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Abstract: This paper proposes a novel method of estimating walking distance based on a precise
counting of walking strides using insole sensors. We use an inertial triaxial accelerometer and eight
pressure sensors installed in the insole of a shoe to record walkers’ movement data. The data is then
transmitted to a smartphone to filter out noise and determine stance and swing phases. Based on
phase information, we count the number of strides traveled and estimate the movement distance. To
evaluate the accuracy of the proposed method, we created two walking databases on seven healthy
participants and tested the proposed method. The first database, which is called the short distance
database, consists of collected data from all seven healthy subjects walking on a 16 m distance. The
second one, named the long distance database, is constructed from walking data of three healthy
subjects who have participated in the short database for an 89 m distance. The experimental results
show that the proposed method performs walking distance estimation accurately with the mean
error rates of 4.8% and 3.1% for the short and long distance databases, respectively. Moreover, the
maximum difference of the swing phase determination with respect to time is 0.08 s and 0.06 s for
starting and stopping points of swing phases, respectively. Therefore, the stride counting method
provides a highly precise result when subjects walk.

Keywords: gait monitoring; walking distance; insole sensors

1. Introduction

Gait analysis is an important topic in recent research because it provides an effective method for
healthcare and medical treatment. The analysis and monitoring of gaits facilitate the development
of useful applications in geriatrics [1,2], Parkinson’s disease [3], and rehabilitation [4]. The rapid
development of inertial sensor technology has enhanced data collecting methods based on human
movement. Thus, significant research has been undertaken to analyze the human gait cycle.
Tong et al. [5] used uni-axial gyroscopes attached to the leg shank and thigh segment to record
angular velocity for each segment. Using these velocities, they derived the segment inclination and
knee angle to estimate stride length and gait phases. Pappas et al. [6] placed a gyroscope and three force
sensitive resistors on the shoe sole to create a gait phase detection system that can detect in real-time
four gait phases, i.e., stance, heel-off, swing and heel-strike. Aminian et al. [7] attached gyroscope
sensors into each shin and on the right thigh to collect angular speed data, and then estimated stride
length and velocity based on wavelet analysis.

Recently, an emerging application of gait analysis is the measurement of human walking
distance [7–10]. Walking distance is an important factor to calculate the energy consumption in
healthcare applications [11]. Moreover, walking distance estimation is also applied in creating
Pedestrian Dead Reckoning (PDR) for indoor localization [12,13]. Hence, considerable research has
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been conducted to estimate walking distance [9,10,14]. Specifically, Wang et al. [9] created the signal
magnitude subtraction (SMS) feature of acceleration to detect gait phases. Then, they used a linear
regression model to estimate the step velocity from the acceleration data and created second linear
regression model to estimate the step length to calculate the walking distance. In [14], Fortune et al.
proposed an adaptive threshold-based algorithm for step counting and cadence calculation using
triaxial acceleration. Yun et al. [10] combined acceleration data with orientation estimated from three
angular rate sensors and three orthogonal magnetometers to calculate walking and running distances.
Based on the characteristic of zero velocity when the foot contacts the ground, the authors removed
the drift error in the acceleration and then double-integrated the data to estimate the distance.

Table 1 summarizes recent results of walking distance estimation with different methods of
attaching the sensors to the body. The body and leg attaching approaches provide high estimation
results. The accuracy of walking distance measurement using the approach of attaching the sensors to
the shoes is still low [15]. The estimated results are significantly improved in a recent work [16] with
certain conditions.

Table 1. Comparison of walking distance estimation approaches.

Approach Author Assumption Method Results

Body
attaching

Shin
et al.
[17]

- Pedestrians walk or run
- Attaching accelerometers to
the body

- Using biaxial accelerometer and
gyroscope sensors
- Counting the number of steps
- Estimating the step length as a
linear combination of walking
frequency and acceleration
variance.

