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Abstract: In the last decade, Candida glabrata has become an important emerging opportunistic
pathogen not only because of the increase in nosocomial infections frequency but also because of
its ability to form biofilms and its innate resistance to commercial antifungals. These characteristics
make this pathogen a major problem in hospital settings, including problems regarding equipment,
and in immunosuppressed patients, who are at high risk for candidemia. Therefore, there is an urgent
need for the development of and search for new antifungal drugs. In this study, the efficacy of two
dendritic wedges with 4-phenyl butyric acid (PBA) at the focal point and cationic charges on the
surface ArCO2G2(SNMe3I)4 (1) and ArCO2G3(SNMe3I)8 (2) was studied against C. glabrata strain to
inhibit the formation of biofilms and eliminate established biofilm. For this, MBIC (minimum biofilm
inhibitory concentration), MBDC (minimum biofilm damaging concentrations), as well as MFCB
(minimum fungicidal concentration in biofilm) and MBEC (minimum biofilm eradicating concentra-
tion) were determined. In addition, different combinations of dendrons and amphotericin B were
tested to study possible synergistic effects. On the other hand, cytotoxicity studies were performed.
C. glabrata cells and biofilm structure were visualized by confocal microscopy. ArCO2G2(SNMe3I)4

(1) and ArCO2G3(SNMe3I)8 (2) dendrons showed both an MBIC of 8 mg/L and a MBDC of 32 mg/L
and 64 mg/L, respectively. These dendrons managed to eradicate the entirety of an established
biofilm. In combination with the antifungal amphotericin, it was possible to prevent the generation of
biofilms and eradicate established biofilms at lower concentrations than those required individually
for each compound at these conditions.

Keywords: amphotericin; anti-biofilm; Candida glabrata; dendritic compounds; confocal microscopy;
synergy; treatment

1. Introduction

Candida are one of the main fungal pathogens responsible for invasive infections
in humans, especially in immunocompromised patients [1]. The best-known and most
frequent species is Candida albicans. However, there are other Candida non-albicans species
of clinical relevance that have greater resistance to current antifungal agents, such as
Candida glabrata, to date the second most isolated species. These facts lead to the failure of
therapeutic strategies. This resistance is mainly due to a unique feature of these pathogens,
their ability to form biofilms that contributes to their pathogenicity and spread in the
healthcare environment, among others [2].
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Biofilms are microbial communities adhering to biotic and abiotic surfaces, including
medical devices such as heart valves and urinary catheters, and human tissues [1–3].
These communities are included in an extracellular matrix that protect cells from different
factors such as antifungal agents or host immune system. This matrix acts as a barrier that
interferes with and hinders the eradication of infections by C. glabrata (or of C. glabrata
infection), among other species of the genus Candida. In these conditions, antifungal
effective concentrations are many folds greater than the concentrations required to kill
planktonic cells [3]. Furthermore, one of the reasons associated with the high resistance of
biofilm related infections and treatment failure is the presence of persister cells, a group of
cells within the biofilm that can survive high doses of antifungal agents [4].

Candida treatment is mainly based on the use of polyenes, such as amphotericin B, or
azoles, such as fluconazole. Amphotericin is a broad-spectrum drug used for the systemic
treatment of fungal infections; however, it has poor water solubility and limited oral
absorption [5]. This compound acts by binding to ergosterol, permeating across the lipid
membrane and generating pores. Its activity is fungistatic or fungicidal depending on the
concentration of the drug [6]. The problem with these molecules, as with other commercial
antifungals, is their cytotoxicity and the tendency to generate resistance that leads to the
persistence of Candida infections [5]. Consequently, its wide use inevitably causes the
emergence of resistant strains that are difficult to treat. Therefore, there is an urgent need to
improve the prevention and develop alternative treatment strategies to overcome Candida
resistance [1]. However, there are difficulties in finding new antimicrobial compounds
effective only against Candida cells, but not affecting other eukaryotic cells, such as human
cells. This fact reduces the number of viable new molecules effective as antifungals.

