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ABSTRACT

Spliced alignment plays a central role in the precise
identification of eukaryotic gene structures. Even
though many spliced alignment programs have
been developed, recent rapid progress in DNA
sequencing technologies demands further improve-
ments in software tools. Benchmarking algorithms
under various conditions is an indispensable task
for the development of better software; however,
there is a dire lack of appropriate datasets usable
for benchmarking spliced alignment programs. In
this study, we have constructed two types of
datasets: simulated sequence datasets and actual
cross-species datasets. The datasets are designed
to correspond to various real situations, i.e. diver-
gent eukaryotic species, different types of reference
sequences, and the wide divergence between query
and target sequences. In addition, we have de-
veloped an extended version of our program
Spaln, which incorporates two additional features
to the scoring scheme of the original version, and
examined this extended version, Spaln2, together
with the original Spaln and other representative
aligners based on our benchmark datasets.
Although the effects of the modifications are not in-
dividually striking, Spaln2 is consistently most
accurate and reasonably fast in most practical
cases, especially for plants and fungi and for in-
creasingly divergent pairs of target and query
sequences.

INTRODUCTION

The central task in the annotation of eukaryotic genomes
is to locate protein-coding and non-coding genes on the
genomic sequence. For this purpose, several approaches
are employed, including ab initio gene prediction methods,
comparative genomic methods and evidence-based
methods (1). Of these, the most accurate are the
evidence-based methods that rely on known sequences of
transcripts [complementary DNAs (cDNAs), expressed
sequence tags (ESTs), or proteins] used as ‘reference’.
This approach involves the alignment between the
genomic sequence and cognate or homologous transcript
sequences. In the alignment process, we ought to consider
the possibility that introns can intervene between the
exonic regions on the genome and hence such an align-
ment is often called ‘spliced alignment’ (2). Many spliced
alignment programs have been developed so far, including
EXALIN (3), Exonerate (4), GeneSeqer (5), GeneWise (6),
GMAP (7), sim4 (8), Splign (9) and XAT (10), and new
software continues to be developed, such as Pairagon (11),
sim4cc (12) and genBlastG (13). Thus, we can now use a
wide variety of spliced alignment programs besides those
specialized for short reads (14,15), which are not generally
applicable to long transcript sequences considered here
and outside the scope of this investigation. However, it
is often difficult for a non-specialist to choose the
most appropriate ones for his/her specific problem. One
solution to this problem is to objectively evaluate existing
programs under various conditions with quality-
controlled test datasets. Today, such benchmark tests
prevail to compare the pros and cons of alternative algo-
rithms and have greatly contributed to bioinformatics
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software development (16). For benchmark tests, we need
sizable datasets used as ‘golden standards’. However,
there are very few datasets publicly available for bench-
marking spliced alignment programs under a variety of
conditions, such as divergent species, different kinds of
transcripts and various degrees of divergence between
genomic and reference sequences. It is a prerequisite to
develop high-quality reference datasets covering such a
variety of conditions in order to not only evaluate
existing programs, but also find the right direction for
improving existing programs or designing new software.
Early spliced alignment algorithms (17,18) were

formulated as an extension of the classical pairwise
sequence alignment algorithm with long gaps (19) supple-
mented with the canonical GT-AG rule of splice junctions.
To achieve more accurate gene recognition, more recent
programs (5,6,20–22) tend to incorporate various lines of
information that form the backbone of ab initio gene
finding algorithms (23). Along this line, we have developed
our own spliced alignment programs Aln (24) and Spaln
(25,26). Spaln is more space-efficient and faster than Aln,
but the target function to be optimized by the two
programs is essentially the same. Meanwhile, the
sequence signals involved in splice site recognition have
been studied for many years (27). Whereas the basic
process of splicing is conserved throughout eukaryotic
species, most properties related to splice site recognition,
such as nucleotide frequencies around splice junctions,
length distribution of introns, strength of branch point
(BP) signal, oligomer compositions within introns, etc.
are species-specific (28–30). In a previous study (31), we
have found that some properties that were not considered
in Aln/Spaln have made significant contributions to splice
site recognition in some species. For example, oligomer
compositions within introns plus the BP signal may
account for 10–20% of the total signals of short intron
recognition in almost all species other than vertebrates.
Hence, we are curious to know whether the fidelity of
Spaln could be improved by the incorporation of these
features into the scoring system.
In this article, we report the construction of a series of