- Accuracy of step length estimation
for walking cases is 95%, 96% and
96% for slow, normal, and fast
walking, respectively
- Step length estimation provides an
accuracy of 96% for running case

Shih
et al.
[12]

- Users walk normally in a
straight line with average
distance of 664.5 cm.
- Attaching smartphone on
the waist
- Placing smartphone on the
chest pocket

- Using one triaxial accelerometer
and one gyroscope sensor from a
smartphone
- Using double integral of vertical
acceleration to estimate stride
length

- Accuracy of distance estimation
based on attaching the smartphone
on the waist is 97.35%.
- Placing smartphone on the chest
pocket provides a 96.14% accuracy
rate of distance estimation

Ankle
attaching

Wang
et al.
[9]

- Users walk along the
outside of a sports area that
is 559 m long
- Attaching triaxial
accelerometer on users’s
ankles

- Using a triaxial acceleration data
to analyze gait and estimate the
step velocity
- Estimating step length as a linear
regression model of step frequency
and step velocity

- Accuracy of walking distance
estimation is 96.42%

Leg
attaching

Bennett
et al.
[18]

- Subjects walk in a straight
line with average distance of
3.55 m
- Placing sensors on the thigh
and shin of the right leg

- Modeling human leg as a
two-link revolute robot, then using
Extended Kalman Filter (EKF) to
estimate the displacement in a
straight line

- EKF distance estimation had an
average error of 2%

Shoe
attaching

Alvarez
et al.
[15]

- Subjects walk in a 10 m
straight distance
- Attaching a sensor module
in the front of the users’s
shoes

- Using a biaxial accelerometer and
a gyroscope sensor
- Double integrating the horizontal
acceleration in the swing phase to
estimate the walking distance.

- Mean estimation error rate is 10%
with a single sensor module
attached on one foot
- Result is improved to 7% when
mounting a sensor module on each
foot

Wang
et al.
[19]

- Three subjects perform two
sets of 40 m level walking,
10-step stair ascending and
10-step stair descending
- Mounting a triaxial
accelerometer, a gyroscope
and orientation sensors to
shoes

- Using double integral of
acceleration to estimate walking
distance
- Using zero velocity update
(ZUPT) to reset velocity when a
foot becomes stationary

- Absolute error of (3.08± 1.77)% in
distance estimation

Meng
et al.
[16]

- Subjects walk in a straight
line for 10 m
- In long distance experiment,
subjects walk for a distance
of approximately 132 m
- Attaching an inertial/
magnetic measurement unit
in the front of the users’
shoes

- Using a module containing a
triaxial accelerometer, a triaxial
gyroscope sensor and a triaxial
magnetometer
- Creating a zero velocity update
method based on the stride
information to further correct the
acceleration
- An adaptive Kalman Filter is used
to estimate the position

- Position error is 0.44 m ± 0.2 m for
short distance (4.4%).
- In long distance experiment, the
position error is 4.31 m ± 1.77 m
(3.6%)

These methods typically designed inertial sensor modules and then mounted them on the
waist, thigh and/or ankle to collect biaxial/triaxial acceleration data. This approach has inherent
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disadvantages in real-life usage. One of the disadvantages is a serious inconvenience for users who
must continuously wear these devices on their bodies during the experiment and data collection period.

Another approach of utilizing sensors to analyze gait is attaching the sensors to the insole of
a shoe [20–25]. The advantage of this approach is that shoes are ubiquitous and typically worn on
a continuous basis by humans. Therefore, attaching a sensor to the shoe’s insole does not cause
inconvenience for the users, even over a long period. Moreover, installing measurement sensors in the
insole of shoes can be an efficient method to track humans by walking distance measurement.

In this paper, we propose a novel method of walking distance estimation based on a precise
stride counting and phase determination using an insole sensory module that consists of a triaxial
accelerometer and eight pressure sensors. We incorporate pressure and acceleration information of
healthy walkers to determine the swing and stance phases of their gaits. Evaluating experiments, we
obtain the maximum error of the swing phase determination with respect to time being 0.08 s and
0.06 s for starting and stopping points of swing phases, respectively. The gait analysis results are then
used to count the number of strides of walkers and estimate the walking distance. We apply a double
integral to acceleration data to calculate the vertical displacement and the distance which the foot
traces in the air. Based on this information, we estimate the walking distance in a straight line. The
experimental results, which are conducted on various heights and ages of walkers, demonstrate the
validity and accuracy of the measurement method. Specifically, we obtain error rates of 4.8% and 3.1%
for experiments on a 16 m and 89 m walking distances, respectively.

The remainder of this paper is organized as follows. Section 2 presents the measurement system
and estimation method based on acceleration and pressure data. A gait phase analysis is also presented
to explain the walking distance measurement method. In Section 2, we also describe the process
of determining the swing phase and the method of estimating the walking distance of the subjects.
Section 3 shows the experimental results of the proposed method. Some important points are discussed
in Section 4. Finally, conclusions are provided in Section 5.