In this sense, dendritic molecules have emerged as good candidates in the search for
new effective antifungals, included against biofilm. Dendrimers are branched nanometric
globular polymers with functionalized surface. On the other hand, dendrons start from
a focal group that is joined by branches and allow the combination of two therapeutics
agents in the same structure (at the focal point and the surface). The use of these structures
in the field of biomedicine is widespread. At present, studies have already been reported
where the excellent efficacy of these molecules against strains of the Candida genus has
been confirmed [7–9].

Therefore, the present study had the following aims: to determine the activity of
cationic dendrons with 4-phenyl butyric acid (PBA); to inhibit the formation of biofilms of
C. glabrata; to determine the activity needed to eradicate established biofilm; and analyze a
combined therapy of dendritic compounds and amphotericin against biofilm formation
and established biofilms.

2. Materials and Methods
2.1. Candida spp. Strains and Growth Conditions

Candida glabrata strain 1448 from Colección Española de Cultivos Tipo (CECT 1448)
(ATCC 2001) was used in this study. C. glabrata was isolated and stored at −80 ◦C with
20% glycerol (Sigma-Aldrich, Saint Louis, MO, USA) until use. It was grown on Sabouraud
chloramphenicol agar (Scharlab, Barcelona, Spain). To stimulate biofilm formation, colonies
were transferred into Yeast Extract–Peptone–Dextrose (YPD, 1% Yeast-2% Peptone-2%
Dextrose, Scharlab, Barcelona, Spain) and incubated at 37 ◦C with agitation (150 rpm) for
24 h.

2.2. Dendritic Compounds and Amphotericin

Two cationic dendritic carbo-silane dendrons (generation 1 and 2), with 4-phenyl
butyric acid (PBA) located at the focal point (Figure 1), were tested to study their ability
in vitro as anti-biofilm for C. glabrata. PBA is a chemical that inhibits endoplasmic reticulum
stress and has different applications, such as the treatment of urea cycle disorders [10].
These dendrons are called ArCO2G2(SNMe3I)4 (1) (generation 2), and ArCO2G3(SNMe3I)8
(2) (generation 3), previously described by [11]. They will be referred as dendron 1 and
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dendron 2 in the text. All of them were used in previous studies [8]. Two properties were
evaluated: the ability to prevent biofilm formation and to eliminate C. glabrata established
biofilms. Dendrons were tested in 96-well microtiter plates using a series of two-fold
dilutions with concentrations ranging from 1 to 512 mg/L. Both compounds were soluble
in water. For amphotericin B a stock solution of 250 mg/L was used (Sigma-Aldrich, Saint
Louis, MO, USA). The concentrations tested ranged from 0.06 to 128 mg/L. Assays were
run in technical triplicates and repeated at least twice in independent experiments. For
these experiments, the method of microdilution described in NCCLS document M27-A
broth was used [12,13].
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Figure 1. Structures of cationic carbo-silane dendrons ArCO2G2(SNMe3I)4 (1) and ArCO2G3(SNMe3I)8 (2).

2.3. Biofilm Inhibition Assay, MBIC and MFCB Determinations

The anti-biofilm activity of dendron 1 and dendron 2 was carried out as previously
described [7]. An inoculum of C. glabrata was adjusted to 0.5 McFarland standard in RPMI
1640 medium (Sigma-Aldrich) with morpholine-propane-sulfonic acid (Sigma-Aldrich)
and 2% glucose (RPMI + MOPS + GLU). Then, 50 µL of the suspension were inoculated
in 96-well microtiter plates containing two-fold serial dilutions of the dendrons. Plates
were incubated for 48 h at 37 ◦C. Candida controls free of compound, control of compound
without inoculum, and control of medium free of compound and inoculum were included.
The minimum biofilm inhibitory concentration (MBIC) was determined with resazurin
colorimetric assay and has been previously defined as the lowest concentration in which
no reduction in resazurin was observed (no growth, nor absorbance signal detected) in
biofilm in formation [7,8,14,15]. The minimum fungicidal concentration in biofilm (MFCB)
was determined using the drop plate method and was defined as the lowest concentration
capable of inducing the total death of the yeast population, avoiding the generation of the
biofilm (0% cell viability) [7,8,14,15]. These MFCB values were obtained by scraping the
biofilm and plating 5 µL suspension of each well (drop plate method) [7,8].

