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The ability to perform muscle contractions is one of the most important and distinctive

features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones,

corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding

muscle evolution. Here, we review current knowledge on muscle function, diversity,

development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in

various activities, such as feeding, escape, locomotion and defense, in close association

with the nervous system. This variety is reflected in the large diversity of muscle

organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most

common type, and is inferred to be the ancestral muscle type for Cnidaria, while

striated muscle fibers and non-epithelial myocytes would have been convergently

acquired within Cnidaria. Current knowledge of cnidarian muscle development and its

regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD

have yet to be found in cnidarian genomes, striated muscle formation potentially involves

well-conserved myogenic genes, such as twist and mef2. Although satellite cells have

yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber

repolarization) in a regenerative context and its potential role during regeneration has

started to be addressed in a few cnidarian systems. The development of novel tools

to study those organisms has created new opportunities to investigate in depth the

development and regeneration of cnidarian muscle cells and how they contribute to the

regenerative process.
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INTRODUCTION

Muscles, tissues specialized for contraction, are an essential component of the eumetazoan (all
animals except sponges and placozoans) body. They are involved in various functions of the body
and are well characterized in various vertebrate and main non-vertebrate models (reviewed in
Schmidt-Rhaesa, 2007; Bryson-Richardson and Currie, 2008; Bentzinger et al., 2012; Andrikou
and Arnone, 2015; Almada and Wagers, 2016). In bilaterians, muscles are rich in myofilaments
(organized arrays composed principally of actin and myosin II) and present two basic types of cells:
true muscle cells (myocytes) and myoepithelial cells. Myocytes are individual muscle cells, usually
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not anchored to the extracellular matrix (ECM), which during
embryogenesis derive mainly (but not exclusively) from the
mesoderm layer. In contrast, myoepithelial cells, which have
a variety of embryological origins, are anchored to the ECM
and are fully integrated into an epithelial tissue layer. Both
of these muscle cell-types can be further defined as either
striated or smooth, depending on the internal organization of the
myofilaments. Visible striations represent repeating functional
units of the muscle (the sarcomeres), which result from aligned
rows of alternating antiparallel actin and myosin myofilaments,
spaced by their supporting Z-discs. Conversely, in smooth
muscles, the myofilaments are organized irregularly.

The diversity of muscle organizations is best characterized
in mammals. There are four muscular organizations: two are
striated, named skeletal and cardiac muscles; the other two are
the smooth and myoepithelial muscles (Alberts et al., 2015).
In skeletal muscles, myocytes fuse to form multinucleated
syncytia called muscle fibers or myotubes. In contrast, cardiac
and smooth muscles are composed of mononucleated muscle
cells for which mechanical, chemical, and electrical coupling
is possible via complex junctions (adherens and gap), forming
the typical “intercalated disc” structures of cardiac muscles.
Myoepithelial cells in mammals are generally found in glandular
epithelia such as the mammary or salivary glands and display

FIGURE 1 | Bilaterian and cnidarian phyolgenies. (A) Metazoan phylogeny, highlighting the pivotal position of cnidarians as the sister group to extant bilaterian

animals. The position of Ctenophora and Porifera (sponges) outside the Bilateria remains controversial (as indicated by dashed lines). (B) Cnidarian phylogeny showing

the relationships between the main lineages based on recently published data (Chang et al., 2015; Zapata et al., 2015).

a double identity, smooth muscle and epithelial cell (Petersen
and van Deurs, 1989). In non-vertebrate bilaterians, striated
and smooth myocytes as well as myoepithelial muscles are also
present (reviewed in Schmidt-Rhaesa, 2007). Smooth and striated
muscle cells can either be mono- or multinucleated, as described
for example in Drosophila (Susic-Jung et al., 2012). Although
myogenesis, muscle physiology and muscle regeneration have
been extensively described and studied in bilaterians (reviewed
in Bryson-Richardson and Currie, 2008; Bentzinger et al., 2012;
Andrikou and Arnone, 2015; Almada and Wagers, 2016), less is
known about their evolutionary origin(s) (Dayraud et al., 2012;
Steinmetz et al., 2012; Brunet et al., 2016) as well as function,
development and plasticity of muscles in non-bilaterian animals.

A group of organisms that has attracted a long standing
interest in this research area is the Cnidaria (Chapman et al.,
1962; Quaglia, 1981; Seipel and Schmid, 2005, 2006). This
group of animals, as the sister group to the bilaterian clade
(Figure 1A, Chang et al., 2015; Zapata et al., 2015), holds a
key phylogenetic position for understanding muscle evolution.
The two main groups of the phylum Cnidaria are Anthozoa
and Medusozoa (Figure 1B). Anthozoa (sea anemones, corals)
are mostly sessile and are represented by individual or colony-
forming polyps arising from the metamorphosis of a planula
larva. Medusozoa (jellyfish, hydroids) form in some species a
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free-swimming medusa (jellyfish), in addition to the polyp and
planula stages. Beside anthozoans and medusozoans, a group of
parasites, myxozoans, have recently been formally identified as
cnidarians on the basis of molecular phylogenies (Figure 1B)
(Chang et al., 2015) and presence of cnidarian specific genes
(Holland et al., 2011; Shpirer et al., 2014). They have been
proposed to be the sister group to another cnidarian parasitic
species, Polypodium hydriforme (Chang et al., 2015), forming the
clade Endocnidozoa (Zrzavý and Hypša, 2003).

