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The high heterogeneity of oral squamous cell carcinoma (OSCC) is the main obstacle for
individualized treatment. Recognizing the characteristics of different subtypes and
investigating the promising strategies for each subclass are of great significance in
precise treatment. In this study, we systematically evaluated hypoxia-mediated patterns
together with immune characteristics of 309 OSCC patients in the TCGA training set and
97 patients in the GSE41613 testing set. We further identified two different hypoxia
subtypes with distinct immune microenvironment traits and provided treatment programs
for the two subclasses. In order to assess hypoxia level individually, we finally constructed
a hypoxia-related risk score, which could predict the clinical outcome and immunotherapy
response of OSCC patients. In summary, the recognition of different hypoxia patterns and
the establishment of hypoxia-related risk score might enhance our understanding of the
tumor microenvironment of OSCC and provide more personalized treatment strategies in
the future.
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INTRODUCTION

Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of head and
neck squamous cell carcinoma (HNSC), accounting for 90% of neoplasms of the head and neck (1).
Despite the development of surgery, radiotherapy, and chemotherapy, the prognosis of OSCC is still
unsatisfactory with an average 5-year survival probability ranging from 45% to 50% due to the high
incidence of recurrence and metastasis (2–4). Recently, more and more studies have concentrated
on the generation of genomic signatures for risk stratification and further survival prediction in
OSCC patients (5–7). However, most prognostic signatures were deficient in clinical transformation
and few of them were applied to routine practice. As a heterogeneous disease, it is of great necessity
to precisely understand the molecular properties of OSCC in order to achieve individualized
treatment under different subtypes.
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Hypoxia is one of the critical hallmarks of cancer, which is
associated with tumor malignancy and angiogenesis together
with therapeutic resistance (8, 9). Currently, the significant role
of hypoxia in driving tumor immunosuppression and immune
escape has caused widespread concern. Evidence has revealed
that T cells as well as natural killer (NK) cells under a hypoxia
microenvironment always behave in an exhausted state, leading
to their dysfunction in killing tumor cells (10). What is more, the
hypoxia status can also promote some inhibitory immune cells
like regulatory T cells (Tregs) and M2 macrophage infiltration
together with the secretion of suppressive molecules like
VEGFA, causing the formation of an immunosuppressive
microenvironment (11–13). Even though hypoxia-related
subclasses have been explored in many cancer types, the
features of different subtypes and their clinical benefit in OSCC
are still unknown. Therefore, investigating the distinct subtypes
based on hypoxia status during tumorigenesis and development
might provide new insights into the treatment and prognostic
detection of OSCC.

Recently, immune checkpoint blockade (ICB) therapy has
been reported to improve overall survival (OS) in distinct cancer
types (14–20). Nevertheless, the proportion of benefited patients
still remains low. Growing evidence has revealed a tight
association between hypoxia and tumor immunotherapy across
multiple tumor types (21). However, the effect of hypoxia on
the immune microenvironment as well as the efficacy of
immunotherapy in OSCC remains less known.

In the present study, a consensus clustering based on hypoxia
genes was conducted and validated in two OSCC cohorts,
characterizing two different hypoxia states of OSCC samples
for the first time. Moreover, the prognostic features, hypoxia
traits, gene mutation alterations, immune infiltration, and the
promising treatment strategy for each subtype were analyzed and
investigated. For clinical practice, we further constructed a
hypoxia prognostic risk score model which could further
predict the OS and ICB therapy response for OSCC patients.
These findings suggested an indispensable role of hypoxia states
in directing therapeutic plans for OSCC.
MATERIAL AND METHODS