2.4. Biofilm Disruption Assay, MBDC and MBEC Determinations

To determine the ability of the tested dendrons to disrupt established biofilms, the
biofilms were formed in microtiter plates as follows. An inoculum of C. glabrata was
adjusted to 0.5 McFarland standard in RPMI + MOPS + GLU. Then, 100 µL of the suspension
was inoculated in 96-well microtiter plates. Plates were incubated for 48 h at 37 ◦C. Then, the
medium was removed to eliminate non-adherent cells and wells were washed with sterile
PBS (Phosphate Buffered Saline). Then, 100 µL of serial concentrations of dendron 1 and
dendron 2 were added to each well to assess their ability to eradicate established biofilms.
Plates were incubated for 48 h at 37 ◦C. Candida controls free of compound, control of
compound without inoculum, and control of medium free of compound and inoculum were
included. The minimum biofilm damaging concentrations (MBDC) were determined with
resazurin colorimetric assay and has previously been defined as the lowest concentration at
which no reduction in resazurin was observed (no growth, nor absorbance signal detected)
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in established biofilm [7,8,14,15]. The minimum biofilm eradicating concentration (MBEC)
using the drop plate method was defined as the lowest concentration capable of inducing
the total death of the previously established biofilm (0% cell viability) [7,8,14–16]. These
MBEC value was obtained by scraping the biofilm and plating 5 µL suspension from each
well (drop plate method) [7,8].

2.5. Combination Therapy of Dendritic Compounds and Amphotericin against C. glabrata Biofilm

The antifungal activity of the combination of cationic carbo-silane dendrons with
amphotericin has been studied to evaluate the existence of a cooperative effect between
them against C. glabrata biofilms. The anti-biofilm activity of the dendrons for inhibition
of biofilm formation and elimination of established biofilm was studied. Preventing
biofilm formation, a concentration ranging from 0.0035 mg/L to 0.125 mg/L was used for
amphotericin and from 0.25 mg/L to 8 mg/L for dendron 1 and dendron 2. To establish
the biofilm assay, a concentration ranging from 0.125 mg/L to 4 mg/L was used for
amphotericin and from 4 mg/L to 128 mg/L for dendron 1 and for dendron 2. Then, the
fractional inhibitory concentration index (FICI) was calculated to evaluate the synergistic
activity using the formula:

FICI = ((minimum concentration of drug A in combination)/(minimum concentration of drug A alone)] + [(minimum
concentration of drug B in combination)/(minimum concentration of drug B alone)).

Data interpretation: FICI≤ 0.5 indicates synergy, 0.5 < FICI ≤ 1 additive, 1 < FICI < 4 in-
difference, FICI ≥ 4 antagonism [17].

2.6. Resazurin Assay

Resazurin (Sigma-Aldrich) solution at 0.01% (w/v) was filtered and conserved at
4 ◦C [7,18,19]. After the incubation time, the wells of the treated microplates were washed
with PBS. Then, 100 µL of PBS and 20 µL resazurin solution were added to each well. Plates
were incubated in the dark at 37 ◦C for 24 h. Absorbance was measured at 570 and 600 nm
in a microplate reader (EpochTM, BioTek, TX, USA) [7,8]. This method allowed obtaining
the MBIC values and the MBDC values (in the biofilm formation and in the stabilized
biofilm experiment, respectively).

2.7. Drop plate Method

Biofilms were scraped and homogenized by shaking with the micropipette several
times and 5 µL of well suspensions were transferred onto Chloramphenicol-Sabouraud
agar plates [20]. Plates were incubated for 48 h at 37 ◦C. These values were determined
at concentrations where growth was not observed. This method allowed obtaining the
MFCB values and the MBEC values (in the biofilm formation and in the stabilized biofilm
experiment, respectively).