A handful of cnidarians has emerged in the past decades
as experimental models in molecular, cell and developmental
biology, providing insights into the evolution of developmental
programs, including regeneration, stem cell biology and the
evolution of key bilaterian traits (Kraus et al., 2007, 2016;
Momose and Houliston, 2007; Amiel et al., 2009; Chera et al.,
2009; Boehm et al., 2012; Layden et al., 2012; Röttinger
et al., 2012; Sinigaglia et al., 2013; Leclère and Rentzsch,
2014; Abrams et al., 2015; Bradshaw et al., 2015; Helm
et al., 2015; reviewed in Technau and Steele, 2011; Layden
et al., 2016; Leclère et al., 2016; Rentzsch and Technau,
2016). The main, but not exclusive, cnidarian models are the
medusozoan hydrozoans Hydra, Hydractinia, Podocoryna and
Clytia (reviewed in Houliston et al., 2010; Galliot, 2012; Plickert
et al., 2012; Gahan et al., 2016; Leclère et al., 2016) as well
as the anthozoans Nematostella vectensis (reviewed in Layden
et al., 2016; Rentzsch and Technau, 2016) and the coral Acropora

(Shinzato et al., 2011; Hayward et al., 2015; Okubo et al.,
2016).

Cnidarians display a broad variety of muscle organizations
performing various functions. Unlike bilaterians, the main
muscle cell type of cnidarians is the epitheliomuscular cell,
a specialized epithelial cell containing smooth myofilaments,
and which constitutes the principal building block of the
two body layers (ectodermal and endodermal epithelia, also
referred as epidermis and gastrodermis for both polyps and
medusae, e.g., Brusca and Brusca, 2003; Schmidt-Rhaesa, 2007).
The terms “epitheliomuscular cell” and “myoepithelial cell” are
often used interchangeably (e.g., Brusca and Brusca, 2003).
Some authors, however, apply morphology-based definitions:
“epitheliomuscular cells” are exposed to both sides of the
epithelium, while “myoepithelial cells” have reduced apical
ends and are not exposed to the apical surface (e.g., Ruppert
et al., 2004). Following most of the literature, here we simply
define those terms taxonomically, using “epitheliomuscular cells”
and “myoepithelial cells” when referring to the myofilaments-
containing epithelial cells of, respectively, cnidarians and
bilaterians. Other muscle types are also found in Cnidaria, such
as the striated muscle of the medusa required for swimming.
The complex life cycles and high regenerative capabilities
found in Cnidaria involve a remarkable plasticity of muscle
systems, which can take on different configurations during the
life cycle of a given species (Figure 2). Cnidaria display both

FIGURE 2 | Cnidarian life cycles. The life cycles of (A) the solitary fresh water polyp Hydra, (B) the marine jellyfish Clytia (both hydrozoans) and (C) the anthozoan

polyp Nematostella. At the lower part of the panels are indicated their asexual reproductive potentials (budding, physal pinching) that give rise to new (A) Hydra or

(C) Nematostella polyps, or (B) juvenile Clytia medusae, respectively. Under harsh environmental conditions, gonads develop and sexual reproduction in (A) Hydra can

occur. Depending on the species, Hydra can be gonochoric or hermaphroditic (represented here). After fertilization, embryonic development occurs within a solid

capsule that, after hatching, frees a juvenile Hydra. (B) Clytia and (C) Nematostella are gonochoric and oocytes and sperm are released into the water column. After

fertilization, embryonic development leads to the formation of swimming planula larvae that after metamorphosis develop into (B) a polyp colony for Clytia or (C) a

solitary juvenile polyp for Nematostella.
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FIGURE 3 | Cnidarian muscle functions. (A) Planula larva crawling, (B), Hydra polyp somersaulting, (C) jellyfish pulsation, (D) guided tentacle retraction of the

jellyfish to bring the food toward the mouth, (E) digestive peristaltic movements of the polyp (red rings along the body column indicate circumferential muscle

contractions), (F) protective retraction of the polyp in response to predation pressure.

similarities and differences to its sister group, the bilaterians,
with respect to muscle organization and cellular constituents.
Additional data from cnidarian muscles can therefore provide
important insights into their ontogeny, function and plasticity,
in particular within an evolutionary framework. In this
review, we discuss muscle diversity, function, development
and regeneration in cnidarians. We conclude by proposing
that cnidarians, in addition to increasing our understanding
of metazoan muscle evolution, may also provide new insights
into the development/regeneration and (re-) patterning of
epitheliomuscular/myoepithelial cells, as well as into the role that
muscle fibers play in the regeneration process.

CNIDARIAN MUSCLE FUNCTIONS

Cnidarian muscles play crucial roles in locomotion, defense
from predators (e.g., contracting and burying in crevices/sand),
feeding and digestion through continuous peristaltic movements
(Shimizu et al., 2004, Figure 3). In the following section we briefly
review the described functions of muscles at each stage of the
cnidarian life cycle and the known connections to the nervous
system.

Most of cnidarian muscle cells are epitheliomuscular and

one distinctive feature of those cells compared to muscles cells

of other animal groups is their multifunctionality. In Hydra
for instance, endodermal epitheliomuscular cells participate
in nutrient absorption during the digestion process (Buzgariu
et al., 2015). Epitheliomuscular cells in the ectoderm of
the foot produce vesicles containing an adhesive substance
responsible for attachment to the substrate, while specialized
epitheliomuscular ectodermal cells, the “battery cells,” function
as supporting cells for the nematocytes (Hufnagel et al., 1985;
Campbell, 1987). In many anthozoans, epitheliomuscular
cells of the endodermal body wall host a large population
of dinoflagellate symbionts, and take part in the digestive
process, mixing the content of the gastrovascular cavity
via beating of apical cilia and performing intracellular
digestion (Hyman, 1940). Multifunctionality is thought to
be an ancestral characteristic of epitheliomuscular/myoepithelial
cells (Arendt, 2008). The inherent multifunctional potential
of epitheliomuscular cells has been recently demonstrated in
Hydra, whose epitheliomuscular cells displayed a remarkable
functional plasticity (Wenger et al., 2016). The authors
showed that in strains lacking nerve cells, the expression of
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several neurogenesis- and neurotransmission-specific genes
was upregulated in epitheliomuscular cells, thus suggesting
they could compensate for the loss of the nervous system by
extending their multifunctionality.