2. Stride Counting and Walking Distance Estimation

In this section, we present the method to count strides and estimate walking distance based on
gait cycle analysis. We explain the fundamental phases of the gait cycle and the application of gait
analysis to the walking distance calculation. We also describe the insole module that is used to collect
acceleration and pressure data of walking. In our proposed method, the pressure data are used to
determine the starting and stopping points of the swing phases during the walking motion. This
process also provides information for efficiently counting the number of strides of a walker. Then,
we extract the acceleration data on the swing phases to calculate the walking distance. The walking
distance is estimated based on the tracing distance of the shoe in the air and the vertical displacement
of the shoe.

2.1. Gait Phase Analysis

Typically, a gait cycle can be divided into seven phases [26–28], i.e., heel strike, foot flat, mid
stance, heel off, toe off, mid swing and late swing. The phases of a gait cycle are depicted in Figure 1.
The heel strike indicates the period when the foot begins to contact the ground. The heel strike is the
first phase of the gait cycle. The foot flat is the period where the body absorbs the impact of the foot by
rolling in pronation. The mid stance phase begins when the other foot is lifted and continues until the
body weight is pressed onto the forefoot. The heel off is the period where the heel begins to leave the
ground. The toe off phase refers to the phase when the toe leaves the ground. In the toe off phase, the
hip becomes less extended. In the mid swing, the adductors are contracted and the ankle is dorsiflexed
by contraction of the tibialis anterior muscle. The late swing phase declares a locked extension of the
knee and a neutral position of the ankle. A gait cycle ends at a new heel strike phase.
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Figure 1. Analyzing phases of the gait cycle.

Using the right foot as a reference to apply the distance measurement, we categorize the gait cycle
into two phases, i.e., the stance phase and swing phase. The stance phase includes heel strike, foot
flat, mid stance and heel off phases, whereas, the swing phase includes toe off, mid swing and late
swing. The stance phase represents the time interval where the right foot is flat on the ground. The
stance phase begins from the heel strike phase and ends at the toe off phase. After the stance phase
ends, the swing phase begins. The swing phase refers to the period of time where the right foot is
moving in the air and does not contact the ground. It should be noted that the movement distance is
primarily determined by the swing phase of the gait cycle; thus, in the proposed approach, we identify
the swing phase and then calculate the distance from the acceleration information collected in this
phase. Specifically, we utilize a hardware module integrated into the shoe to collect the pressure and
acceleration data of walkers’ gaits.

2.2. Insole Sensor-Based Estimation System

In this study, we use the insole sensor module, which was designed and developed by the 3L Labs
Co., Ltd. (Seoul, Korea), to collect the data from the gaits. The insole sensor module is commercially
called the “Footlogger”. The insole sensor module includes a triaxial accelerometer, eight pressure
sensors attached to the insole of the shoe, and an microcontroller (MCU) kit supporting Bluetooth
connection to transmit the movement information. Figure 2 illustrates the developed insole sensor
module. In the experiments, the insole sensor module is connected to a smartphone to record the
pressure and acceleration data from walkers. The sampling frequency of the insole sensor module is set
to 50 Hz. Commonly, these sensors are sampled at frequency range of 20 Hz to 200 Hz [29]. In posture
and activity classification, a low sampling rate of accelerometer and pressure sensor possibly produces
excellent recognition accuracy [29,30]. In [30], pressure and acceleration data were sampled at 25 Hz
by a 12-bit analog-to-digital converter to accurately identify sitting, standing and walking postures.
In [29], authors stated that reduction of sampling frequency of accelerometer and pressure sensor from
25 Hz to 1 Hz does not create significant lost of accuracy (98% to 93%). In estimation applications,
Aminian et al. [31] record body acceleration at a sampled rate of 40 Hz to estimate walking speed. The
experimental results showed that the maximum of speed-predicted error is 16%. In [32], authors used
the force transducers and inertial sensor in a shoe with the sampling rate of 50 Hz to estimate stride
length. The root mean square (RMS) difference between the obtained stride length and the referenced
stride length being 34.1 ± 2.7 mm. Based on the results of the related research, we believe that the
sampling frequency of 50 Hz for accelerometer and pressure sensor in the system is possible to estimate
walking distance.