datasets used for benchmarking various spliced alignment
algorithms under a variety of conditions. Based on the
datasets named SPAliBASE (spliced alignment bench-
mark database), we compared the performance of the
extended version of Spaln (Spaln2) with those of the
original Spaln and other representative aligners. We
found that although the effects of the modifications are
not striking, they work well for increasingly divergent
pairs of query and target sequences of plants and fungi,
rendering Spaln2 the most accurate program in most prac-
tical situations.

MATERIALS AND METHODS

Preparation of simulated benchmark dataset

The complete genomic sequences of human (Build #36.3),
Arabidopsis thaliana (accession nos. NC_003070,
NC_003071, NC_003074, NC_003075 and NC_003076)
and Neurospora crassa (accession nos. NC_001570,

NW_001091935, . . . , NW_001092755) were downloaded
from NCBI (http://www.ncbi.nlm.nih.gov/). Those
species were chosen as representatives of the three major
kingdoms of eukaryotes: animals, plants and fungi, re-
spectively, as their genome sequences are of the highest
quality in each kingdom or the largest number of tran-
script data is available. We developed three types of
benchmark datasets for each species, i.e. cDNA
sequence (cDNA dataset), protein coding sequence (CDS
dataset) and protein sequence (protein dataset). Full
length or partial cDNA sequences were downloaded
from the ‘unique’ sets of UniGene database of NCBI
(32), whereas CDS data were obtained from GenBank.
We used both GMAP (7) and Spaln (25) to map and
align those two types of nucleotide sequences to the
genomic sequence of the corresponding species. Then,
we collected only those sequences that exactly matched
the genomic sequence (100% identities at the nucleotide
level after splicing) with both GMAP and Spaln. As
GMAP and Spaln employ substantially different
strategies, the exon–intron structures identically inferred
by the two programs will be highly reliable; hence, we
regard them as the true gene organization corresponding
to the transcript. For the evaluation of various programs
and/or conditions, we used the genomic segment that
covered the corresponding transcript with a margin of
10 kb before and after the ends of the exact alignment
(Supplementary Figure S1). We defined the genomic
segment and the transcript as ‘target’ and ‘query’, respect-
ively. The protein datasets were obtained from CDS
datasets by conceptual translation.

We randomly selected 1000 samples from the above col-
lection for each species and query type. Then, we mutated
the query sequences to various degrees by using a detailed
sequence evolution simulator, indel-Seq-Gen version 2.1
(iSGv2.1) (33). The use of a simulator made it possible
to finely control the sequence divergence between the
query and the target. We considered that the mutation
of query sequences while keeping the genomic sequence
intact is more realistic than the opposite operation, as
random mutations in the genomic sequence can destroy
the intrinsic gene properties within the genomic sequence.
In particular, the real outcome of a change in critical sites
for splicing would be generally unexpected. iSGv2.1 can
simulate the evolution of multi-partitioned nucleotide or
codon sequences through the processes of insertion, dele-
tion and substitution in continuous time. We used ‘nucleo-
tide substitution models’ for cDNA dataset and ‘codon
substitution models’ for CDS dataset. In this experiment,
we mutated each original query sequence to six degrees of
evolutionary changes (denoted by D0 to D5), resulting in
final nucleotide identities of 100% to �70% (Table 1).