Muscle Functions at the Planula Stage
At the planula stage, movement is mostly mediated by cilia
beating of the ectodermal cells. However, in a number of species,
bending along the oral-aboral axis to modulate the swimming
direction is muscle dependent, such as in the hydrozoan Clava
multicornis, in which muscles allow bending of the larvae for
efficient phototaxis (Figure 3A; Piraino et al., 2011). How this
coordinated behavior is regulated by the nervous system of the
planula larva is not yet known.

Muscle Functions at the Polyp Stage
At the polyp stage, muscle contraction drives a wide variety of
behavior: rhythmic contraction, mouth opening (Passano and
McCullough, 1963; Carter et al., 2016), prey capture and handling
(Miglietta and Tommasa, 2000), contracting or extending
tentacle in order to regulate oxygen, waste and symbiont
exposure (Bell et al., 2006), defense, escape (Figure 3F) and
protection by retraction (Miglietta and Tommasa, 2000; Swain
et al., 2015), peristaltic movements allowing fluid circulation
within the body cavity and facilitating digestion (Figure 3E;
Anctil et al., 2005), and locomotion. Hydra is notably able to
move via a complex array of movements, including rare instances
of somersaulting (alternative attachment and release of the foot
and tentacles combined with contraction and extension of the
body column, Figure 3B) (Trembley, 1744; Ewer and Fox, 1947).
Many sea anemones (Actiniaria) are able to perform creeping
using the muscles of their pedal disk (McClendon, 1906), their
tentacles (Ross and Sutton, 1961) or to burrow using peristaltic
movements (Williams, 2003). Some sea anemones are able to
swim through sharp flexions of the column (Yentsch and Pierce,
1955; Ross and Sutton, 1967) or synchronous lashing of the
tentacles (Josephson and March, 1966; Robson, 1966).

Polyps contract and extend efficiently even though their
muscles are not organized in pairs of antagonists as in many
bilaterian animals. In many cases, extension and retraction
movements are performed by perpendicularly oriented muscles,
as for example in the Hydra polyps: longitudinal ectodermal
muscles are involved in contraction while endodermal circular
muscles are involved in polyp extension.

All the above mentioned behaviors are regulated by the
nervous system (reviewed in Galliot et al., 2009). Some involve
rhythmic contraction of the body column. InHydra, a pacemaker
system regulates this process (Passano and McCullough, 1963,
1964; Kass-Simon et al., 2003; Ruggieri et al., 2004). It is
constituted by a small subset of nerve cells connected by gap
junctions located near the foot, and capable of synchronous
firing (Takaku et al., 2014). Comparable pacemaker systems
have been described in other cnidarian polyps, such as the
hydrozoan Tubularia (Josephson and Uhrich, 1969; de Kruijf,
1977) and the swimming anthozoan sea anemone Stomphia
(Robson, 1961, 1963). Chemical synapses between nerve cells
and epitheliomuscular cells have been shown to be widespread in

Cnidaria (Westfall et al., 1971; Westfall, 1973). They presumably
contain neuropeptides and at least several components of the
bilaterian neuromuscular junctions (Chapman et al., 2010).

Muscle Functions at the Medusa Stage
Medusae inhabit the water column, and move by means of
passive drifting in the water currents, combined with active
swimming. Muscles are not only used for propulsion, but also
for many other functions such as catching prey, bringing food
to the mouth (often showing a great amount of coordination
with the movements of the bell and of the manubrium—stalk-
like structure bearing the mouth – Figure 3D), digestion and
dispersion of gametes (see for e.g., Passano, 1973; Bourmaud
and Gravier-Bonnet, 2004). Rhythmic contraction and extension
of the medusae bell are mediated differently; contraction of the
medusa bell is the result of contraction of the striated muscle of
the subumbrella, while viscoelastic (Alexander, 1964) and elastic
properties (Demont and Gosline, 1988) of the medusa mesoglea
(the thick layer of extracellular matrix located between the two
epithelia) counteract muscle contraction and allow the bell to
regain its original shape at each contraction cycle (Figure 3C).

Swimming efficiency has been studied in several species,
and has been shown to depend on several parameters affecting
hydrodynamics, such as the overall shape of the medusa, the
disposition of the muscles in the subumbrella, the flexibility of
the bell margin and the shape of the velum (bi-layered epithelium
running around the rim of the bell, present in hydrozoan
medusae, and reducing the size of the bell cavity opening) (Dabiri
et al., 2005, 2010; Colin et al., 2012). Rhythmic contractions of the
bell has been shown to be a very efficient process for underwater
propulsion (Gemmell et al., 2013). A recent study recreated this
configuration artificially using chemically dissociated rat heart
muscle laid on ephyra (juvenile scyphozoan medusa) shaped
silicone polymers (Nawroth et al., 2012). This demonstrated
that the rhythmic contraction of the rat muscle cells activated
by a periodic electrical stimulation, coupled to the elasticity of
the polymer, is sufficient to generate efficient propulsion of the
artificial jellyfish.

Even if medusae are generally considered to be “simple”
organisms, coordination of muscle-based locomotion and
integration of spatial information can be quite complex, at
least in some species. For instance, several cubomedusae display
courtship behaviors (Lewis and Long, 2005), perform obstacle
avoidance (Garm et al., 2007) or even use terrestrial visual cues
for navigation through mangroves forests (Garm et al., 2011).
Similarly, the scyphomedusa Rhizostoma pulmo has recently been
shown to actively swim countercurrent in response to current
drift (Fossette et al., 2015). Directionality and propulsion can also
result from the coordination of multiple individuals, as seen for
instance in colonial siphonophores. In Nanomia bijuga, clonal
medusoid individuals, termed nectophores, propel the colony,
and developmental differences between them generate a division
of labor that ultimately modulates locomotion (Costello et al.,
2015).