Data Collection and Processing
The Cancer Genome Atlas (TCGA) mRNA sequence data
[htseq-FPKM in log2(x + 1) transformed] together with
clinical information of OSCC were obtained from the UCSC
Xena browser (GDC hub: https://gdc.xenahubs.net). For
validation, microarray profiles of GSE41613 containing clinical
annotations were extracted by GEOquery R package. The
mentioned clinical traits are demonstrated in Table 1. The
batch effects normalized mRNA data of pancancer with clinical
information were downloaded from UCSC Xena browser. The
hypoxia gene set containing 200 classical hypoxia-associated
genes was obtained from gene set enrichment analysis (GSEA)
(http://www.gsea-msigdb.org/). Expression data of OSCC cell
lines [TPM in log2(x + 1) transformed) were downloaded from
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the Broad Institute Cancer Cell Line Encyclopedia (CCLE)
project (https://portals.broadinstitute.org/ccle/) (22). Drug
sensitivity data (area under the curve—AUC) of OSCC cells
from the Cancer Therapeutics Response Portal (CTRP v.2.0) and
PRISM Repurposing dataset (19Q4) were acquired from the
dependency map (DepMap) portal (https://depmap.org/portal/).
The ICB treatment cohort GSE91061 (23) was downloaded from
the GEO database [FPKM in log2(x + 1)] transformed and used for
subsequent validation. The CheckMate 009 (CM-009), CheckMate
010 (CM-010), and CheckMate 025 (CM-025) (24) were combined
together to investigate the significance of our risk score [FPKM in
log2(x + 1)]. We also downloaded RNA-seq (count values) data of
IMvigor210 cohort (25) with clinical information by the
“IMvigor210CoreBiologies” R package and transformed it into
FPKM values. The log2(FPKM + 1) was calculated on expression
data for further comparison.

Consensus Clustering Analysis
Unsupervised clustering was applied to recognize different hypoxia
patterns and classify OSCC patients for further analysis. A
consensus hierarchical clustering algorithm based on the
expression of 34 prognostic hypoxia genes was conducted by the
“ConsensuClusterPlus” R package with Euclidean distance and
Ward.D2’s linkage (number of bootstraps=50, item subsampling
proportion = 0.8, feature subsampling proportion = 0.8).

Survival Analysis
Univariate Cox regression analysis was conducted to identify
prognostic hypoxia genes and clinical events. Multivariate Cox
regression analysis was performed to recognize independent
prognostic factors. The Kaplan–Meier survival curve was
applied to analyze the prognostic significance between
distinct groups.

Single-Sample Gene Set
Enrichment Analysis
The hypoxia-associated gene sets were downloaded from GSEA.
The single-sample gene set enrichment analysis (ssGSEA)
TABLE 1 | Clinical and molecular information included in the study.

Cohort TCGA-RNA-seq, OSCC
(n = 309)

GSE41613, OSCC
(n = 97)

Database TCGA GSE41613
Age (years) 61.82 ± 13.06
Gender
Male 209 66
Female 100 31

Overall survival
(months)

29.72 ± 29.44 44.13 ± 26.52

Angiolymphatic invasion
Yes 71
No 159
Unavailable 79

Perineural invasion
Yes 133
No 109
Unavailable 67
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algorithm in “GSVA” R package was conducted to calculate the
hypoxia score of each OSCC patient.

Mutation Analysis
The MAF file of OSCC containing the detailed mutation
information of the training set was downloaded from TCGA
(https://portal.gdc.cancer.gov/) and further processed. The
“maftool” R package was performed to analyze gene mutant
features between two OSCC subclasses.

Function Enrichment Analysis
The “Limma” R package was applied to identify differential genes
between two clusters with a standard of |log FC| >1.2 and adjusted
P-value <0.05. Further gene ontology (GO) function enrichment
of selected genes was performed by ClueGO in Cytoscape.

Tumor Microenvironment Analysis
The immune score and the tumor purity were calculated by the
ESTIMATE algorithm (26). The CIBERSORT algorithm was
applied to evaluate the LM22 gene signatures in OSCC
subtypes (27). What is more, the Epic algorithm was also used
to calculate the contents of immune cell infiltration in the
microenvironment (28).

Screening Potential Agents of Cluster 2
k-Nearest neighbor (k-NN) imputation was performed to impute
the missing AUC values of the CTRP and PRISM datasets. Before
imputation, drugs with more than 20% of missing data were
excluded. Furthermore, the “pRRophetic” R package was
performed to measure the AUC values of samples by
ridge regression.