2.8. Determination of the Degree of Cytotoxicity of Dendrons in Combination with Amphotericin

HeLa cells (ATCC® CCL-2TM) were used to evaluate the cytotoxicity of dendrons
in combination with amphotericin (concentrations that produce synergistic or additive
effect). Assays were performed in 24-well plates (NUNCTM) in Dulbecco’s Modified Eagle
Medium supplemented with fetal bovine serum (10%) and 1% antibiotic mix: 10,000 U
penicillin, 10 mg streptomycin and 25 µg amphotericin per mL (Sigma-Aldrich Ltd.). Cells
were seeded at a density of 1 × 104 cells/well in 300 µL of fresh medium. For 5 days, plates
were incubated at 37 ◦C in a 5% CO2 atmosphere. Then, the medium was replaced by
300 µL of single compounds (dendron 1, dendron 2 and amphotericin) or combinations of
these with amphotericin diluted in fresh medium. Control wells received only 300 µL of
fresh medium. After 48 h of incubation, wells were washed with PBS (three times), and
500 µL of medium were added to each well. Then, each well received 50 µL (5 mg/mL) of
microculture tetrazolium (Sigma-Aldrich Ltd.) and plates were incubated for 4 h at 37 ◦C.
Finally, medium was discarded and 500 µL of dimethyl sulfoxide were added to dissolve
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formazan crystals. Absorbance was measured at 570–630 nm in a microplate reader (BioTek
Instruments Inc. Model: ELX 800). Results: values <10% were non-cytotoxic, values 10–25%
were low cytotoxicity, and values 25–40% were moderate cytotoxicity levels [21].

2.9. Confocal Laser Scanner Microscope

Confocal laser scanning microscopy (CLSM) was used to visualize the damage pro-
duced by the compounds under study. The cell suspensions obtained from biofilms of
C. glabrata treated with dendrons, amphotericin and in combination were visualized by
CLSM using 1% propidium iodide (PI) (Merck KGaA, Darmstadt, Germany). The samples
were incubated in the dark for 15 min. Dead cells were stained in red. A LEICA TCS-SL
or SP5 Confocal Laser Scanning Microscope was used, using argon and helium/neon ion
lasers. The excitation/emission range for PI is 490/635 nm.

2.10. Data Analysis

All analyses were carried out using the GraphPad Prism 9 program for Windows
(GraphPad Software, 2021, San Diego, CA, USA).

3. Results and Discussion
3.1. Effect of Dendritic Compounds on Biofilm Development and Formation

Due to the importance of the biofilm resistance, different research groups are actively
working to find new molecules capable of destroying biofilms. Some of their results show
the activity of biodegradable silver nanoparticles [22], silymarin, which is obtained from
the shells of Silybum marianum seeds [23], or the essential oil from the Sardinian endemic
Juniperus oxycedrus L. ssp. macrocarpa aerial parts [24].

In the present study, dendritic systems were used. Within these systems we can
differentiate a type of compound, dendrons, dendrimer sections with different terminal
groups and a focal point. In this study, dendrons with PBA in the focal point were used.
The results obtained with the resazurin colorimetric method showed that dendron 1 and
dendron 2 had a MBIC of 8 mg/L, and the amphotericin a MBIC of 0.125 mg/L (Table 1).
No gradual decrease was observed in viability as the concentrations tested increased in
the case of dendrons and amphotericin (Figure 2). On the other hand, the drop plate
method showed that dendron 1 and dendron 2 had a MFCB of between 8 and 16 mg/L,
and amphotericin showed a MFCB of 0.125 mg/L (Table 1).

Previous studies have demonstrated the effectiveness of the tested compounds against
C. albicans CECT 1002 [8]. In these studies, the dendron 1 showed a MBIC and MFCB of
16 mg/L. The new data obtained in the present study support the excellent anti-biofilm
activity/effectiveness of this dendron against different species of the genus Candida, the
MBIC value even lower against C. glabrata CETC 1448 (8 mg/L). Related to dendron 2,
our results showed that it was effective against C. glabrata (MBIC of 8 mg/L and MFCB of
8–16 mg/L). Therefore, this strain was even more sensitive to dendron 2 than C. albicans
in preventing biofilm formation (MBIC and MFCB of 256 mg/L). Furthermore, the results
obtained for the MBIC and MFCB for both dendritic compounds were not different in
C. glabrata, unlike in C. albicans, so that specific characteristics of the cell wall of C. albicans
could prevent the affinity of this larger molecule (dendron 2) to the cell membrane.

Table 1. Anti-biofilm activity of dendrons and amphotericin tested against C. glabrata CECT1448.