We also prepared another dataset (RefSeq human
cDNA dataset) independent of the above procedure that
relies on particular aligners (GMAP and Spaln), i.e. we
randomly chose 1000 human RefSeq entries (34), obtained
cDNA/genomic segment pairs according to their annota-
tions and sequences, and then generated a series of
mutated cDNA datasets in the same way as described
above.
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Preparation of cross-species benchmark dataset

For the cross-species benchmark test, we regarded the
above three species, human, A. thaliana and N. crassa,
as the main species, where the reference datasets are the
same as the CDS datasets described above. To collect test
sequences, we downloaded CDSs of a few related species
from GenBank and aligned them to their respective
genome sequences by Spaln. We retained only the CDSs
that aligned to respective genome sequences without any
ordinary (non-intronic) gap to ensure the quality of the
CDSs. Next, we searched for CDS pairs that are puta-
tively orthologous between the reference and the test
species by means of the reciprocal-best-BLAST-hits
approach (34). We then examined if each putative
orthologous pair represents true orthologs or different
isoforms derived from orthologous genes, on the basis of
their global alignment generated by Aln (19) with a
double-affine gap penalty function. In practice, we
retained CDS pairs that fulfilled the following two condi-
tions. (i) The alignment fully ranges from the start codon
to the stop codon of both transcripts; (ii) the alignment
contains no gap longer than 15 bp. The target sequence is
the genomic segment of the main species and the query
sequence is the CDS of the other species, thus selected.
The protein sequence was obtained by the conceptual
translation of the CDS. Details of the cross-species data
are shown in Table 2.

Extension of Spaln scoring scheme

We tried to incorporate two additional signals into the
scoring scheme of Spaln (26). The first one is the
oligomer composition preference within intron that is
added to the objective function by modifying the intron
penalty function. The second signal is BP score obtained
with a simple 4� 7 weight matrix (31). This score is added
to the nearest downstream splicing acceptor signal as BP is
the target for acceptor site recognition (35). Details of
these extensions are described in Supplementary
Methods. Use of these additional signals will be denoted
by ‘TBZ’ option hereafter.

Other modifications

Besides the above-mentioned extension, Spaln2 has
undergone a few modifications compared with the

original version. First, a heuristic routine is added
between the high scoring segment pair (HSP) search and
the restricted dynamic programming (DP) routine called
‘Sandwich’ or ‘attack by both sides’ algorithm, when the
projections to the query axis of two adjacent HSPs
overlap. In such a case, juxtaposing 50 and 30 canonical
splice site pairs are looked for within the overlapped
region of the HSPs allowing no indel. If more than one
candidate is found, the one with the largest 50+30 splicing
signals is chosen. The DP routine is invoked only when
this heuristic step fails. This type of heuristics is already
used for the rapid identification of splice sites in sim4 (8),
and XAT (10). Second, the code has been rewritten in
C++and is now compatible with multi-thread operation,
ensuring a considerable increase in speed under a
multi-core system. Concomitantly, several minor revisions
are made concerning the recursive HSP search routines.
Other modifications not directly relevant to the present
study will be described in the document attached to the
Spaln2 distribution.

Programs and parameters used for evaluation

We compared the performance of Spaln2 under various
conditions and also to that of other aligners. The
programs and the options used are summarized in
Supplementary Table S1. In the present study, we
focused on the alignment phase as the genome mapping
phase is supported by only a few programs. Generally, the
default parameters were used, but the ‘global’ option was
set for GeneWise as our previous experiment (26)
indicated that this option improved the overall perform-
ance of GeneWise. Moreover, if there was a specific flag
for cross-species comparison, that parameter set was
tested separately. The results of such a cross-species
setting were distinguished from those of the default
setting by the suffix ‘X’ (e.g. PairagonX versus
Pairagon). Note that the default setting of Spaln2 is
slightly different depending on the query type: both
cross-species (–yX) and splice signal (–yS) switches are
off for DNA, whereas both are on for protein. However,
throughout the examination except for the data collection
process through genome mapping, we always set the ‘–yS’
option even for DNA queries indicating full use of
the species-specific splice signals around splice junctions.