Development and Validation of Predictive
Risk Score
Considering the difference of each platform, before developing or
validating the risk score, we conducted z-scale of the mRNA data
in each platform (TCGA, GSE41613, GSE91061, CM cohorts,
and IMvigor210). Then, the “glmnet” R package was performed
to filter the prognosis-related hypoxia genes by LASSO Cox
regression analysis with a 10-fold cross-validation. After
identifying the significant genes, their regression coefficients
(b) were estimated by multivariate Cox regression via LASSO,
and we calculated the risk score of each OSCC patient by the
formula as follows:

Risk score = SiCoefficient(mRNAi)� Expression(mRNAi)

Establishment of a Nomogram
Univariate Cox and multivariate Cox regression analyses of some
clinical traits were first performed and finally determined a sum
of four independent prognostic factors for further establishment.
Afterward, a nomogram with the four factors was developed for
predicting 1- and 3-year OS of OSCC patients. The calibration
plot was performed to estimate the accuracy and consistency of
the prognostic models. Survival net benefits of each variable were
estimated with decision curve analysis (DCA) by “stdca.R.”
Frontiers in Oncology | www.frontiersin.org 3
Other Bioinformatics Analysis
Principal components analysis (PCA) was applied to verify the
hypoxia patterns of different subtypes. Potential ICB response
was predicted by the tumor immune dysfunction and exclusion
(TIDE) algorithm (29). The “upsetR” R package was used to
visualize the intersections between promising agents in
different subtypes.

Statistical Analysis
R 4.0.2 (https://www.r-project.org/) was mainly used for
statistical analysis. Student’s t-test or one-way analysis of
variance was used to analyze differences between groups in
variables with a normal distribution. Categorical variables
between two groups were compared using chi-square test. A
two sided P-value <0.05 was considered statistically significant.
RESULTS

Identification of Two Hypoxia-Associated
Clusters in OSCC
As depicted in Figure 1A, a brief flowchart was demonstrated to
introduce our study. Considering the critical role of hypoxia
condition in the tumor microenvironment, we summarized a
sum of 188 classical hypoxia-stimulated genes available from
GSEA and estimated their prognostic value for further
classification (Table S1). Univariate Cox proportional hazards
model was conducted and finally filtered 34 genes with
significant risks on survival of patients in the training set
(Figures S1A, B). Hence, based on the expression similarity of
the 34 hypoxia-related gene signature, the consensus clustering
method was used to cluster the samples. We selected k = 2 as the
optimal number of clusters, which could divide all samples into
two groups with less correlation between groups in the training
and testing cohorts (Figures 1B, C). Then, PCA was conducted
to compare the transcriptional profile between these two clusters
in the two cohorts, suggesting a significant distinction between
these two subgroups (Figures 1D, E). In order to evaluate the
clinical relevance of this clustering, the survival analysis between
the two subclasses was conducted. In these two sets, cluster 2 was
consistently associated with worse prognosis, highlighting the
potential clinical utility of this hypoxia-associated subtyping
(Figures 1F, G).

Distinct Hypoxia Conditions Between the
Two OSCC Clusters
To better understand the hypoxia status of the two clusters, we
conducted the ssGSEA algorithm to calculate the scores of some
hypoxia-associated processes. As expected, patients in cluster 2
were enriched in higher hypoxia condition in the training and
testing cohorts (Figure 2A). What is more, a total of nine
hypoxia-associated key genes were also verified to be highly
expressed in cluster 2, which was consistent with the aforesaid
ssGSEA result (Figure 2B). Hence, we could define cluster 2 as a
“high hypoxia subclass” compared with cluster 1.
November 2021 | Volume 11 | Article 709865
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Mutation Alterations in the
Two Subclasses
Recent studies have reported the hypoxia phenotype associated
with gene mutations (30). We further investigated the difference
of gene mutations among these two clusters. As illustrated in the
waterfall plot, differently mutated genes were detected between
the two clusters and GNPTAB was finally identified as the most
differentially highly mutated gene in cluster 2 (Figure 3A) (P <
0.01). Furthermore, based on the oncodriveCLUST algorithm,
we predicted HRAS as the driver gene candidate in cluster 1 and
MAST4 in cluster 2 (Figure 3B). What is more, tumor
mutational burden (TMB) was significantly increased in cluster
2 (Figure 3C).

High Correlation Between
Hypoxia-Related Gene-Based
Clusters With Immune Infiltration
To obtain deeper insights into the molecular characteristics of the
two OSCC clusters, we conducted the differentially expressed genes
(DEGs) analysis and their GO analysis in the training dataset. With
a threshold of |log2 FC| >1.2 and adjusted P-value <0.05, a sum of
55 DEGs were identified for the two clusters. The expressions of
DEG between these two clusters were demonstrated by a heatmap
(Figure S2A). GO analysis based on Cytoscape showed that the
Frontiers in Oncology | www.frontiersin.org 4
cluster-specific genes were significantly enriched in immune cell
infiltration, suggesting a distinct immune difference between these
two clusters (Figure S2B).