To separate the gravity component from the raw acceleration signal, we first isolate the force of
gravity with a low-pass filter. Then, we apply a high-pass filter to isolate the linear acceleration. The
algorithm of extracting linear acceleration is as follows:
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gx(t) = α.gx(t− 1) + (1− α) · ar
x(t),

gy(t) = α.gy(t− 1) + (1− α) · ar
y(t),

gz(t) = α.gz(t− 1) + (1− α) · ar
z(t),

ax(t) = ar
x(t)− gx(t),

ay(t) = ar
y(t)− gy(t),

az(t) = ar
z(t)− gz(t)

where {gx, gy, gz}, {ar
x, ar

y, ar
z} and {ax, ay, az} are gravity, raw acceleration and linear acceleration on

X-,Y- and Z-axes, respectively. Moreover, we select α = 0.8 for the low-pass filter.
The inertial triaxial accelerometer sensor is placed in the center of the insole. The pressure sensors

are placed at the rear of the shoe. Each pressure sensor contains a two-bit value representing the
pressing level on the sensor. To effectively detect the gait phases of walkers, we fuse the data from
these eight pressure sensors into a pressure value. The incorporate pressure value on the shoe is
determined by a 16-bit value created from these eight two-bit values of the sensors, where the two
bits of the first sensor are the most significant bits and the two bits of the eighth sensor are the least
significant bits, as shown in Figure 3. This fusing method is designed to emphasize the importance
of pressure on the first metatarsal area because this area is larger pressed compared with the fifth
metatarsal area in straight walking.
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-  Nordic NRF51822

Serial flash (for data)

-  32Mb

3-Axis accelerator
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Figure 2. Design of the insole sensor module.
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Figure 3. Fusing sensors’ values.

Using this insole sensor and a smartphone, we created our portable and concise system for
estimating walking distance. We attached the sensor module, which includes sensors and batteries,
into an insole and then placed it inside a shoe. The insole used in the system is the off-the-shelf insole,
whereas, the experimental shoe is user’s sneaker. This design is to make users feel comfortable during
their experiments, and thus ensure that their gaits are not affected. Indeed, we did not receive any
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complaints from experimental subjects about the discomfort of the insole during experimentation.
Thus, we can provisionally conclude that the insole sensor module is unlikely to affect users’ gaits. The
insole sensor is connected to the smartphone through Bluetooth to continuously transfer collected data.
Figure 4 shows the flow of data in the estimation system. We use the sensor module in the insole of the
shoe for the right foot and require walkers to wear this shoe to collect data during the walking period.
The collected data are sent to a smartphone in the pocket of the walkers for storage and processing
through the Bluetooth connection. We remove noise in the data received from the foot-worn sensors
using a band-pass Butterworth filter with fc1 = 5 Hz, fc2 = 10 Hz. Finally, we apply our calculation
method on these data to estimate the walking distance.

Insole

Sensors
Smartphone

Bluetooth

Estimation of walking 

distance using a 

coefficient factor

Band-pass

Butterworth

filter

Calculation of vertical

& tracing displacement

based on double integral

Database

Figure 4. Diagram of data processing in the estimation system.

2.3. Stride Determination

It is clear that the number of walking strides equals the number of swing phases, which is the
period immediately after a user pushes off his foot, releasing it from the ground until the foot again
contacts the ground. Therefore, to detect swing phases, and thus possibly count the number of walking
strides, we analyze the pressure under the walker’s shoes. We basically utilize the data received from
pressure sensors to determine the time interval of the swing phase. When a walker releases his foot
from the ground, the pressure value of the sensor under his foot will be virtually zero, whereas when
the foot contacts the ground, the pressure value is not zero. Based on this fact, we create an on/off
filter to detect swing phases of walking. If all pressure sensors point to “not press” state, the foot
is defined as being in swing phase. However, we experimentally observed that Sensor 8 sometimes
provides a level of “slightly pressed”, corresponding to the 012 value in the binary system, when users
transit from late swing phase to heel strike phase and are still in the late swing phase. Therefore, to
remove this effect, we set a threshold corresponding to the wrong case of Sensor 8, i.e., threshold = 1.
This threshold-based method works because the swing phase is only identified when all sensors are in
“off” state. This means that all sensors should point to the “no press” state. Applying these analyses,
we create a simple filter to detect the period of the swing phase in human walking:

F(k) =

{
0 if p(k) < threshold
1 if p(k) ≥ threshold

(1)

where p is the pressure data received from the foot logger at the k sampling index. Figure 5 illustrates
the scenario of a pressure value received from walking in a 16 s walking period. The blue part
represents the pressure data measured by the pressure sensor integrated under the users’ shoes. The
red part shows the result F(k) of the on/off filter presented in Equation (1). In other words, F(k) = 1
means the insole is in swing phase at the k moment. Based on this pressure-based swing phase filter,
we can determine the starting and stopping moments of swing phases as well as movement.
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Figure 5. Swing phase determination based on pressure information.