Biofilm Formation Established Biofilm

Molecules MBIC (mg/L) MFCB * (mg/L) MBDC (mg/L) MBEC * (mg/L)
Dendron 1 8 8–16 32 256–512
Dendron 2 8 8–16 64 512

Amphotericin 0.125 0.125 1 BNE (>128)
BNE: Biofilm not eradicated. * Drop plate method.
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Figure 2. Representation the viability percentage of C. glabrata for dendron 1, dendron 2 and ampho-
tericin after the treatment of a biofilm in formation.

3.2. Effect of Dendritic Compounds on Eradication of Established Biofilms

Data obtained with the resazurin colorimetric method showed that dendron 1 pre-
sented a MBDC of 32 mg/L, dendron 2 a MBDC of 64 mg/L and amphotericin a MBDC
of 1 mg/L (Table 1). The non-reduction of resazurin confirmed the low metabolic activity
of C. glabrata cells forming biofilms at the mentioned MBDC concentrations. Therefore,
the viability of a large part of the biofilm cells might be altered after treatment with these
concentrations. Amphotericin treatments showed a gradual decrease in viability as concen-
tration increased (Figure 3), and dendron 1 drastically reduced viability from around 100%
to 0%. Regarding dendron 2, although the MBDC was 64 mg/L, a significant reduction in
the viability of the cells that formed the biofilm was observed at 32 mg/L. On the other
hand, the drop plate method showed that dendron 1 had a MBEC of between 256 and
512 mg/L and dendron 2 had a MBEC of 512 mg/L. In the case of amphotericin, its MBEC
could not be determined, since colonies of C. glabrata grew on the agar plates at all the
concentrations tested (Table 1). In addition, although the MBEC concentrations were higher,
a substantial reduction was observed in the number of colonies grown in the drop plates
experiment compared to the control, from 32–64 mg/L (MBDC) to 512 mg/L (MBEC) for
both dendrons, dendron 1 and dendron 2. This fact is interesting for future experiments,
in order to try to eliminate these resistant cells using combination therapy with other
antifungals and using repeated application over time (new doses every 24 h) with the main
objective of completely eliminating biofilms.

In established biofilms of C. albicans CECT 1002, previous studies also demonstrated
their activity [8]. Dendron 1 was again much better against C. glabrata (MBDC of 32 mg/L)
than against C. albicans (MBDC of 64 mg/L). In addition, the main difference that we have
found in the present study was that both dendrons, dendron 1 and dendron 2, did manage
to eradicate the previously established biofilm and no resistant cells were found. However,
even though these compounds were effective in damaging the biofilms of C. albicans, neither
of these molecules managed to eliminate some resistant cells that could be hetero-resistant
or persister cells. These types of cells are a recognized problem associated with high
resistance of biofilms and the incidence of biofilm-related infections, because this group of
cells can survive against high doses of antifungals [4,25].
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3.3. Combination Therapy of Dendritic Compounds and Amphotericin against C. glabrata
Biofilm Formation

The combination of new molecules with commercial antifungal agents is a widely
used procedure that improves activity and solves the problem associated with intrinsic
resistance among Candida. Besides, it is difficult to find effective antifungals at low and
non-cytotoxic concentrations to treat Candida infections. Therefore, the use of combination
therapy allows the reduction of both compounds to obtain the same, or even better, results
than if they were used at higher concentrations, for example, the use of tyrosol with am-
photericin [26], acetylsalicylic acid with amphotericin [27], tyrocidines with amphotericin
or caspofungin [28] and pseudolaric acid B with fluconazole [29]. Combinations of both
compounds, dendron 1 or dendron 2, with amphotericin at different concentrations were
studied and the FICI was calculated, as well as the viability percentage (Table 2).