Immune Microenvironment Features
Between the Two Clusters
To reveal the difference of these two clusters on the tumor
microenvironment, we first calculated the immune score and
tumor purity both in the training and testing sets based on the
ESTIMATE algorithm. We found that the immune score was
decreased and purity score was elevated in cluster 2 compared
with cluster 1 (Figures 4A and S3A). With the significant
difference in immune score and purity score identified between
clusters, we further compared the relative ratio of 22 kinds of
immune cells by the CIBERSORT algorithm. There existed six
immune cell populations significantly differently enriched
between the two clusters in the training set and nine immune
cells in the testing set (Figures 4B and S3B). Combined,
macrophages M0, activated mast cells, were enriched in cluster
2, while CD8 T cells, resting mast cells, were deficient in both two
sets. We further conducted the Epic algorithm to validate our
results and found that only CD8 T cells were consistently lacking
in cluster 2 in the two cohorts (Figures 4C and S3C). CD8 T cell,
also known as cytotoxic T cell (CTL), exerted a critical role in
CA B

D

G

E

F

FIGURE 1 | Identification of hypoxia-related clusters in oral squamous cell carcinoma (OSCC). (A) Overview of the analysis procedures. (B, C) Unsupervised
clustering of OSCC patients based on the hypoxia-associated genes generated two clusters in the TCGA and GSE41613 cohorts. (D, E) Principal component
analysis based on hypoxia genes distinguished two identified subtypes in different cohorts. (F, G) Kaplan–Meier survival analysis of overall survival between the two
clusters in the two cohorts.
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antitumor immunity. We further examined two indicators of T-
cell killing ability between the two clusters. Similarly, cluster 2
also exhibited lower CYT score and IFNG expression than
cluster 1 in the training set and testing set, which was
consistent with previous studies that showed an association
between high CYT levels and higher patient OS (Figures 4D
and S3D). Taken together, it was the lower composition of CD8
T cells and their disability of killing tumor cells that led a worse
prognosis in cluster 2.

Identification of the Potential Treatment
Strategy of the Two Clusters
After investigating the distinct molecular and biological
characters between these two clusters, we sought to explore
specific treatment options for each cluster. Considering the
vital role of CD8 T cells in immunotherapy and their
significant differences between the two clusters, we further
Frontiers in Oncology | www.frontiersin.org 5
assessed their immunotherapy response based on the TIDE
method. In both training set and testing set, the TIDE score
was significantly lower in cluster 1 compared with cluster 2,
indicating patients in cluster 1 might be more sensitive to ICB
therapy (Figure 5A). For cluster 2 patients, we hoped to seek for
traditional chemotherapeutics to achieve targeted therapy. After
the filtering procedure described in the Material and Methods,
we finally obtained 16 OSCC cells with 913 drugs in the PRISM
and 22 OSCC cells with 465 drugs in the CTRP dataset. The
pRRophetic package with a built-in ridge regression model was
then applied to predict the drug response of clinical samples in
the training set based on their expression profiles, and the
estimated AUC value of each compound in each sample was
thus obtained. We finally identified four agents simultaneously
with lower AUC values in cluster 2 both in the PRISM- and
CTRP-predicted datasets (Figures 5B, C and S4). To further
filter a more therapeutically significant drug in OSCC, we took
A

B

FIGURE 2 | Differential hypoxia conditions across two identified clusters. (A) Heatmap of the significant differential hypoxia pathways of two OSCC clusters based
on ssGSEA in the training set and testing set. (B) The expression of nine hypoxia key genes upregulated in cluster 2 in the training and testing sets (*P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001).
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their clinical phase and experimental evidence from the literature
into account. Finally, we identified only bortezomib as the
optimal drug that has the potent ia l for cluster 2
treatment (Figure 5D).