2.4. Human Walking Distance Estimation

Based on the estimation of the swing phases, a method based on double-integration of acceleration
data is used to calculate the movement distance in the swing phase. We use a double integral to
compute the vertical movement distance and the tracing distance of the foot in the air. Using these
two values, we estimate the walking distance. The proposed calculation algorithm is generalized in
Figure 6.

Calculate the vertical and 

tracing distances from

acceleration on swing phase 

Estimate walking distance 

using the vertical and 

tracing distances

Acceleration

data
Pressure

data

Extract acceleration data in 

swing phase

Detect strides based on

pressure data 

Figure 6. Proposed calculation algorithm.

2.4.1. Swing-Phase Acceleration Extraction

The pressure-based swing phase filter is used to extract the corresponding acceleration data of
the walking cycle. A simple convolution is applied to extract feasible data from the acceleration data:

âx(k) = F(k) ∗ ax(k)

ây(k) = F(k) ∗ ay(k)

âz(k) = F(k) ∗ az(k)

(2)
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In Equation (2), âx(k), ây(k), and âz(k) are the swing phase extracted acceleration on the X-, Y-,
and Z-axes, respectively, whereas ax(k), ay(k), az(k) are the original collected acceleration on the X-,
Y-, and Z-axes, respectively, and F(k) is the value of the filter at the k sampling index. Figure 7 shows
a sample of the raw triaxial acceleration measured by the sensing module. The results of filtering the
measured acceleration are depicted in Figure 8. The filter allows acceleration data in swing phases to
pass and removes acceleration components in stance phases on three axes.
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Figure 7. Original acceleration data.
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Figure 8. Extracting filtered acceleration data using pressure-based filter.

Based on this filtering, we can determine the period of swing in the walking motion. Moreover,
with this pressure-based filter, we can easily calculate the exact number of strides in the walking
distance. After extracting acceleration in swing phases, we apply double integral-based calculation to
estimate stride lengths. Therefore, the walking distance can be measured.

2.4.2. Distance Estimation with Continuous Data

To determine the walking distance, we measure the tracing distance of the shoe, and then multiply
the result with a correction coefficient to estimate the movement distance of a walker in a straight
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line. First, we obtain the acceleration data in the swing phase. Then, we double-integrate the obtained
acceleration data to calculate the tracing and vertical displacements during the swing phase. The
tracing displacement mentioned is the curved line on which the foot traces in the air, whereas, the
vertical displacement indicates the movement in the Z-axis of the sensor frame. Based on these two
values, we estimate the distance traveled in swing phase. Finally, we add the displacement caused by
the foot length during walking into the result to obtain the estimated value. Basically, the distance is
estimated from the acceleration data using the motion equation of the foot:

d = K ·

∫ T
0

(∫ T
0 a(t) dt

)
dt∫ T

0

(∫ T
0 az(t) dt

)
dt
+N · L0 (3)

where T, N, L0 and K are the time period of walking, the stride number, the constant foot length and

an experimental coefficient, respectively, whereas a(t) =
√

a2
x(t) + a2

y(t) + a2
z(t) is the acceleration

obtained in the swing phase.

2.4.3. Distance Estimation with Sampling Data

Applying the estimation method mentioned in Section 2.4.2, we compute the acceleration magnitude:

a[k] =
√

a2
x[k] + a2

y[k] + a2
z [k] (4)

Then, the distances traveled by the foot in the air and in the vertical direction of each stride are
calculated as follows:

vMAG =
N

∑
k=1

a[k] · ∆t (5)

dMAG =
N

∑
k=1

vMAG[k] · ∆t

vz =
N

∑
k=1

az[k] · ∆t (6)

dz =
N

∑
k=1

vz[k] · ∆t

where N and ∆t are the number of sampling times and the time period of sampling, respectively.
Applying this result, the walking distance of the walker can be estimated in online mode using the

experimental smartphone. The smartphone periodically receives sensors’ data from the insole sensor
module under the user’s shoe to estimate the traveled distance. Specifically, the traveled distance at
the n stride index, d[n], can be calculated from the estimated distance at the previous stride index,
d[n− 1], and acceleration data in the n stride index by:

d[n] = d[n− 1] + K · dMAG[n]
dz[n]

+ L0 (7)

where dMAG[n] and dz[n] are the distance obtained using magnitude and vertical acceleration in the
time interval of the n stride index, respectively. The coefficient K is tuned to a value so that the mean
value of estimated distances in each training set is equal to the reference distance.