Jellyfish contractions are regulated by a complex nervous
system, including neural nets and concentrations of nerve cells
at the bell margin called the nerve rings (reviewed in Satterlie,
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2011). Pacemaker neurons regulating bell margin contractions
have been described in cubozoan, scyphozoan and hydrozoan
jellyfish (reviewed in Satterlie and Nolen, 2001; Mackie, 2004;
Katsuki and Greenspan, 2013). How the photoreceptor systems
control the swim pacemaker has started to be addressed in
cubomedusae (Garm and Mori, 2009; Stöckl et al., 2011; Bielecki
et al., 2013). In hydrozoan medusae, the contraction of striated
muscle in the subumbrella is notably regulated by gap junctions,
which electrically couple the muscle cells (Satterlie, 2008). This
process has yet not been reported in other cnidarian groups.
Finally, anatomical specialization of the nerve nets can allow
for a fine tuning of movements: for example, in Aglantha, a
complex and well-characterized neuromuscular system allows
the jellyfish to swim either slowly or fast, thanks to different
neural circuitries, modulating the escape response (reviewed in
Mackie, 2004).

CNIDARIAN MUSCLE TYPES

The main, and in many species exclusive, muscle cell type
in cnidarians is the epitheliomuscular cell. These cells have a
typical polarized epithelial morphology, including apical cilia,
with the specificity that myofibrils project from the basal side,
aligning within the extracellular matrix of the tissue to provide
its contractile property. In a few cnidarians, smooth muscles are
found totally embedded in the mesoglea, having lost contact with
the epithelia (see below for more details). Interestingly though,
in most of the free-swimming medusae, muscles are composed of
striated epitheliomusclar cells. Despite the few muscle cell types
found in cnidarians, there is a wide diversity of muscle systems
in this phylum. In this section we describe briefly the diversity of
muscle organization and muscle cell types described in the major
groups of cnidarians.

Muscle Systems in Hydrozoans
Most ectodermal and endodermal epithelial cells in hydrozoan
planulae, polyps, and medusae are epitheliomuscular (West,
1978). Much of the available information about hydrozoan
epitheliomuscular cells comes from anatomical and physiological
studies on Hydra polyps. Hydra ectodermal and endodermal
epitheliomuscular cells display, respectively, longitudinally and
circularly oriented processes, called myonemes (Figures 4Aa,a’;
Mueller, 1950). Ectodermal epitheliomuscular cells of Hydra are
large columnar or cuboidal cells bearing two long myonemes
oriented along the oral-aboral axis (David, 1973). These two
myonemes of roughly cylindrical shape, composed of irregularly
arranged myofilaments, are found in each ectodermal cell, as
visualized by electron microscopy (West, 1978) or recently by
LifeAct-GFP transgenic polyps (Seybold et al., 2016). Instead,
endodermal epitheliomuscular cells are tall and columnar, have
short muscle processes at the basal end and several flagella at
the apical end. Their myonemes are oriented perpendicularly
and have a structure similar to those found in the ectoderm,
though more numerous (David, 1973; Seybold et al., 2016).
Epitheliomuscular cells of the body column (both in the
endoderm and ectoderm) divide continuously, thus displacing

cells toward the oral (mouth) and aboral (foot) extremities where
they are ultimately eliminated (Campbell, 1967).

Each epitheliomuscular cell process of a Hydra polyp is
in contact with the basal processes of several adjacent cells,
thus forming a continuous muscle fiber network spanning the
entire body (Mueller, 1950). It should be noted here that the
term “muscle fiber” is generally associated to the multinucleated
syncytia of skeletal muscles; following most of the literature on
cnidarian muscle, we will use henceforth this term to indicate
condensed actin filaments constituting the contractile elements
of cnidarian muscles. Adjacent epitheliomuscular cells in Hydra
are connected by septate and gap junctions; additionally, where
the myoneme-containing regions of two adjacent cells come into
contact, they form a characteristic and unique type of junction,
which structurally resembles the intercalated discs found in
vertebrate cardiac muscles: on the inner surface of each cell
membrane is an irregular band of dense material through which
the filaments of the myoneme itself pass (Haynes et al., 1968).

As a general rule, the muscle fibers of hydrozoan planula
larvae and polyps are circularly arranged in the endoderm and
longitudinally in the ectoderm (Hyman, 1940; Bouillon, 1993).
Common parts of the polyp colony also harbor epitheliomuscular
cells, such as the endodermal epitheliomuscular cells of the
stolon in Podocoryna carnea (Buss et al., 2013). However, not
all hydrozoan epithelial cells are epitheliomuscular. For instance,
endodermal epithelial cells of the tentacles of many hydrozoan
species are arranged in only one row of turgescent cells and do
not contain myofilaments (Bouillon, 1993).

The main muscle of the hydrozoan medusae is the circular
striated muscle found in the subumbrella (the inner layer of the
bell—Figures 4Ab,b’), responsible for the rhythmic contraction
of the bell, and composed of epitheliomuscular cells. As for
smooth epithelial muscles, basally located striated myofilaments
are connected between neighboring cells, forming a continuous
circular muscle. Each epitheliomuscular cell contains about
30–50 sarcomeres, as for instance in the hydrozoan medusae
Aglantha digitale (Singla, 1978). Sarcomeres in a relaxed state are
approximately 1 µm long. As described in various hydrozoan
species (e.g., Keough and Summers, 1976; Boelsterli, 1977; Singla,
1978), they are of very similar structure compared to those
of vertebrate striated muscles, being separated by Z-discs and
composed of ordered arrays of thick and thin filament areas
forming denser A-bands and rarer I-bands. As in vertebrates,
A-bands contain a central H-band and a M-line. An interesting
deviation can be observed in Obelia medusae (Chapman, 1968),
probably linked to their unusually flat shape. In these species,
the striated myofilaments of the subumbrella are not oriented
circularly but distributed in two perpendicularly oriented sets,
generating a grid-like pattern. In addition to the subumbrella,
in most hydrozoan medusae striated epitheliomuscular cells also
constitute a contractile ring on the inner layer of the velum.