Combination therapy studies carried out against biofilm formation gave satisfactory
results. The best results were obtained by dendron 2, but combinations with dendron 1
only showed an additive effect (Table 2). We observed one effective combination that was
able to prevent C. glabrata biofilm formation. This combination showed a FICI value of 0.5
(synergistic effect): 2 mg/L of the dendron 2 with 0.03 mg/L of amphotericin (FICI = 0.49)
(Table 2). It should be noticed that a combination therapy approach managed to reduce
the compounds’ effective concentrations against biofilm development, from 2 to 8 times
lower than concentrations required in individual treatments. In addition, although other
concentrations did not show synergy, they showed an additive effect and managed to
reduce the value of their individual MBICs, such as 0.25 mg/L of the dendron 2 with
0.06 mg/L of amphotericin (FICI = 0.51, additive) (shown in Table 2). In addition, the
results obtained on agar plates experiments (drop plate method) confirmed the absence
of growth at the combination of 4 mg/L of dendron 2 with 0.06 mg/L of amphotericin.
Therefore, we were able to improve the antifungal activity of amphotericin, reducing
the MBICs concentration for both compounds (dendron 2 and amphotericin), and also
their MFCBs.

On the other hand, the synergistic study with dendron 1 and amphotericin showed
that these combinations were not as effective in preventing C. glabrata biofilm formation as
those combinations with dendron 2. In addition, there were no combinations that resulted
in a synergy FICI value. However, although the FICI values were greater than 0.5, zero
percent viability was achieved by reducing the concentrations of the individual MBICs
(Table 2). The data obtained in the agar plates experiments (drop plate method) confirmed
that the most effective combination was 4 mg/L of the dendron 1 with 0.06 mg/L of
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amphotericin, since it was not only possible to reduce the individual MBICs, but also their
MFCBs (Table 2).

Table 2. FICI and percentage of viability of dendron 1 with amphotericin, and dendron 2 with ampho-
tericin combinations against C. glabrata CECT1448. Results after 48 h treatment on preventing biofilm
formation. Results analysis: Additive (A) and Synergy (S). (*): Use of Resazurin colorimetric assay.

Dendron 1

Individual MBIC *
(mg/L)

MBIC in Combination *
(mg/L)

Dendron 1 Amphotericin Dendron 1 Amphotericin FICI Viability (%)
± SD *

8 0.125

1 0.06 0.61 (A) 0 ± 0
4 0.06 0.98 (A) 0 ± 0

0.5 0.06 - 17.8 ± 5.3
0.25 0.06 - 19.4 ± 3.4

4 0.03 - 19.7 ± 2.47
2 0.03 - 21.7 ± 7.1
1 0.03 - 35.3 ± 2.6

Dendron 2

Individual MBIC * (mg/L) MBIC in Combination *
(mg/L)

Dendron 2 Amphotericin Dendron 2 Amphotericin FICI Viability (%)
± SD *

8 0.125

2 0.03 0.49 (S) 0 ± 0
0.25 0.06 0.51 (A) 0 ± 0

4 0.06 0.98 (A) 0 ± 0
4 0.03 0.74 (A) 0 ± 0
4 0.015 0.62 (A) 0 ± 0
2 0.06 0.73 (A) 0 ± 0
1 0.06 0.61 (A) 0 ± 0
2 0.015 - 30.1 ± 2.5

0.5 0.03 - 19.5 ± 3.4
0.5 0.015 - 33.9 ± 5.8
0.25 0.03 - 19.5 ± 2.7

The stress generated by the combination treatments induced a growth reduction on
agar plates, observed as a reduction in colony number and size. The results were confirmed
after 48 h of incubation at optimal growth conditions.

3.4. Combination Therapy of Dendritic Compounds and Amphotericin against C. glabrata
Established Biofilm

The complete eradication of the cells that form an established biofilm is difficult to
achieve due to the properties of these communities. Commonly, when compounds capable
of killing all cells in a biofilm are found, a high dose of the compound is required. This
affirmation was confirmed in our study as exposed in Section 3.2. Likewise, we cannot
forget that the use of a high concentration of compounds can be harmful not only to the
microorganism, but also to human cells. For this reason, conducting synergy studies is
essential, not only to reduce effective concentrations but also to reduce the appearance
of resistant strains. Our data confirmed that the synergistic activity of both compounds
(dendron 1 or dendron 2) with amphotericin could eliminate all viable cells of an established
C. glabrata biofilm. For dendron 1, we registered a synergistic effect for the combination of
128 mg/L of the dendron 1 (individual MBEC of 256–512 mg/L) with 4 mg/L amphotericin
(no individual MBEC value determined), and 128 mg/L the dendron 1 with 1 mg/L
amphotericin. The use of these combinations managed to eliminate 100% of viable cells of
the established C. glabrata biofilm. For dendron 2, we only registered a synergistic effect
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at the concentration of 128 mg/L of the dendron 2 (individual MBEC of 512 mg/L) with
4 mg/L amphotericin (no individual MBEC value determined), that managed to eradicate
the biofilm structure completely. The synergistic effect was especially reflected in the
behaviour of amphotericin (no individual MBEC value for the concentrations studied), the
compound that was reduced. In the non-active combinations tested (without/non biofilm
eradication), it was observed that the stress generated by the combination treatments
induced a growth reduction on agar plates, observed as a reduction in colony number and
size. The results were confirmed after two days of incubation at optimal growth conditions.