2.5. Descriptive Analysis and Requirements

This section descriptively analyzes the experimental requirements and explains related features of
subjects who joined the experiment. The experiments were conducted on totally seven healthy subjects
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consisting of two female and five male walkers, aged from 22 to 28 years old, with height varying
from 160 cm to 185 cm. Table 2 describes the baseline of individuals including personal information
of each person, i.e., height, age and sex. The average foot length is chosen as L0 = 0.26 m to estimate
the distance traveled. In Table 2, we also mark the specific distance each subject walks to create the
walking databases. All seven subjects participated the 16 m distance walking, whereas three of them
participated in the 89 m distance walking experiment. The experiments were conducted in an indoor
environment, i.e., a building of a university. Initially, subjects stood with both feet flat on the ground.
Then, we asked them to step on the distances leading with the right foot. The subjects should lift up
their right foot first from the initial state. During walking, subjects are required to lift their feet from
the ground in each swing phase. The subjects are discouraged to drag their feet on the ground in swing
phases, which can affect the pressure-based gait analysis.

Table 2. Baseline of individuals.

Subject Height Age Sex Short Distance Long Distance

#1 163 cm 23 Male X X
#2 165 cm 23 Male X X
#3 168 cm 28 Male X X
#4 175 cm 24 Male X
#5 185 cm 26 Male X
#6 160 cm 22 Female X
#7 162 cm 26 Female X
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Figure 9. Gait velocities of subjects in experiments. (a) short distance database; (b) long distance database.

The subjects were required to walk normally in the straight distances with the insole sensor
module installed in their right shoes and an Android smartphone to collect the acceleration and
pressure information from the insole sensors. The smartphone connected with the insole sensor using
Bluetooth and seamlessly received the data from the insole sensor module. We collected 84 samples
of data of walking on the 16 m distance from the seven subjects to create the short distance walking
database. Similarly, the long distance database was created based on 30 walking samples of three
subjects on the 89 m distance. This group of three subjects is a part of the group of seven subjects
who conducted experiments of short distance walking. The specific participation of each subject
in experiments is shown in the last two columns of Table 2. The walking speed measured from
all subjects varied in the range of 1 m/s to 1.6 m/s, specifically, v = 1.216± 0.127 m/s. Figure 9
shows the distribution of subjects’ average speeds in the experiments of walking on 16 m and 89 m
distances. Different subjects are represented by different colors in experiments. The same color in the
two subfigures illustrates the same subject in two databases.
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3. Experimental Results

This section describes the preliminary experimental results that demonstrate the accuracy of the
proposed calculation method using the insole sensor module. These experiments were conducted in a
preliminary trial where walkers were required to walk normally for a specified distance in a straight
line. Movement data that were collected using the sensor module were utilized to create a database for
evaluating the accuracy of the proposed method.

3.1. Stride Counting

Using the pressure data to analyze the gait cycle, we can accurately estimate swing phases’
moment, and hence, an extremely precise result for stride counting can be calculated. To evaluate,
we used a camera to record all subject movement during the walking periods. Specifically, we
handle the camera and follow walkers to record their walking data. Using the recorded video,
we manually marked the starting and stopping moments of swing phases to identify the reference
information of swing moment. Compared with the estimated moment received from the swing phase
determination, we obtained the maximum difference of 0.08 s and 0.06 s for the starting and stopping
points, respectively. Figure 10 shows the difference between the estimated and reference moments
of swing phases in a walking sample on the 16 m distance. Based on the swing phase determination,
we counted the number of strides and compared this with the result received from the pressure
analysis-based method to validate its accuracy.

Time (sec)

0 2 4 6 8 10 12 14

P
re

s
s
u
re

×10
4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Pressure data

Reference moment

Estimated moment

Figure 10. Determination of swing phases on a walking sample.