In hydrozoan medusae, while swimming is generally
performed by the circular striated muscles, other behaviors are
mostly mediated by the smooth muscles. Hydrozoan medusae
are therefore rich in smooth epitheliomuscular cells (Bouillon,
1993) such as (i) the longitudinal muscle fibers of the tentacle
ectoderm, (ii) the outer layer of the velum, and (iii) the radially
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FIGURE 4 | Cnidarian muscle diversity. (A) Muscle networks of (a,a’) Hydra magnipapillata, (b,b’) Clytia hemisphaerica jellyfish and (c,c’) Nematostella vectensis.

The upper panels show the muscle network of entire organisms and the lower panel magnification of certain body regions to highlight the orientation and fine structure

of the muscles. (A) Living Lifeact:GFP transgene (Seybold et al., 2016) labeling actin filaments, (c) fixed MyHC1::mCherry (Renfer et al., 2010) transgene labeling the

actin fibers of the retractor muscles, co-labeled with phalloidin. All other panels (a’,b,b’,c’) are phalloidin stainings. Image labels are as follows: (*) mouth, (ten)

tentacles, (bc) body column, (ft) foot, (be) bell, (mb) manubrium, (pha) pharynx, (m) mesentery, (ph) physa, (rm) retractor muscle, (pm) parietal muscle, (ecmy)

ectodermal myonemes, (enmy) endodermal myonemes, (stmf) striated muscle fibers, (smmf) smooth-like muscle fibers, (tmf) transversal muscle fibers, (lmf)

loongitudinal muscle fibers. (a,a’) Image courtesy of Aufschnaiter and Hobmayer, (b,b’) images from Kraus et al. (2015) and (c,c’) Image from Amiel et al. (2015) as

well as courtesy of Amiel. (B) Epitheliomuscular cell type diversity in Cnidaria. After Krasińska (1914) and Doumenc (1979) in Seipel and Schmid (2006), and Jahnel

et al. (2014).

oriented smooth muscle fibers of the subumbrella (the underside
of the bell) that run from the manubrium to the bell margin
and cover the striated muscle layer. In a few species, additional
epitheliomuscular cells have been described that form (iv) the
ring muscle fibers of the endodermal (gastrovascular) canal
system and (v) the radiating muscle fibers of the exumbrella (the
outer layer of the bell).

The anatomical details of medusa muscle systems differ
greatly among species, an interesting case for evo-devo studies,
still to be explored. Most strikingly, the organization of the
smooth muscles covering the striated muscle of the subumbrella,
responsible for the bending of the medusa, shows great variation:
in many species, such as Clytia hemisphaerica, this layer covers
the entire subumbrella, while in others, such as Podocoryna

carnea, these radial smooth muscles are organized in four
bundles, each covering one of the four radial canals (Seipel and
Schmid, 2006).

Muscle Systems in Other Medusozoans
One of the most striking feature of the muscle systems of
Scyphozoa, Cubozoa, and Staurozoa compared to Hydrozoa, is
the quasi-absence ofmuscle fibers in the endoderm at the planula,
polyp and medusa stages. Past (Hyman, 1940; Chapman, 1965;
Chapman and Werner, 1972; Werner et al., 1976; Anderson and
Schwab, 1981; Martin and Chia, 1982; Chia et al., 1984) and
more recent studies (Chapman, 1999; Eggers and Jarms, 2007;
Nakanishi et al., 2008) do not report any endodermal muscle
fibers. However, Gold et al. (2015) convincingly describe poorly
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developed circular muscle fibers in the endoderm of the polyp
tentacles of Aurelia. Smooth and striated myofilaments found
in the ectoderm, are nevertheless structurally similar to those
found in Hydrozoa (Anderson and Schwab, 1981; Chia et al.,
1984). As inHydrozoa, medusa stages in Scyphozoa and Cubozoa
contains strong circular epitheliomuscular striatedmuscles lining
the subumbrella (Hyman, 1940; Satterlie et al., 2005; Helm
et al., 2015), often called the coronal muscles. Most medusae of
these groups also contain radial smooth muscles lining parts of
the subumbrella and longitudinal ectodermal epitheliomuscular
smooth muscles in the tentacles (Hyman, 1940; Satterlie et al.,
2005).

Polyp stages in Scyphozoa, Cubozoa, and Staurozoa have
strong longitudinal muscles, of ectodermal origin. In many
species, these muscles are constituted by myocytes completely
embedded in the mesoglea, and thus not connected either to the
ectoderm or the endoderm epithelia (Widersten, 1966; Werner
et al., 1976; Chapman, 1978; Chia et al., 1984; Westlake and Page,
2016). In addition, smooth epitheliomuscular cells are present
in the ectoderm of the polyp tentacles (Franc, 1993). In several
cubozoan and scyphozoan species (Chapman, 1978; Chia et al.,
1984; Golz, 1993) some ectodermal cells at the polyp stage display
striated muscle fibers of unknown origin and function, which
certainly deserve more attention.

Muscle Systems in Anthozoans
In Anthozoa, epitheliomuscular cells are present both in the
ectoderm and the endoderm of planulae and polyps, the
medusa stage being absent in this clade. Importantly, unlike
in medusozoans where the major muscular components are
localized in the ectoderm, muscles in anthozoans are more
developed in the endoderm; most of the species possess in fact
transversal (circumferential) and strong longitudinal endodermal
muscles (Figures 4Ac,c’).

Most anthozoan muscle cells are epitheliomuscular,
containing smooth myofilaments. Loosely defined sarcomeres
have been so far reported in the tentacles of only two
sea anemones: Aiptasia diaphana and Stomphia coccinea
(Amerongen and Peteya, 1980). True muscle cells totally
embedded in the mesoglea have also been described in several
anthozoans, such as the mesogleal sphincter musculature found
in some Actiniaria and Zoantharia (Doumenc and Van Praët,
1987; Herberts, 1987; Swain et al., 2015).

