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Abstract: To evaluate the role of ubiquitin-conjugating enzyme E2C (UBE2C) in prostate cancer
(PCa) progression and prognosis, the TCGA and our PCa tissue microarray cohort were included
in the study. Weighted gene co-expression network analysis (WGCNA) and non-negative matrix
factorization were used to cluster patients and to screen genes that play a vital role in PCa progression
(hub gene). Immunohistochemistry staining was used to evaluate the protein level of UBE2C in
prostatic tissues. Through WGCNA, we found a gene co-expression module (named the purple
module) that is strongly associated with the Gleason score, pathologic T stage, and biochemical
recurrent status. Genes in the purple module are enriched in cell cycle and P53 signaling and help us
to cluster patients into two groups with distinctive biochemical recurrent survival rates and TP53
mutation statuses. Further analysis showed UBE2C served as a hub gene in the purple module.
The expression of UBE2C in PCa was significantly higher than that in paracancerous tissues and
was remarkably associated with pathologic grade, Gleason score, and prognosis in PCa patients. To
conclude, UBE2C is a PCa-progress-related gene and a biomarker for PCa patients. Therapy targeting
UBE2C may serve as a promising treatment of PCa in the future.

Keywords: prostate cancer; UBE2C; TP53; biomarkers

1. Introduction

Prostate cancer (PCa) remains the most frequently diagnosed solid organ cancer in
men, ranked first in new cases and second in deaths among men with cancer in the U.S. [1].
Metastasis causes more than 90% of cancer-related deaths, and most PCa patients also die
from metastasis [2]. The growth of malignant prostate tissue is regulated by androgen
via the activation of the androgen receptor (AR). Thus, the main therapy for metastatic
PCa (mPCa) is androgen-deprivation therapy (ADT), which provides temporary control of
the disease. Unfortunately, PCa cells eventually become castration-resistant, which causes
tumor progression to metastatic castration-resistant prostate cancer (mCRPC).

Ubiquitin-conjugating enzyme 2C (UBE2C) is essential to the ubiquitin-conjugating
enzyme complex. Studies have demonstrated that the dysregulation of UBE2C tends to be
positively correlated with the occurrence and progression of solid cancer, and inhibition
against UBE2C has been considered a novel therapeutic target for solid cancer [3–5]. Wang
et al. found that AR-independent PCa is highly related to UBE2C [6]. In AR-independent
PCa, epigenetic markers were recruited in UBE2C enhancer areas and activated UBE2C.
UBE2C would be a biomarker for PCa as it is crucial to identify the androgen-independent
PCa and response to castration therapy [7]. Wang et al.’s study also showed that UBE2C
activates cell cycle G2-M progression, and the inhibition of AR-related coactivators could
attenuate the activation of UBE2C and induce cell cycle arrest [8].
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No evidence supports the prognostic significance of UBE2C in PCa. Moreover, the
molecular mechanism and specific role of UBE2C expression in PCa remain unclear. Herein,
using data from our cohort and public cohorts, we explore the possible role of UBE2C in PCa.

2. Results
2.1. Screening PCa Progression-Related Hub Genes

To explore hub genes in the PCa progression and invasion, WGCNA used the top
8269 variation genes (the top 8269 genes with the largest variance between samples) in
the TCGA PCa cohort to compile the co-expression network. Adhering to the scale-free
topology criterion, β = 16 was considered in this study. Following dynamic tree cutting, the
topological overlap clustering dendrogram identified 17 distinct gene modules (Figure 1A).
The gray module consisted of genes that did not group into any specific module. To identify
co-expression modules associated with sample traits (Gleason scores, pathologic T stage,
and biochemical recurrent status), we assessed the relationship of the above three sample
traits with the module eigengene. Figure 1B shows that the purple module has the strongest
association with Gleason scores (0.5, p < 0.001), pathologic T stage (0.43, p < 0.001), and
biochemical recurrent status (0.2, p < 0.001). Therefore, we focused on the purple module.
Not surprisingly, G.O. and KEGG enrichment analyses showed that genes in the purple
module were enriched in the cell cycle, P53 signaling pathway, DNA binding, bending
functions, and pathways (Figure 1C,D).