Applying the swing phase detection into the stride counting application, we obtained results
with an accuracy of 100%. These results confirm that by applying the pressure based filter, stride
counting can be precisely calculated. It is clear that, with the support of hardware, acceleration-based
gait analysis can be easily accomplished. In other words, analyzing pressure under shoes facilitates
determining the stance phase of walking which is a difficulty for acceleration analysis-based methods.

3.2. Walking Distance Estimation

To statistically evaluate the accuracy of selecting the experimental coefficient K for the proposed
method, we divided the database into the training set and test set using Leave-One-Out cross validation.
Specifically, we divide the short distance database into a training set of 83 samples and a test set of one
sample to evaluate the proposed. We alternatively repeat this division 84 times so that every sample is
used as a test set one time. Similarly, we split 30 samples of the long distance database into a training
set of 29 samples and a test set of one sample. This split is alternatively conducted 30 times; hence,
each sample is used in training 29 times and in testing one time. Using the training set, we acquire the
required coefficient K for each sample. Then, we obtain the average value of all these coefficients to
select the final experiment coefficient. Applying this selected experiment coefficient to the test set, we
calculate the walking distance and measurement error. The measurement error on N samples were
calculated as follows:
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e =
1
N

N

∑
i=1

∣∣∣d(m) − d(r)
∣∣∣

d(r)
(8)

where d(m) and d(r) are the measurement and reference distances, respectively.
To evaluate the accuracy of the proposed algorithm, we tested the algorithm on two databases,

i.e., the short-distance (16 m) and long-distance (89 m) databases. Table 3 shows the estimation results
on the short- and long-distance databases. We determined the mean, median, min, max and standard
deviation (SD) values of the estimation, then calculated the average relative error for each subject to
depict estimation distribution on each subject. We also calculated these values for all recorded samples
of the databases to test the accuracy of the proposed method. In summary, for the 16 m-distance
database, the proposed method provided an estimation result of 16 m ± 1 m with the accuracy rate
of 95.2%. On the 89 m-distance database, we obtained the estimation result of 89 m ± 3 m with the
accuracy rate of 96.9%.

Table 3. Estimated values using the proposed method.

Distance Subject Mean (m) Median (m) Min (m) Max (m) SD (m) Error

short (16 m) #1 16.4 16.3 16.1 17.1 0.3 2.2%
#2 15.4 15.4 14.4 16.6 0.6 4.5%
#3 17.1 17.1 16.8 17.3 0.4 6.7%
#4 15.7 15.4 13.9 17.3 1.4 8.0%
#5 17.0 17.1 15.5 18.8 1.0 7.1%
#6 15.3 15.3 14.9 15.7 0.2 4.5%
#7 16.1 15.7 15.2 19.2 1.0 3.9%
All 16.0 15.9 13.5 19.7 1.0 4.8%

long (89 m) #1 88.4 88.4 87.4 89.4 0.7 0.8%
#2 93.0 92.9 91.1 94.6 1.1 4.5%
#3 85.6 85.7 83.3 87.3 1.4 3.9%
All 89.0 88.1 83.8 94.5 3.2 3.1%

In Table 4, we compare the estimation results of the proposed method with other reference
methods. The method proposed by Alvarez [15] used a double integral of acceleration on the movement
direction of foot sensors and drift removal to measure the walking distance. The method [19] utilized
double integral with zero velocity update (ZUPT) to estimate walking distance based on acceleration
data collected from foot sensors. The ZUPT technique was performed by extracting acceleration
between two neighboring zero velocity windows, then shifted velocity to remove drift error. The
experimental results clearly show that the proposed method outperforms referenced estimation
methods in terms of estimation error and deviation.

Table 4. Comparison with other methods.

Distance Criterion [15] [19] Proposed Method

short (16 m) Error 17.5% 9.9% 4.8%
SD 20.4% 13.1% 6.6%

long (89 m) Error 10.4% 7.2% 3.1%
SD 12.3% 8.8% 3.6%

4. Discussion

In our proposed method, we use a tuned coefficient K to obtain the final estimation results from
calculated displacements. This coefficient is not only a unit converter, but also a correction for the
estimation. Indeed, this tuned coefficient shifts the mean value of calculation results to the reference
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value. It can be said that the horizontal displacement and coefficient K play a role of projecting the
tracing distance on each strides to the horizontal direction of the global frame.