Table 1. Details of simulated datasets

Species and transcript type Human Arabidopsis thaliana Neurospora crassa

cDNA CDS cDNA CDS cDNA CDS

Downloaded sequences 32 661 37 337 30 576 33 200 17 096 10 038
GMAP: aligned sequences (100% identity) 25 280 28 285 21 852 31 422 4376 9784
Spaln: aligned sequences (100% identity) 24 518 29 030 20 714 31 703 4131 9663
Aligned sequences (100% identity) 17 870 19 369 15 442 28 074 1994 8802
Percentage identity between transcript sequence

and genomic sequence (%)
D0 100.0 100.0 100.0 100.0 100.0 100.0
D1 92.9 92.6 92.9 92.6 93.0 92.6
D2 86.8 86.4 86.7 86.4 86.7 86.4
D3 81.0 81.2 81.1 81.2 81.1 81.1
D4 76.1 76.8 76.0 76.9 76.0 76.8
D5 71.6 73.1 71.8 73.2 71.7 73.1
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As the cross-species switch is set by default, the suffix ‘X’
was occasionally omitted for protein queries.
Throughout this article, we referred to only exon-level

accuracy implying the harmonic mean of sensitivity and
specificity, or ‘F-measure’, at the exon level. Other statis-
tics, such as nucleotide-level, junction-level and gene-level
sensitivities and specificities were generally well correlated
with the exon-level accuracy. Non-parametric statistical
tests were performed with the R package (http://www.R-
project.org).
Run times were measured on a Linux machine with 3.47

GHz Intel� Xeon� (64bit CPU) with 24 GB memory.
Although some programs including Spaln2 could be
accelerated under a multi-core environment, all tests
were performed with a single core mode.

RESULTS AND DISCUSSION

Benchmark datasets

The initial and one of the most important steps in the
construction of a benchmark dataset is to collect reliable
reference data used as golden standards. To construct the
reference datasets, we adopted an automatic and
high-throughput, but rather conservative approach based
on the coincidence of the results of two independent
programs (Materials and Methods). GMAP (7) and
Spaln (25) could align almost all the downloaded tran-
script sequences to the corresponding genomic sequences
of all the three species. We retained only those transcripts
that exactly (100% at the nucleotide level) matched the
genome sequence after conceptual splicing by both
programs. This procedure also eliminates all low-quality
sequences, including most ESTs. For human, e.g. the
numbers of transcripts that satisfied this condition were
25 280 cDNAs and 28 285 CDSs with GMAP and 24 518
cDNAs and 29 030 CDSs with Spaln. Of these, 17 870
cDNAs and 19 369 CDSs were identically mapped and
aligned by GMAP and Spaln, and were pooled for subse-
quent analyses. We randomly chose 1000 sequences from
each class of transcripts thus selected and mutated the
sequences to various degrees using iSGv2.1 (33). Table 1
presents the details of primary and simulated datasets.
One potential drawback of this procedure is that the

dataset thus constructed may be biased toward ‘easy’
samples, because those samples that harbor short exons,
minor-type or non-canonical splice junctions or repetitive
exon structures are less likely to be identically aligned by
independent programs than ‘ordinary’ samples that are

devoid of such an irregularity. We considered this might
be really the case. However, ordinary samples are more
suitable than peculiar ones for the initial examination of
the basic performance of various methods. It would be
a future task to construct specialized datasets to study
the behavior of each method under individual specific
conditions.