Development and Validation of Hypoxia-
Associated Prognostic Signature
To establish a signature for clinical implications, it is of great
significance to filter the most representative genes of each cluster.
Considering HIF1A serving as the key transcription factor in
hypoxia, we intersected the DEGs between the two clusters with
4,748 potential targets of HIF1A in OSCC and found a sum of 6
candidate genes in the intersection (Figure 6A), identified as
“Clustering-specific hypoxia-related genes.” To obtain the most
powerful prognostic markers, the LASSO Cox regression analysis
was conducted (Figure 6B). A total of five gene signatures were
generated and the coefficients were estimated by multivariate
Cox regression via LASSO (Table S2). There existed a
transcriptional difference between the two clusters (Figure 6C).
After calculating the risk scores of the signature based on the
regression coefficients, we intriguingly found that cluster 2
possessed a higher score in the two cohorts (Figures 6D, E).
Further survival analysis revealed that patients in the high-score
Frontiers in Oncology | www.frontiersin.org 6
group exhibited significantly worse prognosis than OSCC
patients or cluster 1 patients with low-score (Figures 6F, G).
Although there was no significant survival difference between
high and low scores in cluster 2 in the training set (P = 0.1) and
testing set (P = 0.13), it was still obvious that a high hypoxia
score was associated with the tendency toward worse prognosis
(Figures 6F, G). The results were consistent with the above data
that cluster 2 conferred the poorer prognosis. In order to
determine the prognostic significance of the signature in other
organ sites, we conducted the survival analysis of our hypoxia
score across 33 TCGA cancer types. Similarly, the hypoxia risk
score also served as an unfavorable prognostic biomarker for
pancancer (Figure 6H). What is more, the predicted AUC values
of bortezomib from CTRP and PRISM were also decreased in the
high hypoxia score group, validating its promising clinical value
for high-risk OSCC patients (Figures 6I, J).

Construction of a Nomogram for
Predicting OSCC Survival
To verify whether the hypoxia-related signature was an
independent prognostic factor, univariate and multivariate Cox
regression analyses were conducted (Figures 7A, B). The results
in univariate Cox regression revealed that risk score, age, and
C

A

B

FIGURE 3 | Mutational alterations between two hypoxia clusters in the TCGA cohort. (A) Top 11 most differently mutated genes depicted in the two clusters.
(B) HRAS or MAST4 respectively identified as the driver gene candidate for cluster 1 or cluster 2. (C) Tumor mutational burden significantly increased in cluster 2
(**P < 0.01, ***P < 0.001).
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angiolymphatic and perineural invasion had a significant
association with the OS of OSCC patients. In multivariate Cox
regression, risk score, age, and angiolymphatic and perineural
invasion were identified as independent prognostic factors of
OSCC. Then, we applied these four independent factors to
establish a nomogram for predicting OSCC 1- and 3-year OS
(Figure 7C). With the score increasing, the OS of patients
decreased. Moreover, the calibration plots at 1 and 3 years
approached 45 degrees, indicating a great performance of the
established nomogram (Figure 7D). Meanwhile, DCA was
performed to compare the clinical usability and benefits of the
nomogram with that of the age and angiolymphatic and
perineural invasion. As shown in Figure 7E, compared with
age and angiolymphatic and perineural invasion, the 1-year DCA
curves of the new nomogram showed larger net benefits across a
range of death risk.

Predictive Value of Hypoxia-Related Risk
Score in Immunotherapy
Immunotherapy has been proven relevant to improve survival in
the treatment of multiple tumor types. Thus, identification of
Frontiers in Oncology | www.frontiersin.org 7
patients who will benefit most from ICB treatment is of great
necessity. Our analysis revealed that the TIDE was significantly
increased in the high hypoxia score group, indicating its crucial
role in regulating immune response (Figure 8A). Based on three
immunotherapy cohorts, we identified that patients with a high
hypoxia score group always exhibited clinical disadvantages and
markedly shortened survival (P = 0.026 in GSE91061, P = 0.039
in CM009+010+025 cohorts, and P = 0.029 in IMvigor210)
(Figures 8B, C, E). In CM009+010+025 cohorts, the chi-
squared test conducted between low and high hypoxia score
groups demonstrated significantly better therapeutic outcomes
in low score patients (Figure 8D). Similarly, patients with high
hypoxia scores exhibited less treatment effectiveness in the
IMvigor210 cohort (Figure 8F). We also compared the hypoxia
score levels in the three immune subtypes of IMvigor210. The
immune-inflamed subtype showed significantly the lowest risk
score, which further confirmed our analysis above (Figure 8G). In
addition, TMB was significantly decreased in the high-score group
(Figure 8H). In all, our results strongly suggested that hypoxia
score was associated with the response to immunotherapy and
could further effectively predict the prognosis of patients.
C