By using the genes in the purple module and NMF analysis, we divided the PCa
patients into three distinct clusters. Figure 1F shows that the genes in the purple module
were enriched in the C2 cluster. Additionally, patients in the C2 cluster had higher Glea-
son scores, pathologic T stages, and TP53 mutations. Moreover, Kaplan–Meier analysis
showed that the C2 cluster had significantly worse PSA recurrence-free survival (RFS)
rates (Figure 1G). Finally, we identified hub genes in the purple module based on scores:
(1) module membership (high-connectivity genes in the module); (2) gene significance for
Gleason score and pathologic T stage. After screening, we found that the UBE2C gene with
high module membership in the purple module had higher gene significance scores for
both Gleason score and pathologic T stage (Figure 1H). Supplementary Figure S1 shows
the co-expression networks of the top 600 ranked gene connection weights in the purple
module. We found that UBE2C presented among high degree genes in the co-expression
networks. Additionally, previous studies have demonstrated that UBE2C regulated the
cell cycle in PCa cell lines in vitro [7]. These results indicate that UBE2C may play an
essential role in the purple module co-expression network and is highly associated with
PCa progression and invasion.
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Figure 1. Screening PCa-progress-related hub genes in the TCGA PCa cohort using weighted gene
co-expression network analysis (WGCNA). (A) A dendrogram generated using the WGCNA, which
identified 17 distinct gene modules. Each module is assigned a unique color. (B) Pearson’s correlation
coefficient (PCC) matrix between module eigengenes (M.E.s) and clinical traits. The PCC values range
from −1 to 1 depending on the strength of the relationship. A positive value indicates that the genes
within a particular co-expression module increase as the clinical trait increases, whereas the opposite is
true if the PCC is negative. Each PCC value is accompanied by the corresponding p-value in brackets.
C and D: representative enriched G.O. functions (C) and KEGG pathways (D) of genes in the purple
module. (E) Non-negative matrix factorization (NMF) using the genes in the purple module divided
the TCGA PCa cohort into three distinct clusters. (F) Heatmap of the expression of genes in the purple
module, clinical features, and TP53 mutation across the three NMF clusters. (G) Kaplan–Meier curve
of PSA recurrence-free survival (RFS) rates in different NMF clusters. H: representative genes with
high gene significance of Gleason score, pathologic T, and module membership in the purple module.
(H) Rank for genes in purple module based on gene significance for Gleason Score (Left) and pathologic
T stage (Middle), and gene module membership (Right).

2.2. UBE2C Is Strongly Associated with the Malignant Level of PCa

To test whether UBE2C would be a biomarker in PCa, we investigated the expression
levels of UBE2C in PCa and normal prostate tissues. A total of 497 PCa samples and 52 benign
prostate tissue samples from the TCGA dataset were involved in this analysis. The expres-
sion of UBE2C in PCa was significantly higher than in benign prostate tissue (Figure 2A).
Additionally, the difference in protein levels of UBE2C between PCa and normal prostate
tissues was further confirmed in our PCa cohort. Figure 2B shows different levels of UBE2C
protein expression in the prostatic tissues measured by immunohistochemistry staining. The
immunohistochemical characteristics of UBE2C expression in the PCa tissues and the adjacent
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tissues were investigated using a paired Wilcoxon test, as displayed in Figure 2C. The paired
Wilcoxon test shows that the UBE2C expression in PCa tissues was notably higher than in
the adjacent tissues (p = 0.0002446). These results indicate that UBE2C is associated with
tumorigenesis in PCa (p < 0.001, Figure 2C).