Details of the cross-species benchmark dataset are
summarized in Table 2. We used the CDS datasets men-
tioned above as the golden standard and the orthologous
CDSs from related species as the queries. Ideally, the gene
pair from the two species should be orthologous and the
transcripts should be of the same isoform type. Using our
operational procedure (Materials and Methods), we found
more than 1000 putatively orthologous gene pairs for the
majority of species pairs examined, although the size of
the fungal data was considerably small. The average
sequence identities between the orthologs for the seven
comparisons varied from 60% to 95%. Although it was
difficult to estimate the fraction of these gene pairs that
strictly satisfied the above mentioned orthologous condi-
tions, our datasets seemed to be superior to those obtained
with HomoloGene (36) or the datasets of Cui et al. (10) in
terms of both wider coverage and methodically controlled
quality. Although it is feasible to construct datasets
similar to those described here for some other species,
e.g. Drosophila melanogaster and Caenorhabditis elegans,
the benefits gained from such datasets would be limited at
least for the present purpose.

We did not prepare cross-species cDNA datasets
because it was difficult to define the range within which
two cDNA sequences could be regarded as orthologous at
the nucleotide level. The inclusion of foreign sequences
could invoke uncontrollable confusion in the test proced-
ure. As a CDS is delineated by a start codon and a stop
codon, this problem is largely avoided. Another merit of
using CDS is that we can directly evaluate the effects of
translation.

Improvement in performance of Spaln

Spaln2 had undergone a few revisions (Materials and
Methods) compared with the original version (25,26).
We evaluated separately the effects of the basic revisions
and the effects of the additional features. An example is
shown in Figure 1 that exhibits the exon-level error rates
of Spaln and Spaln2 with or without the ‘cross-species’
option tested on the simulated datasets of A. thaliana.
The effects of the additional features were examined

Table 2. Details of cross-species datasets

Reference transcript species Human Arabidopsis thaliana Neurospora crassa

Mouse Chicken Arabidopsis lyrata Poplar Rice Gibberella zeae Magnaporthe grisea

Downloaded sequences 34 950 16 754 8226 2281 23 313 11 558 1166
Sequences mapped on genome 11 905 8095 7685 2228 22 087 4957 1041
Putative orthologous pairs 5046 2895 5909 552 4648 1013 192
Orthologs without long gaps 3003 1527 5089 415 3036 503 74
Average identity (%) 85.5 74.3 94.8 70.4 63.6 66.6 64.6
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only for Spaln2. The results of the other species are shown
in Supplementary Figure S2. Comparison of the results of
the default settings of Spaln and Spaln2 indicated that the
basic revisions only slightly affected the overall accuracy
for human genes, but significantly increased the accuracy
for A. thaliana and N. crassa genes with low-identity test
sets (D4 and D5), particularly with the protein datasets.
We considered that this improvement could be largely
ascribed to the revised HSP routines, the most influential
of which was the refinement of the method to delimit the
sequences transferred to the lower level recursion. Spaln
with ‘–yS –yX’ options produced some errors even with
D0 datasets, whereas Spaln2 yielded little error. This im-
provement could be ascribed to the newly employed heur-
istic routine that bypassed the formal procedure to
optimize the objective function (Equation 1 in Supple-
mentary Methods), favoring sequence matches over
signal strengths. We initially intended to introduce this
hasty splice-site identification routine to speed up Spaln
(Supplementary Table S2). Thus, it is rather fortuitous
that the heuristics effectively reduced the errors with
high-identity test sets. It is also noteworthy that the
full-DP mode of Spaln2 (‘–Q0’ option) is not necessarily
more accurate than the heuristic modes in spite of the
much longer computation time (data not shown).