Endodermal epitheliomuscular muscles in anthozoans can be
generally classified into three types: (i) the circular musculature
found throughout the body wall, (ii) the longitudinal parietal
muscles positioned at the junction between the mesenteries
(reproductive and digestive structures subdividing the gastric
cavity into chambers) and the body wall, and (iii) the longitudinal
retractor muscles located on one side of the mesenteries. In
many anthozoan groups, the retractor muscles are arranged in
a bilateral manner along the secondary body axis (called the
directive axis), and constitute one of the landmarks of bilateral
symmetry in these organisms (e.g., in Nematostella: Jahnel et al.,
2014; Leclère and Rentzsch, 2014). Ectodermal muscles are
for most anthozoans confined to the tentacles and the oral
disc, except in some Ceriantharia, Antipatharia and Scleractinia

that have longitudinal muscles in the body column ectoderm
(Chevalier and Beauvais, 1987; Doumenc and Van Praët, 1987;
Herberts, 1987; Tiffon, 1987; Van Praët et al., 1987).

Most descriptions of anthozoan muscles resulted from
research on sea anemones (order Actiniaria) (reviewed in
Doumenc and Van Praët, 1987). A recent description of the
muscular system of the sea anemone Nematostella vectensis
(Figures 4Ac,c’) highlighted the existence of at least three
different epitheliomuscular cell types (Figure 4B; Jahnel et al.,
2014). Type I classical epitheliomuscular cells and type II
epitheliomuscular cells, with elongated cytoplasmic bridges,
constitute mainly the longitudinal component of the muscular
system such as the parietal and retractor muscles (Figures 4A,B;
Jahnel et al., 2014). Conversely, type III epitheliomuscular cells
are basiepithelial muscle cells and are primarily encountered in
the ectoderm of the tentacles. Many sea anemone species have
extra sets of radial muscles: (i) ectodermal radial muscles in the
oral disk, involved probably in mouth opening (Doumenc and
Van Praët, 1987), (ii) radial muscles in the endodermal part of the
mesenteries on the side opposite the retractor muscle (Doumenc,
1979), and (iii) radial muscles in the endoderm involved in pedal
disk contraction (Doumenc and Van Praët, 1987). While ST
myhc-positive cells are present in the oral disc of Nematostella
(Renfer et al., 2010), a pedal disk is lacking and radial muscles in
the endodermal part of the mesenteries have yet to be described
in Nematostella.

Muscle Systems in Endocnidozoans
The musculature of the myxozoan Buddenbrockia plumatellae
and of Polypodium hydriforme has recently been investigated
(Raikova et al., 2007; Gruhl and Okamura, 2012). They represent
a unique case within cnidarians, possessing only smooth muscle
cells localized in the mesoglea and lacking epithelial muscle cells
altogether. In particular, the worm-like parasite Buddenbrockia
possesses four longitudinal non epithelial smoothmuscles (Gruhl
and Okamura, 2012) while Polypodium has a complex array of
smooth myocytes located in different parts of the body (Raikova
et al., 2007). Many other myxozoans species are even more
extremely specialized to their parasitic life style, not possessing
any muscle cells (Hartikainen et al., 2014).

ONTOGENY OF CNIDARIAN MUSCLES

Decades of developmental biology have taught us a great deal
about striated muscle development in vertebrates and other
bilaterian model systems, but little is known about smooth
and myoepithelial muscles development. Similarly, studies on
cnidarian muscle development have so far mainly focused on
the epitheliomuscular striated muscles of the medusa, while the
development of the predominant epithelial smooth muscle cell
type and the myocyte type have so far been rather neglected.

Striated muscle development has been primarily studied
in hydrozoan medusae. In most species, striated muscles of
the subumbrella and the velum derive from the entocodon,
a hydrozoan specific cell layer located in the early medusae
buds, between the ectoderm and endoderm, considered by some
authors to be homologous to the mesoderm of bilaterians (Boero
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et al., 1998; Seipel and Schmid, 2006), but see (Martindale
et al., 2004; Burton, 2008) for an alternative opinion. In most
hydrozoan species, this territory derives from the ectoderm
(Boelsterli, 1977; Bouillon, 1993; Seipel and Schmid, 2006;
Kraus et al., 2015). The work of Schmid and colleagues
on the hydrozoan medusae Podocoryna carnea provided
valuable data about cnidarian striated muscle differentiation and
transdifferentiation (see below). The other medusozoan groups
lack an entocodon and their striatedmuscles instead, differentiate
from the ectoderm of the subumbrella. In fact, a recent study
showed that the striatedmuscles of the scyphozoanChrysaora are
produced anew during ephyra formation (Helm et al., 2015).

Cnidarian epitheliomuscular cells reside in the ectodermal
and/or endodermal epithelia. Their fate is probably specified
during germ layer formation, but data are scarce, and it is still
unclear what drives epithelial cells toward a epitheliomuscular
fate in a given cnidarian, germ layer or body region. In a few
species, epitheliomuscular cells derive from non-epithelial stem-
cells, such as the interstitial stem cells (i-cells) of Hydractinia
echinata (Müller et al., 2004; Künzel et al., 2010). I-cells are
hydrozoan-specific stem-cells, capable of giving rise to multiple
cell types, such as neurons, gametes, gland cells and nematocytes.
It is worth noting that in Hydra, epitheliomuscular cells do
not differentiate from i-cells, but solely from fate-restricted
ectodermal and endodermal epithelial stem cells (Hobmayer
et al., 2012).

MOLECULAR CHARACTERIZATION OF
MUSCLES IN CNIDARIANS

Myogenic Genes
The development of vertebrate skeletal muscles is fairly well
characterized at the molecular level, while a few factors involved
in vertebrate smoothmuscle formation have been identified, such
as Myocardin, SRF and Capsulin (a paralog of MyoR; Kumar
and Owens, 2003; Wang et al., 2003). In contrast, little is known
about the cellular and molecular characteristics of myoepithelial
cell precursors as well as the mechanisms controlling the double
“myo” and “epithelial” phenotype (Tamgadge et al., 2013).