Figure 2. UBE2C is strongly associated with a malignant level of PCa in both TCGA and our cohort.
(A) The expression of UBE2C in PCa was significantly higher than that in normal prostate tissue.
(B) The represented pictures of UBE2C protein expression in the prostatic tissues (magnification
scale 100×) I. IHC score 4 = 100% × 4 II. IHC score 4 = 100% × 4 III. IHC score 0.1 = 10% × 1 IV.
IHC score 0.7 = 70% × 1. (C) The immunohistochemical characteristics of UBE2C expression in PCa
tissues and the adjacent tissues (paired Wilcoxon test, p-value = 0.0002446). (D) In the TCGA cohort,
we observed the highest UBE2C levels in the T4 stage of PCa. (E) The levels of UBE2C also increased
as the Gleason scores increased in PCa. (F) Spearman correlation among clinical characteristics of
PCa patients and UBE2C protein expression. Tumor Site 0 means bilateral, and 1 means unilateral
cancerous cell infiltration. Metastasis denotes whether the metastasis is found in lymph capillaries,
capsula prostatica, seminal vesicle, or nerve. Intensity denotes the detected UBE2C expression on
the microarray, area is the detected area on the microarray, and expression is the multiple of these
two. These results demonstrate that the expression level of UBE2C is strongly associated with PCa
malignancy and UBE2C is likely to be a biomarker for PCa.
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More importantly, in the TCGA cohort, we observed patients with TP53 mutations
have higher UBE2C expression levels (Supplementary Figure S2), and the highest UBE2C
levels were observed in the T4 stage of PCa (Figure 2D). The levels of UBE2C also increased
as the Gleason scores increased in PCa (Figure 2E). Additionally, in our cohort, Spearman’s
rank correlation analysis was conducted to display the relationship between the protein
level of UBE2C in PCa tissues and age, metastasis status, and Gleason score (Table 1).
We found that PCa cell detection at the excision margin is significantly associated with
UBE2C protein expression in the PCa tissues (r = 0.43, p = 0.044). This suggests the clinical
significance of the UBE2C gene concerning surgical treatment. Figure 2F displays the
Spearman correlation among clinical characteristics of PCa patients and UBE2C protein
expression. As seen in Figure 2F, Gleason score (0–12) is the sum of the primary Gleason
score (0–6) and secondary Gleason score (0–6); metastasis denotes whether the metastasis is
found in lymph capillaries, capsula prostatica, seminal vesicle, or nerve; intensity denotes
the detected UBE2C expression signal intensity on the microarray; area is the detected
signal area on the microarray; expression is the multiple of the signal intensity and area.
The statistical results show that the UBE2C protein expression in the cancerous tissues
significantly correlates with the primary Gleason score (r = 0.51, p = 0.008). These results
demonstrate that the expression level of UBE2C is strongly associated with PCa malignancy
and that UBE2C is likely to be a biomarker for PCa, guiding surgery plans.

Table 1. Expression of UBE2C in relation to pathological and clinical variables.

Variables Studied No. of Cases
Cancerous Tissues

r2 p
Paracancerous Tissues

r2 p
Low High Low High

AGE (YEAR-OLD) 0.059 0.403 0.080 0.558
≤65 27 (30%) 19 8 24 3
>65 63 (70%) 30 33 44 19

PRIMARY
GLEASON SCORE 0.268 0.008 −0.061 0.249

≤3 50 (55.7%) 29 21 35 15
>3 40 (44.4%) 20 20 33 7

SECONDARY
GLEASON SCORE 0.102 0.621 0.024 0.534

≤3 45 (50%) 26 19 32 13
>3 45 (50%) 23 22 36 9

EXCISION
MARGIN 0.187 0.044 0.047 0.507

+ 6 (6.7%) 1 5 5 1
- 84 (93.3%) 48 36 63 21

METASTASIS 0.126 0.318 −0.220 0.719
+ 22 (24.4%) 12 10 19 3
- 68 (75.6%) 37 21 49 19

r2: correlation coefficient. The positive r2 means positive correlation, while the negative r2 is indicative of negative
correlation. The closer the absolute value of r2 is to 1, the greater the relativity.

2.3. UBE2C Is an Independent Prognostic Biomarker in PCa

Given the level of UBE2C was found to be remarkably associated with grade and
Gleason score in PCa, we then explored whether UBE2C was a prognostic biomarker for
patients with PCa. Kaplan–Meier curves showed that under the optimal cutoff point, there
was no difference in overall survival between highly expressed UBE2C and low-expressed
UBE2C groups, while patients with low UBE2C levels had a significant recurrence-free
survival benefit as compared with those with high UBE2C expression (Figure 3A,B). Fur-
thermore, a univariable Cox proportion hazard regression model also identified UBE2C as a
prognostic biomarker for PCa patients. Cox univariate regression analysis suggests that the
pathological T stage, UBE2C expression, and Gleason Score were correlation factors of PCa
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prognosis (Table 2). The Cox multivariate regression analysis suggests pathological T stage
and UBE2C expression were independent correlation factors of PCa prognosis (Table 2). In
multivariate analysis, the Cox hazard ratio shows that at a given instant in time, someone
with high UBE2C protein expression is 2.367 times as likely to die as someone with low
UBE2C protein expression (p < 0.001, 95% CI: (1.138,4.923)) in the TCGA-PRAD database.
Additionally, the predictive prognosis role of UBE2C on PCa recurrence-free survival has
been further confirmed in two other PCa cohorts (Figure 3C,D).