The effects of the two additional features inferred from
a comparison of the results of Spaln2 (or Spaln2X) with or
without ‘TBZ’ options were rather limited. As mentioned
earlier, our previous study (31) suggested that the
oligomer composition in intron plus BP signal accounts
for 10–20% of the total information contents of
short-intron recognition in plants, fungi and protists,
whereas they make negligible contributions to the intron
recognition of vertebrate genes. Thus, it is not surprising
that these features little affect the accuracy of Spaln2
tested with human genes. For plants and fungi, we were
able to recognize the positive effects of these features in
both low-identity simulated datasets (D4 and D5 in
Supplementary Figures S1 and S2) and cross-species
datasets (Figure 2), although they were not as remarkable
as initially expected. This result is not necessarily disap-
pointing because it suggests that we do not need to care
much about the species specificity of parameter sets used
by Spaln2. The relatively weak species dependence is an

advantage of spliced alignment methods over ab initio or
comparative genomic approaches for gene identification.
From another point of view, our observation also indi-
cates that we can expect maximal performance at little
additional computational cost if we have once prepared
such species-specific parameters. Such parameter sets are
already available for 61 divergent eukaryotic species,
although it is yet to be confirmed whether or not the
number of supporting data in every species is sufficiently
large to allow robust estimation of the parameters.

Performance evaluation of various aligners

We next used our benchmark datasets to evaluate the per-
formance of Spaln2 with ‘TBZ’ options (denoted by
Spaln2TBZ below) relative to that of the other aligners,
EXALIN, Exonerate, GeneSeqer, GMAP, Pairagon,
sim4, sim4cc, Splign and XAT with nucleotide datasets,
and Exonerate, genBlastG, GeneSeqer, GeneWise and
ProSplign with protein datasets. We also examined the
performance of the default setting and the cross-species
setting if the program supported such an option.

Results of simulated dataset

Figure 3 and Supplementary Figures S3 and S4, respect-
ively present the results of the examinations with
A. thaliana, human and N. crassa datasets for each of
the three query types. The results clearly demonstrated
that Spaln2TBZX outperformed the other aligners
throughout all the species and query types for low-identity
datasets (D3–D5). For high-identity datasets (D0–D2),
the difference in performance of various aligners became
smaller; nevertheless, a significant difference was occasion-
ally recognized even at the D0 level as discussed later. The
D0 level is somewhat special where GMAP is always
100% accurate because of our dataset construction pro-
cedure (‘Materials and Methods’). Closer inspections
demonstrated that either Pairagon or Spaln2TBZ
followed GMAP at the D0 level of cDNA or CDS
datasets depending on the species and query type. At the
D1 and D2 levels, Spaln2TBZ was the best performer in
most cases, whereas Spaln2TBZX outperformed
Spaln2TBZ at the D3–D5 levels. To confirm the fairness
of our evaluation, we also performed an additional exam-
ination with another dataset (RefSeq human cDNA
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Figure 1. Exon-level error rates of different versions or settings of Spaln tested with Arabidopsis thaliana cDNA (a), CDS (b) and protein
(c) datasets. Statistically significant difference (P< 0.05 with the Wilcoxon signed-rank tests) between adjacent methods is marked by two asterisks.
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dataset) prepared independently of SPAliBASE (Materials
and Methods). The results shown in Supplementary
Figure S5 indicate that the above observations were
highly reproducible regardless of the test datasets.
Spaln2TBZ performed best for all protein datasets

except two; ProSplign was nearly 100% accurate for
A. thaliana and N. crassa protein datasets at the D0
level where Spaln2TBZ made a few errors. Curiously,

however, ProSplign worked poorly with human protein
dataset at the D0 level (Supplementary Figure S4). In
addition, the performance of ProSplign rapidly worsened
with increasing divergence between the query and target
sequences for all species.

Besides Spaln2, the programs that used full-blown DP
or pair-hidden Markov model (HMM) (EXALIN,
GeneSeqer and Pairagon) were generally more accurate
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than the others that adopted some heuristic acceleration
procedures. However, none of the programs in the former
group consistently outperformed others throughout the
variety of situations. Of the latter group with a heuristic
routine, sim4cc performed best in most situations, some-
times even outperforming the programs in the former
group. Considering its high speed (see below), sim4cc
was noticeably good in terms of cost performance for nu-
cleotide queries. GeneSeqer that is specifically tuned for
Arabidopsis genes worked quite well for Arabidopsis
protein queries. However, its human counterpart was
absurdly inaccurate when tested on human protein and
CDS datasets. For protein queries, GeneWise showed
the highest accuracy in most cases, whereas GeneSeqer
and genBlastG performed similarly well for plants and
fungi.