A set of bHLH (basic helix-loop-helix) domain containing
transcription factors, the Myogenic Regulatory Factors (MRFs),
play key roles in vertebrate skeletal myoblast specification and
differentiation. MRFs are notably able, when overexpressed, to
transform fibroblasts into myoblasts (Davis et al., 1987). They are
also present in non-vertebrate bilaterians where they similarly
regulate specification and differentiation of striated muscles
(reviewed in Andrikou and Arnone, 2015). The four vertebrate
MRF paralogs—Myf5, MyoD, Mrf4, and Myogenin—resulted
from vertebrate specific duplications; therefore, only one MRF
ortholog, usually called MyoD, is found in most non-vertebrate
bilaterian groups.

MRFs are part of a conserved myogenesis gene regulatory
network, which includes the transcription factors Dach
(Dachshund), Pax3, Pax7, Six1, Six4, as well as their co-factors
Eya1 and Eya2 (Grifone et al., 2005; Christensen et al., 2008).
MRFs are also able to induce differential transcription of

specific mef2 splice variants, a MADS family transcription factor
(Potthoff and Olson, 2007; Potthoff et al., 2007). While Mef2
governs expression of a set of downstream factors including
Myocardin, a protein required for muscle development (Wang
et al., 2001), Mef2 per se does not have myogenic activity,
but cooperates transcriptionally to potentiate the effects of
MRFs (Molkentin et al., 1995). Two other bHLH factors,
MyoR (Myogenic Repressor) and Twist negatively regulate
skeletal muscle differentiation by repressing MyoD activity
(Spicer et al., 1996; Hebrok et al., 1997; Lu et al., 1999). A
non-exhaustive list of the major bilaterian myogenic factors is
shown in Figure 5 (reviewed in Bentzinger et al., 2012; Andrikou
and Arnone, 2015). The set of Pax, bHLH, Six, Eya, Dach, and
MADS transcription factors involved in myogenesis is conserved
throughout Bilateria. However, the hierarchy of gene interactions
has been reshuffled in some bilaterian groups, and some key
myogenic factors were lost in some lineages during evolution,
such as Pax3/7 in sea urchins (Andrikou et al., 2015). The general
consensus is that MRFs play a crucial role in bilaterian muscle
specification and differentiation (reviewed in Bentzinger et al.,
2012; Andrikou and Arnone, 2015).

No MRFs have been identified in the published cnidarian
genomes (Putnam et al., 2007; Chapman et al., 2010; Shinzato
et al., 2011), while several orthologs to other bilaterian
transcription factors and signaling components related to
myogenesis were found (Figure 5). Thorough phylogenetic
analyses showed that a previously reported MyoD putative
ortholog from Podocoryna named JellyD1 (Müller et al., 2003),
is indeed not related to the MyoD family of bHLH factors
(Simionato et al., 2007). The absence of MRF orthologs in
cnidarians raises the pivotal question of the developmental
mechanisms underlying muscle formation in these organisms.
An unbiased systematic analysis of genes regulating muscle
formation would be particularly helpful.

The first extensive search for myogenic genes in cnidarians
was carried out in the hydrozoan medusae Podocoryna. Volker
Schmid and collaborators identified and characterized the bHLH
transcription factor Twist, the MADS factor mef2, as well as the
homeobox transcription factor msx, and showed that all three
genes are expressed in the entocodon of the medusa bud and its
derivatives, from which the smooth-like and striated muscles of
the bell originate (Spring et al., 2000, 2002; Galle et al., 2005).
While msx expression is downregulated in bilaterian striated
muscles, striated muscles of the medusa maintain elevated
levels of msx expression (Galle et al., 2005). The transcription
factors twist and mef2 are also expressed in non-muscle tissues,
thus suggesting they could play additional roles during jellyfish
development (Spring et al., 2000, 2002).

In the sea anemone Nematostella, orthologs for nearly all
of the main “myogenic genes” [Figure 5, with the exception
of foxF (Santagata et al., 2012), myoR and myoD] have
been identified. Among those genes potentially involved in
muscle formation, only mef2 has been studied functionally
(Genikhovich and Technau, 2011). Genikhovich and colleagues
described several differentially expressed splice variants, and
in particular one responsible for proper endoderm formation.
Through a combination of TEM analysis and transgenic
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FIGURE 5 | Cnidarian “muscle” gene repertoire. Overview of the cnidarian “muscle” gene repertoire in regard to known bilaterian myogenic factors. Cnidarians

are represented by Hydra, Clytia, Podocoryna, and Nematostella. The potential role in myogenesis of a given gene in the indicated species has been assessed by

functional studies if available or by published gene expression patterns, (n/a) no information available. References cited in this figure: (1) Chapman et al., 2010; (2)

Hoffmann and Kroiher, 2001; (3) Jager et al., 2011; (4) Steinmetz et al., 2012; (5) Chiori et al., 2009; (6) Kraus et al., 2015; (7) Stierwald et al., 2004; (8) Spring et al.,

2002; (9) Galle et al., 2005; (10) Spring et al., 2000; (11) Ryan et al., 2006; (12) Matus et al., 2007; (13) Saina and Technau, 2009; (14) Putnam et al., 2007; (15) Magie

et al., 2005; (16) Nakanishi et al., 2015; (17) Genikhovich and Technau, 2011; (18) Martindale et al., 2004; (19) Ryan et al., 2007; (20) Ryan et al., 2006.

approaches, using a Myosin Heavy Chain promoter-driven
mCherry [MyHC1::mCherry (Renfer et al., 2010) also called
ST myhc::mCherry (Steinmetz et al., 2012)], the authors
showed that longitudinal muscle formation is impaired in some
NvMef2 splice-specific morphants (Genikhovich and Technau,
2011). However, given that the defects in endoderm formation
appeared prior to the condensation of actin filaments that
will form the retractor muscles, and also that direct binding
of NvMef2 to the ST myhc promoter is not required for
the expression of the myosin reporter, the direct role of
NvMef2 is still unclear (Genikhovich and Technau, 2011).
Therefore, the function of all potential myogenic factors during
muscle specification and formation in cnidarians remains to be
determined.

