, we
examined only male adolescent monkeys in this study. A decision
to dedicate finite experimental resources to males was made
because male subjects are generally more vulnerable to drug
addiction (DePoy et al., 2016), and there is evidence that males
experiencing neurodevelopmental perturbations associated with
schizophrenia were inferior to females in memory performance
(Goldstein et al., 1998).
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