The proposed method uses the merging pressure data to detect stance and swing phase. It should
be noted that this pressure data is not the physical pressure obtained at the insole. Instead, the pressure
data are the merging of pressure levels from eight pressure sensors. This merging ensures eight pressure
levels separate in the final result. Furthermore, this merging technique facilitates data communication
between the insole sensor module and smartphone. Instead of separately transferring eight pressure
values, we only transfer one merging pressure value at each sampling moment. Currently, we just
classify swing and stance phases; thus, only the on/off information is used. A lower value of merging
pressure that is created as an 8-bit value with each bit for each sensor’s state can provide the same result.
However, spending implementation time in smartphone for creating this lower value is unnecessary
because the two-phase classification can be done directly from the 16-bit value. Moreover, for further
gait analysis, such as detect heel-strike phase, this differentiation of level is necessary. In future works,
we plan to use these pressure data to classify gait phases defined in Section 2.1 to apply in other related
applications such as, fall detection or rehabilitation.

Another important point to discuss is that the gait analysis presented in Section 2.1 is only
for a walking model. When a subject begins walking from standing state, his/her first gait is not
corresponding to this gait analysis. The first gait starts from mid stance phases and ends at the heel
strike phase. Its stance phase includes mid stance and heel off phases, but excludes heel strike and
foot flat phases. In fact, the first gait is a step, not a stride. However, in our experimental requirement,
walkers initially stand with both feet on the ground, and then step on the distances leading with
the right foot. Moreover, our estimation method is created based on results of a double integral of
acceleration data on swing phases. Using the presented pressure-based filter, we are still able to
determine the swing phase of this first stride. Then, we can extract acceleration data and apply the
proposed method to estimate the first stride length. Therefore, we consider the first step as a short stride.
We assume the first gait is a short stride including stance and swing phases. With this assumption,
the proposed method can be smoothly applied for walking distance estimation. The assumption is
reasonable because the distance traveled is basically determined by the swing phase. The distance
traveled in the swing phase is estimated based on tracing and vertical displacements. Technically,
these displacements are dependent on acceleration data and walking period. The first stride period is
shorter than other strides’ periods; thus, we believe that this assumption is practically applicable.

In this paper, we used the estimation system to detect stance and swing phases, and then estimate
walking distance on healthy subjects. The experiments were conducted with a controlled initial state
and a requirement during walking. These are subjects that should initially stand with both feet on the
ground and walk without dragging their feet on the ground. If applying the method on subjects who
suffer from gait disorders, the accuracy of the estimation can be reduced. A pathological gait can affect
the proposed method by the following points.

• Patients drag their foot on the ground;
• Gait disorder can cause misunderstanding in stride determination;
• Correlations between the tracing and horizontal displacements with the walking distance can be various.

To solve these problems, the pressure-based gait analysis should be improved. The band-pass
Butterworth filter should be also edited. We think that, to better estimate walking distance for both
healthy and pathological gaits, the estimation method should be combined with a classification of
gait. Before applying the walking distance estimation, a gait classifier should be used to choose an
appropriate model for estimation.

5. Conclusions

In this paper, using a sensor module consisting of an inertial triaxial accelerometer and eight
pressure sensors, we proposed a novel method of walking distance estimation based on an accurate
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phase determination and precise stride counting. The sensor module was installed in the insole of
the shoe to collect human walking information. The information was filtered and processed on the
smartphone to remove high frequency noise. Using the pressure data, we accurately estimate the
starting and stopping moments of swing phases and precisely count the number of walking strides of
each subject in the experiments. Double-integrating the acceleration data in the swing phase provided
the foot’s tracing displacement in the air and the vertical displacement of the foot in the sensor frame.
Based on the tracing in the air and vertical displacements of the foot, we estimate the anterior walking
distance of subjects on a straight line. The experimental results confirmed that the proposed method
performed accurately with a mean walking distance estimation error of 4.8% and 3.1% for 16 m and
89 m walking distance.

Currently, the proposed method can only be applied on estimating walking distance of normal
walking on level ground. In a future work, we will extend the proposed method with various walking
patterns, such as stair climbing, jogging, and running. We also plan to estimate the walking directions
with an integrated gyroscope sensor, and create a PDR system using the insole sensor integrated shoe.
As stated previously, we plan to use the pressure data to classify gait phases defined in Section 2.1 and
expand the research into other areas such as, abnormal gait recognition, fall detection or rehabilitation.
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