Figure 3. UBE2C is an independent prognostic biomarker in PCa. (A) No difference in overall
survival between highly expressed UBE2C and low-expressed UBE2C groups. (B) Patients with
low UBE2C levels had a significant recurrence-free (RFS) survival benefit compared to those with
high UBE2C expression. (C) RFS confirmed in the MSKCC cohort. (D) RFS confirmed in GSE116918
cohort.

Table 2. Summary of univariate and multivariate analysis for predicting PSA recurrence.

Univariate Multivariate

Variables HR (95%CI) p-Value HR (95%CI) p-Value

Age (Continuous) 1.037 (0.990–1.087) 0.127 1.017 (0.971–1.066) 0.47
Pathological T stage (ref: ≤PT2c) 3.945 (2.076–7.498) <0.001 2.635 (1.321–5.255) 0.006

Gleason Score (ref: ≤8) 2.971 (1.618–5.456) <0.001 1.468 (0.707–3.050) 0.303
UBE2C (ref: <2.86) 3.29 (1.83–5.94) <0.001 2.367 (1.138–4.923) 0.021
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3. Discussion

PCa is a high long-term survival disease when it is localized. More than any other
cancer, PCa screening with the prostate-specific antigen (PSA) test increases the risk a
man will have of facing a diagnosis of PCa [9]. However, metastatic PCa remains largely
incurable even after intensive multimodal therapy [10]. It is quite meaningful to detect new
molecular biomarkers highly related to the pathogenesis and metastasis of PCa with high
specificity and sensitivity.

Our study explored hub genes in PCa progression and invasion, identified 17 distinct
gene modules, and showed that the C2 cluster genes in the purple module were enriched in
the cell cycle, P53 signaling pathway, and DNA binding, bending functions, and pathways.
After screening, we found that the UBE2C gene with high module membership in the purple
module has higher gene significance scores for Gleason score and pathologic T stage.

UBE2C, as a crucial member of the ubiquitin-conjugating enzyme family (E2), plays a
pivotal role in the ubiquitin–proteasome proteolytic (UPP) pathway. Disorders in the UPP
pathway originate from the abnormal degradation of proteins encoded by some oncogenes
and tumor suppressor genes, subsequently leading to the abnormal accumulation of these
proteins in the body. Therefore, the UPP system is closely related to the occurrence and
progression of cancers [11]. Emerging evidence has suggested that UBE2C was highly
expressed in various tumors and acted as an oncogene, including ovarian cancer, non-
small-cell lung cancer, cervical cancer, head and neck squamous cell carcinoma, etc. [12–15].
However, the exact function and molecular basis of UBE2C in PCa have remained elusive.
Few studies have revealed the mechanisms of UBE2C in PCa. Our previous study validated
the role of UBE2C in PCa progression in the human PCa cell lines LNCaP and PC-3. PCa
cell proliferation rates were significantly slower than those of the control groups after
UBE2C knockdown. Meanwhile, we observed that significantly fewer cells invaded the
lower surface of the membrane through Matrigel after UBE2C knockdown. These results
indicated that UBE2C was the critical factor in the proliferation and invasion of PCa
cells [16]. Wang et al. demonstrated that UBE2C is a G1/S cell-cycle inhibitor-779 (CCI-779),
an mTOR inhibitor, and inhibits UBE2C mRNA and protein expression in AR-positive
CRPC cell models abl and C4-2B, in addition to its ability to block cell-cycle G1/S transition.
Liu et al.’s study showed UBE2C inhibited the growth of melanoma cells via deactivating
ERK/Akt signaling pathways and blocked G2/M transition through the downregulation
of both the level and the activity of the mitosis-promoting factor (MPF), triggering the
apoptosis of melanoma cells [8,17].