3.5. Cytotoxicity

The cytotoxicity results of the compounds obtained individually have been previously
reported (cell viability < 60%) [8]. For this study, the cytotoxicity of the combinations with
amphotericin which showed a better activity was assessed on HeLa cells (synergy and
additive effect (Table 2)). It is common that the synergistic use of two compounds not only
provides good antimicrobial activity, but also a reduction in compound concentrations and
in their cytotoxicity. However, in this study, none of the active combinations reduced their
cytotoxicity (cell viability < 60% for the combinations tested).

3.6. Confocal Microscopy in C. glabrata

Cell death of C. glabrata CECT 1448 treated with dendrons was confirmed by confocal
microscopy. In red, dead cells of C. glabrata are reflected. In Figure 4A the control hardly
has any damaged cells, unlike the rest of the images. The MBDC concentrations of dendron
1 and dendron 2, 32 mg/L and 64 mg/L, respectively (Table 1), are visualized (Figure 4B,D).
In both cases, the high degree of cell death (stained in red) and some living cells (unstained)
were confirmed, the latter capable of growing on agar plates. This fact was not observed
in the images obtained from the synergistic combinations of 128 mg/L of dendron 1 with
amphotericin 1 mg/L (Figure 4C) and of 128 mg/L of dendron 2 with 4 mg/L amphotericin
(Figure 4E), where 100% non-viable cells were verified.
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Figure 4. Confocal microscopy in C. glabrata. (A) Control C. glabrata CECT 1448. (B) 32 mg/L of the
dendron 1, (C) combination 128 mg/L of the dendron 1 with 1 mg/L of amphotericin, (D) 64 mg/L
of the dendron 2, (E) combination 128 mg/L of the dendron 2 with 4 mg/L of amphotericin. (Arrow:
red dotted cells; asterisk: homogeneous red cells). Scale bar: 5 µm.
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The images allowed us to identify two different forms of propidium iodide (PI) inter-
nalization. Some cells appeared with several red dots inside (Figure 4C,E: arrow), while
other cells had a completely red interior (Figure 4C,E: asterisk). Sangalli-Leite et al. [30]
noted that cells treated with amphotericin could cause DNA degradation and that other
studies have shown that it induces DNA condensation. PI cannot penetrate the cell mem-
brane unless pores have been generated. Therefore, cells with dots could have a low
permeability due to their higher resistance (persister cells) and require more time to in-
crease the number of pores. These results could indicate that the treatment affects the DNA,
which is fragmented and dispersed throughout the cytoplasm, visualized as red dots in the
presence of PI. On the other hand, totally red cells could be those that offer less resistance
to treatment. According to this statement/affirmation, it is logical to find a greater number
of cells with red dots at concentrations where cell viability was completely reduced (0%
viability), i.e., in combination treatments (synergistic and additive effect).

4. Conclusions

The dendritic compounds studied not only reduced or completely prevented the devel-
opment of the biofilm but also inactivated and eradicated established biofilms. Therefore,
they showed antifungal and antibiofilm activity against C. glabrata. The combination of
these molecules with amphotericin gave excellent results both against biofilm development
and established biofilms, managing to eliminate all cells at low concentrations from 2 to
10 times lower than concentrations required in individual treatments and reducing cytotox-
icity. Consequently, these compounds could be a promising target of research to be used
as Candida anti-biofilm agents on disinfectant solutions or to functionalize surfaces, such
as catheters.
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