Exonerate, GeneSeqer and Spaln2 accept both nucleo-
tide and protein sequences as queries. As our protein se-
quences were derived from the corresponding CDSs, we
could directly compare the effects of translation. Panel (d)
in Figure 3, Supplementary Figures S3 and S4 indicates
that translation improved the accuracy in almost all situ-
ations except for the D0 level, where translation resulted
in small decreases in accuracy with all programs.

Lu et al. (20) have performed the most comprehensive
evaluation so far of various spliced alignment programs.
In that study, they used two sets of test data:
D. melanogaster CDSs and corresponding artificially
mutated genomic sequences, and mammalian cross-species
CDS-genome pairs. Their observations indicated that
Pairagon performed best among a total of 12 aligners
examined, including the previous version of Spaln and
SpalnX. Using the same D. melanogaster test data as
those used by Lu et al., we examined the performance of
Spaln2TBZ and confirmed that Pairagon works slightly
better than Spaln2TBZ except for the two lowest-identity
levels where Spaln2TBZ or Spaln2TBZX were more
accurate than Pairagon. We consider that this observation
may be interpreted from three points of view. First,
random mutations in the genomic sequence as done to
create the D. melanogaster test data might render realistic
performance evaluation difficult, because they can destroy
the intrinsic gene properties within the genomic sequence.
Second, the pair-HMM of Pairagon is trained with CDSs
so that it will capture CDS-specific features, whereas the
objective function of Spaln2 for DNA queries (Equation 1
in Supplementary Methods) accepts no such training.
Finally, the D. melanogaster test data are richer than our
datasets in short coding exons, particularly short terminal
coding exons. As Spaln2 for DNA queries is ignorant
about the codon architecture within CDS, it would be in-
trinsically weak in discerning short terminal coding exons.

Result of cross-species dataset

Figure 2 shows the results obtained from the cross-species
CDS and protein datasets. Here, we compared the per-
formances of Spaln2TBZX, SpalnX (older version) and
eight other programs for CDS dataset, and five other
programs for protein dataset. In this test, we also
applied the ‘double affine’ option to both Spaln and

Spaln2, as our previous studies (24,26) indicated that a
double-affine gap penalty function worked better than
the default single-affine gap penalty function for distant
genome-transcript pairs.
The general trends of the results were the same as those

observed with the simulated datasets for the two query
types. Comparison of the results of the two versions
of Spaln indicated that the revisions exerted only
marginal effects on vertebrate and close target-query
pairs, i.e. human–mouse (Wilcoxon signed-rank tests
CDS: P ¼ 5:4� 10�1, protein: P ¼ 7:0� 10�2), human–
chicken (CDS:P ¼ 2:1� 10�3, protein: P ¼ 9:7� 10�1),
and A. thaliana–A. lyrata (CDS: P ¼ 6:6� 10�1, protein:
P ¼ 5:7� 10�6), and an excessively large number of
ties prohibited proper evaluation of P-value for the N.
crassa–Magnaporthe grisea pair. In contrast, significant
improvement in accuracy was observed for the other
pairs, A. thaliana–poplar (CDS: P ¼ 7:6� 10�2, protein:
P ¼ 3:6� 10�3), A. thaliana–rice (CDS: P < 2:2� 10�16,
protein: P < 2:2� 10�16), and N. crassa–Gibberella zeae
(CDS: P ¼ 5:0� 10�4, protein: P ¼ 4:1� 10�6). Thus,
the revisions were confirmed to make significant contribu-
tions to accuracy improvement with the real datasets, as
well as with the simulated datasets.
Throughout all the cross-species datasets examined,

Spaln2TBZX performed best followed by SpalnX,
whereas the third best-performing program varied de-
pending on the query type and the species pair. It also
became clear that translation was effective for accurate
exon recognition. Specifically, Spaln2TBZX yielded
>80% average accuracies for all the cross-species pairs
when examined with protein datasets, implying a
maximal increase in accuracy of �40% compared with
the CDS counterpart.