In this study, we continued to validate the public database and our cohort and found
that UBE2C was strongly associated with malignant levels of PCa. Additionally, patients
in the C2 cluster have more TP53 mutations. Somatic TP53 mutations occur in almost
every type of cancer at rates from 38% to 50% in ovarian, esophageal, colorectal, head
and neck, larynx, and lung cancers to about 5% in primary leukemia sarcoma, testicular
cancer, malignant melanoma, and cervical cancer [18]. There was a significant association
between the number of inactivated alleles and mRNA levels of PTEN, TP53, CDKN1B, RB1,
and CHD1 [19]. In metastatic PCa patients, the TP53, PTEN, and RB1 tumor suppressor
genes (TSGs) are recurrently altered in treatment-resistant PCa. The cooperative loss of
two or more TSGs may drive more aggressive disease [20]. These studies may address
why patients with UBE2C overexpression had a worse prognosis associated with TP53
mutations.

Furthermore, the Cox hazard ratio shows that at a given instant in time, someone with
high UBE2C protein expression is 3.29 times as likely to die as someone with low UBE2C
protein expression in the TCGA-PRAD database. Additionally, the predictive prognosis
role of UBE2C in PCa recurrence-free survival has been further confirmed in PCa.

However, there are some limitations to this study. Firstly, we measured UBE2C
expression but did not test its related gene expressions such as AR-V7 or TP53, which are
important in normal prostate homeostasis [21]. Secondly, we did not include the benign
prostate hyperplasia (BPH) tissue as UBE2C was also reported to be expressed in it and
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to be a critical factor in pathogenesis [22]. Lastly, due to the limited sample size, other
variations by race, ethnicity, and geography need to be evaluated as they may have a
different genetic map of PCa [23,24]. The underlying mechanisms deserve further study.

4. Materials and Methods
4.1. Weighted Correlation Network Analysis

WGCNA is an algorithm used in gene co-expression network identification by high-
throughput expression profile mRNAs with different traits [25]: 1. By calculating the
correlations of the top 8269 variation genes (the top 8269 genes with the largest variance
between samples), a matrix of similarity was constructed. 2. By using the pickSoftThreshold
function in the R WGCNA package, an appropriate soft-thresholding power β was selected.
Then, this soft-thresholding power was used to increase the co-expression similarity and
achieve scale-free topology. 3. The adjacency was transformed into a topological overlap
matrix (TOM) using TOM similarity. 4. The corresponding dissimilarity (dissTOM) was
also calculated. 5. By using dynamic tree cutting methods, co-expression gene modules
were identified with the following major parameters: (1) maxBlockSize of 20,000 (2) min-
ModuleSize of 30 and (3) deepSplit of two. The module eigengene (M.E.), which was the
first principal component (P.C.) of each module’s gene expression matrix, was obtained
by WGCNA to represent the expression profiles of module genes [26]. Highly similar
modules with a height of M.E. in the clustering lower than 0.25 were merged. A clustering
dendrogram was used to display the results of dynamic tree cutting and merging.

4.2. Hub Gene Identification

In WGCNA analysis for each gene expression profile, the gene significance (G.S.)
was calculated as the absolute value of the correlation between the expression profile and
each external trait (Gleason score, biochemical recurrence, and pathologic T). The module
membership (MM) was defined as the correlation between the expression profile and each
module eigengene. Module hub genes are highly connected intra-modular genes with the
highest MM scores to the respective module [27]. The MM of each gene was calculated by
WGCNA function signedKME, which correlates the expression profile of a gene with the
M.E. of a module, so it quantifies how close a gene is to a given module. By calculating
G.S. and MM values, highly significant genes for interesting traits and those that have high
M.M.s in the interested module can be identified as hub genes. Finding hub genes is widely
used in WGCNA analysis [28–30]. We also used the top 600 highly connected gene pairs
(connect weight > 0.297) to construct a gene–gene interaction network. The network was
displayed using Cytoscape software (3.7.0).

We followed data processing steps as outlined in the Horvath Lab UCLA proto-
col https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/
Tutorials/ (accessed on 20 March 2020).

4.3. Non-Negative Matrix Factorization

In the TCGA-PRAD cohort, transcriptome profiling data were virtually microdissected
by employing the unsupervised non-negative matrix factorization (NMF) method as pre-
viously described [31] through the GenePattern module NMF [11]. The NMF algorithm,
which is suitable for decomposing biological data, can factorize the gene expression matrix
V (n genes × m samples) into two matrices: a gene factor matrix W of (n genes × k factors)
and a sample factor matrix H of (m samples × k factors) [32]. Then, three distinct subtypes
were dichotomized by the GenePattern module NMFConsensus using the gene expression
of the genes in the WGCNA purple module.