A

B

D

FIGURE 4 | Comparison of the immune conditions and TME between the two clusters in the training set. (A) Cluster 2 occupied a lower immune score and a higher
purity than cluster 1. (B) Composition of the six significantly differential immune cells between the two clusters based on the CIBERSORT algorithm. (C) The Epic
algorithm illustrated the immune cell difference between the two clusters. (D) The CYT score and IFNG expression significantly decreased in cluster 2 (*P < 0.05,
**P < 0.01, ***P < 0.001).
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DISCUSSION

The tumor microenvironment is composed of not only the solid
tumor tissue but also the surrounding vessels, fibroblasts, distinct
immune cells, and extracellular matrix (31, 32). The imbalance
between excessive oxygen demand and insufficient oxygen
supply shaped a hypoxic microenvironment, leading to a
malignant progression of tumor (33). As a hallmark of tumor,
hypoxia exerts a crucial significance in different biological
processes, including multiple metabolic forms, immune escape,
angiogenesis, and metastasis (34). What is more, the crosstalk
between tumor cells and other non-tumor cells under a hypoxic
microenvironment could also induce therapeutic resistance,
resulting in failure of treatment and poor clinical outcome.
Considering hypoxia as an emerging biomarker and target in
cancer therapy, exploring the effect of hypoxia in the tumor
microenvironment is of great necessity.

Up till now, more and more studies emphasize the
importance of molecular subtyping, which could direct
individualized treatment (35, 36). The classification based on
hypoxia genes and the generation of related signatures have been
conducted in many cancer types including breast cancer, lung
adenocarcinoma, and glioma to discriminate high-risk subclass
and to predict survival (21, 37, 38). However, the relationships
between hypoxia with clinical outcomes, genomic alterations,
and therapeutic responses remain obscure in OSCC. Identifying
different hypoxia patterns and generating a related signature in
OSCC are beneficial to deepen our understanding of hypoxic
Frontiers in Oncology | www.frontiersin.org 8
microenvironment in OSCC progression and improve the
outcome of cancer treatment.

In our study, we recognized two hypoxia-associated patterns
that have different characteristics by unsupervised clustering of the
gene expression of hypoxia genes. Cluster 2 patients were
characterized by higher hypoxia degree, leading to a survival
disadvantage over cluster 1. We also explored different mutated
patterns between the two clusters. Moreover, we identified hypoxia
signature genes by conducting differentially expressed analysis
between the two subtypes. In agreement with the association of
hypoxia status with abnormal immune response, we found that the
signature genes were correlated with distinct immune cell
infiltration. In the tumor microenvironment (TME), CD8 + CTLs
are the immune cells of first choice for targeting cancer. During
cancer progression, CTL encounters dysfunction and exhaustion
due to immune-related tolerance and immunosuppression in TME,
all of which contribute to adaptive immune resistance. Through
multiple algorithms in the two databases, we identified CD8 T cells
consistently deficient in cluster 2, which might be a major cause of
its poorer prognosis and its worse immunotherapy response.

Thinking of the heterogeneity of hypoxia conditions, it was
essential to quantify the hypoxia-associated character in OSCC.
Hence, we further established a hypoxia-related scoring system
and validated it in two cohorts. The estimated risk score was
elevated in cluster 2, which was consistent with its worse
prognostic significance. Multivariate Cox analysis also revealed
the score as an independent prognostic factor in OSCC.
Furthermore, the predictive potential of this prognostic risk
BA

C D

FIGURE 5 | Potential treatment strategy of the two clusters. (A) Cluster 2 group occupied a significantly higher TIDE score in the two cohorts. (B) The predicted
AUC values of bortezomib from the CTRP and PRISM cohorts were decreased in cluster 2 patients. (C) The upsetR plot revealed only the AUC of four agents
simultaneously decreased in cluster 2 patients estimated by the CTRP and PRISM cohorts. (D) Identification of the most promising cluster 2-specific agents
according to evidence from multiple sources (*P < 0.05, **P < 0.01, ****P < 0.0001).
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score model was generated by combining it with several clinical
features in a risk assessment nomogram.