Computational time

Supplmentary Table S2 shows the computational times
taken by the programs to analyze D0 level datasets and
cross-species datasets. Sim4 and sim4cc are the fastest of
all programs for DNA. Spaln2 belongs to the next fastest
group together with Exonerate, GMAP, Splign and XAT.
EXALIN, GeneSeqer and Pairagon are much slower than
the second group. For protein queries, genBlastG and
Spaln2TBZ are one to two orders of magnitude faster
than Exonerate, ProSplign and GeneSeqer, whereas
GeneWise is the slowest of all programs.

SUMMARY

To summarize our evaluation study, we combined the
results of the three species for each of the six identity
levels of simulated datasets or seven pairs of cross-species
datasets. According to the accuracies averaged over the
accumulated data, we ranked the 12 aligners including
the older version of Spaln for cDNA and CDS or the
seven aligners for protein, and then evaluated the signifi-
cance of the difference in performance between succeeding
aligners by means of Wilcoxon signed-rank tests (37). The
results shown in Figure 4 and Supplementary Table S3
indicate that Spaln2 performs, at least equivalently, best
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among currently popular aligners in nearly all situations.
A single exception is observed at the D2 level, where the
older version of Spaln significantly outperformed Spaln2.
The cross-species option is preferable in most cases, except
for D0 and D1 levels. Because of the intrinsic nature of
our datasets, GMAP ranked highest at the D0 level, but
its performance abruptly worsened at the D1 level. Similar
abrupt declines were observed in the rankings of Splign
and GMAP tested on the RefSeq dataset (Supplementary
Figure S5) that may rely on these two programs (34).
These observations suggest that the bias toward the
programs that were used for data construction rapidly
damps out with increasing sequence divergence. Thus,
Spaln or Splan2 with the default setting are most prefer-
able at the D0 and D1 levels. A majority of the remaining
errors originate from the very short coding exons, some of
which may be recognized by time-consuming
probability-based aligners, such as Pairagon and
PALMA (22), or with the help of an external routine
(38). Sim4cc might be preferred to Spaln2 for DNA
queries if speed is essential. However, sim4cc significantly
falls behind Spaln2 and some other aligners in terms of
accuracy even at the D0 level.
Spaln2 is particularly advantageous for cross-species

genome–transcript pairs. By using protein queries, we
can expect >97% exon-level accuracy of the coding part
of a mammalian gene with a bird template and vice versa,
and >95% exon-level accuracy for a monocot–dicot pair.
Spaln2 is 1300-fold and 460-fold faster than the next
best-performing competitors, Pairagon and GeneWise,
for DNA and protein queries, respectively. In addition
to the default output format that provides ample infor-
mation about the predicted exons in a compact form,
several other formats, such as GFF3 (http://www.
sequenceontology.org/gff3.shtml) and BED (http://
genome.ucsc.edu/FAQ/FAQformat.html#format1) are
supported for convenience of subsequent processing.
Spaln2 is one of the few existing programs that can
perform mapping and alignment phases seamlessly with
a single command, and the sole one that can do such a
task for protein queries. Spaln2 is also quite memory

efficient even if the mapping phase is included, and now
supports parallel operations to deal with a large dataset.
The benchmark datasets constructed here, the species-
specific parameter sets for 61 divergent eukaryotic
species, as well as the source codes of Spaln2 can be down-
loaded for free from http://www.genome.ist.i.kyoto-u.ac
.jp/�aln_user/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4, Supplementary Figures 1–7
and Supplementary Methods.
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