4.4. Patient Cohort

The study sample, consisting of 90 patients with PCa, was obtained from a tissue spec-
imen bank within Shanghai TUFEI Biotech Co., Ltd. All the patients were pathologically
diagnosed with PCa and had been treated with prostatic surgery. Each study specimen was

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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provided with cancerous tissue and adjacent tissue, which was 1.5 cm distanced from the
cancerous margin. The clinical characteristics of 90 prostate patients are shown in Table 1.

4.5. Tissue Chip Production

Shanghai TUFEI Biotech Co., Ltd. (Shanghai, China) produced the tissue chip. Nine
slices were collected for each specimen (three cancerous and three adjacent). Each was
cut into 5 × 15 × 15 mm. Routine pathological hematoxylin–eosin (HE) staining was
conducted on the wax blocks. Two pathologists performed cross-check diagnosis, and the
typical pathological results were tagged on HE slides. A tissue chip production apparatus
(Beecher Instruments, Inc., Tartu, Estonia) in the wax block was used to punch holes 1.5 mm
in diameter. According to the tag position on the HE slices, the corresponding tissue was
obtained from donor tissue wax blocks. Then, the target tissue chip was put into the
array aperture of receptor wax blocks using a constant thermometer. Finally, the tissue
chip of PCa tissue and matched adjacent tissue containing 180 microarray block points
(HProA180PG04) was manufactured.

4.6. Immunohistochemistry Staining

The immunohistochemical experiment was performed using a two-step method. We
put the chip into an automatic stain machine to remove the wax and rinsed it with nuclease-
free water. We used high-temperature, high-pressure antigen retrieval, blocked the chip
with an endogenous superoxide enzyme blocker for 10 min, and rinsed it with PBS. The
first UBE2C antibody (1:500, 14682-1-AP, Proteintech Co., Ltd., Sankt Leon-Rot, Germany)
was added to the chip, and the chip was placed overnight under 4 ◦C. Then, the second
antibody EnVision™+/HRP (rabbit anti-rabbit immunoglobulin (DAKO) labeled by HRP)
was added to the chip for 30 min, which was then rinsed with PBS 3 times, followed by
DAB staining (DAKO) for 5 min. Then, the chip was rinsed with purified water, re-stained
with hematoxylin, and put into an automatic dehydration machine, transparentized, and
mounted.

4.7. Evaluation of Immunohistochemical Staining

Quantitative judgment: (1) Scoring methods of the staining intensity: at the low
power field, we evaluated the tissues entirely as weakly positive, medium positive, and
strongly positive; the staining color of weakly positive was defined to be light yellow
(1 or +), medium positive as brownish-yellow (2 or ++), and strongly positive as brown
(3 or +++). (2) Scoring methods of the positive staining rate: we selected three different
staining intensity areas under the high-power lens and counted positive cells’ percentage
among 100 cells for each area (X1%, X2%, and X3%) and calculated the average of the
positive cells’ percentages as the overall positive staining rate.

We calculated tissue staining scores by multiplying the staining intensity score and
the positive staining rate score.

4.8. Statistical Analysis

The expression of UBE2C genes in PCa and adjacent cancer tissues was compared
using a paired Wilcoxon test. The association between the clinical characteristics of PCa
patients and UBE2C protein expression was compared using Spearman’s correlation test.
Based on the median of the UBE2C protein expression, we divided patients into high and
low UBE2C expressions. The significance between the characteristic clinical parameters of
PCa and UBE2C protein expression was tested using logistic regression with the following
independent variables: age, primary and secondary Gleason Score, cancer cells detected on
the excision margin (y/n), and metastasis. Log-rank test Kaplan–Meier curve, smooth H.R.
curves, and Cox regression for survival analysis were performed using R package survival
and smoothHR. The survival of patients belonging to different groups was compared using
the Kaplan–Meier method, with the p-value determined by the log-rank (Mantel–Cox) test.
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A p-value less than 0.05 (two-tailed) was considered statistically significant. All statistical
tests were performed using R software 3.6.1.

5. Conclusions

UBE2C is potentially a biomarker for PCa, and the overexpression of UBE2C is associ-
ated with worsened prognosis and TP53 mutations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232213873/s1.
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