In view of the clinical significance of our study, we respectively
investigated different treatment strategies for distinct subclasses in
line with the concept of precision treatment. For cluster 1 with a
better prognosis, we recommended the recently widely used ICB
Frontiers in Oncology | www.frontiersin.org 9
treatment, while for cluster 2 patients, we screened bortezomib as
the promising agent to improve the outcome of this subtype.
What is more, the ideal drug was also applied to OSCC patients
with high hypoxia-related risk score, indicating its clinical
transforming value. In addition, the risk score we established
could also predict the efficacy of immune checkpoint therapy and
CA B
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I JH

IH

FIGURE 6 | Establishment and validation of a hypoxia prognostic signature (A). A total of six candidate genes were identified in the intersection of “HIF1A targets” and
“DEGs.” (B) Cross-validation for tuning parameter selection in the proportional hazards model. (C) Differential expression of genes in hypoxia signature. (D, E) Cluster 2
patients conferred a significantly higher hypoxia risk scores in the TCGA and GSE41613 cohorts. (F, G) Survival analysis of the hypoxia-associated signature in OSCC or
OSCC subtypes. (H) The prognostic significance of the established signature across 33 cancer types. (I, J) The predicted AUC values of bortezomib from the CTRP and
PRISM datasets were decreased in the high-risk score OSCC patients (**P < 0.01, ****P < 0.0001).
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FIGURE 7 | Nomograms according to the OS-associated hypoxia scores for OSCC patients in the TCGA cohort. (A, B) The un
Establishment of a nomogram to predict the OS of OSCC patients. (D) The calibration curve revealed the high consistency betw
nomogram and other clinical features in the prediction of prognosis of OSCC patients at 1-year point (*P < 0.05, **P < 0.01, ***P
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might promote personalized OSCC immunotherapy in future
ICB treatment.

In summary, we recognized two different subclasses with a
distinct immune microenvironment in OSCC based on hypoxia
Frontiers in Oncology | www.frontiersin.org 11
condition and explored the treatment of each subtype. We also
established an individual hypoxia-associated score system which
could predict the survival and the efficacy of immunotherapy.
These findings provide a novel, efficient, and accurate predictive
A B

C D E

F G H

FIGURE 8 | Prediction of immunotherapeutic benefits by hypoxia score. (A) TIDE scores were increased in the high hypoxia risk score group in the TCGA and
GSE41613 cohorts. (B, C) The survival analysis of the high and low hypoxia risk score groups in the GSE91061 and CM-009+CM-010+CM025 immunotherapy cohorts.
(D) The immunotherapy response patients (CR/PR) more distributed in lower risk score patients, while non-response ones (PD/SD) enriched in higher risk score patients
in the CM-009+CM-010+CM025 cohorts. (E) High-risk score patients occupied a significantly reduced overall survival in the Imvigor210 cohort. (F) Various fractions of
clinical outcome patients in the high and low hypoxia risk score groups in the IMvigor210 cohort. (G) The difference of hypoxia risk scores in the three immune subtype
groups in the IMvigor210 cohort. (H) Differences in TMB between high- and low-risk score groups in the IMvigor210 cohort (ns, no significance, *P < 0.05, **P < 0.01).
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model in the prognosis and response to immunotherapy, thus
promoting personalized cancer chemotherapy and immunotherapy
in the future.
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Supplementary Figure 1 | Screening of the significantly prognostic hypoxia
genes in TCGA cohort. (A) Univariate Cox regression analysis of 200 classical
hypoxia stimulated genes in TCGA cohort (The forest plot only illustrated the
significant genes).

Supplementary Figure 2 | Identification of the DEGs and related functions
between two clusters in TCGA cohorts. (A) The DEGs heatmap between two
clusters in OSCC. (B) Cluego illustrated a high correlation with immune cells
infiltration.

Supplementary Figure 3 | The TME characteristics between two clusters in
GSE41613 cohort. (A) Cluster2 patients conferred lower immune scores and higher
tumor purity than Cluster1. (B) The significant immune cells difference between two
clusters estimated by Cibersort algorithm. (C) EPIC algorithm revealed 7 immune
cells difference in two clusters. (D) The CYT score but not the IFNG expression
significantly decreased in Cluster2 patients. (*P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001, NS, not significant)

Supplementary Figure 4 | Compare of two Clusters’ predicted AUC of another
three drugs in TCGA cohorts. (A) The AUC values of another three agents predicted
from CTRP and PRISM (B) were significantly decreased in Cluster2 patients. **P <
0.01, ***P < 0.001, ****P < 0.0001)
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