Structural Muscle Genes
The essential contractile machinery—alternation of actin thin
filaments and Myosin II thick filaments—is conserved between
cnidarians and bilaterians. However, contrary to bilaterians,
actin paralogs specific for muscle and cytoplasm have not been
reported from cnidarians (Fisher and Bode, 1989). ST myhc
(“striated muscle” type II Myosin Heavy Chain) is present in the
thick filaments of both smooth (Renfer et al., 2010; Steinmetz

et al., 2012) and striated muscles (Schuchert et al., 1993; Aerne
et al., 1996; Steinmetz et al., 2012) in several cnidarians, while NM
myhc (“non-muscle” type II Myosin Heavy Chain) is expressed
in either smooth-muscle and non-muscle cells in Clytia and
Nematostella (Steinmetz et al., 2012). This situation resembles
the arrangement found in most bilaterians for which ST myhc
is used in fast contracting muscles, while NM myhc functions in
slow contracting muscles (Brunet et al., 2016) and constitutes an
important component of the cytoskeleton (Vicente-Manzanares
et al., 2009).

Several actin or myosin regulators and binding partners
characterizing bilaterian muscles (reviewed in Hooper and
Thuma, 2005) were also found in cnidarians. Myosin Essential
and Regulatory Light Chains, Myosin Light Chain-Kinase and
Phosphatase, as well as the smooth muscle ATPase regulator
Calponin are present in cnidarians genomes (Steinmetz et al.,
2012) but have not been functionally characterized yet. Several
Tropomyosin paralogs have also been described in cnidarians
(Baader et al., 1993; López de Haro et al., 1994; Gröger et al.,
1999, 2000; Fujinoki et al., 2002; Steinmetz et al., 2012), including
one specific to the striated muscle cells of Podocoryna (Gröger
et al., 1999, 2000). However, Troponins, important components
of the striated muscle thin filaments, have to date not been
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found in any cnidarian genomes (Steinmetz et al., 2012). Finally,
all major components of the Dystroglycan complex, a protein
complex involved in anchoring muscle fibers to the extracellular
matrix in many bilaterians, have been identified in cnidarian
genomes (Adams and Brancaccio, 2015) and await functional
characterization.

Sarcomeres consist of a succession of thin and thick filaments
organized in arrays by proteins complexes located at the Z-
disks and M-lines. Recent work investigated the evolution of
the most conserved Z-disk proteins (Steinmetz et al., 2012).
The authors could show that most conserved proteins present
in both vertebrate and Drosophila Z-disks, such as α-Actinin,
Muscle-LIM and ZASP/LDB3, were present in cnidarians.
However, in Clytia medusae, in situ hybridization signal was
not detected in striated muscles for orthologs of the Z-disk
proteins (Muscle-LIM and ZASP/LDB3), or showed ubiquitous
expression (α-Actinin). Conversely, clear orthologs of Titin,
the large protein which links Z-disk to thick filaments in
bilaterians, could not be found. Most of the proteins regulating
the organization of the M-line have yet to be investigated
in cnidarians. Orthologs of Obscurin/UNC-89, giant proteins
involved in M-line alignment in diverse bilaterians (Benian et al.,
1996; Katzemich et al., 2012), have been identified in Hydra,
Clytia and Nematostella (Steinmetz et al., 2012) and appear
to be broadly expressed in striated, smooth, and non-muscle-
cells.

ORIGIN AND EVOLUTION OF CNIDARIAN
MUSCLES

It is generally accepted that smooth epitheliomuscular cells of
cnidarians are homologous to bilaterian smooth muscles and
myoepithelial cells (Steinmetz et al., 2012). Epitheliomuscular
cells are found in all cnidarian species, except for some highly
derived parasitic groups (see Section Cnidarian Muscle Types),
and most of the molecular components of smooth muscle
myofilaments are conserved between Cnidaria and Bilateria
(Steinmetz et al., 2012). The current lack of functional data,
however, does not allow discriminating whether the same
regulatory cascade in Cnidaria and Bilateria controls smooth
muscle development.

A recent study concluded that the striated muscles found
in hydrozoan medusae originated independently from those
found in bilaterians (Steinmetz et al., 2012). As described in
the previous section, available cnidarian genomes lack key
striated muscle proteins, such as the Troponins and the Z-
disks component Titin while others, such as muscle-LIM and
LDB3, were found to be excluded from striated muscle tissue in
Clytia medusae. The structural convergence between hydrozoan
and bilaterian sarcomeres represents an interesting and well-
supported hypothesis, nevertheless awaiting confirmation from
other cnidarian species. A stimulating possibility would be
that striated muscles appeared during cnidarian evolution in
concomitance with the acquisition of the medusa stage, and
thus with the functional requirement for a fast-contracting
swimming muscle. More work is therefore needed to understand

the evolutionary tinkering that produced so similar phenotypes
with different sets of proteins.

Smooth myocytes, muscles cells that lost connection to the
epithelia, and are therefore totally embedded in the mesoglea,
likely originated several times within Cnidaria. They have only
been described in a few disparate instances, such as the sphincter
muscle of some Anthozoa (in Actiniaria and Zoantharia), the
longitudinal ectodermal muscles of scyphozoan and cubozoan
polyps and staurozoans, and they represent the sole muscle
type described in the parasitic groups Myxozoa and Polypodium
(see Section Cnidarian Muscle Types). The most parsimonious
interpretation for this pattern is that they represent clade-specific
adaptations. Indeed, phylogenetic reconstructions of Zoantharia
(Swain et al., 2015) and Actiniaria (Rodriguez et al., 2014)
support several convergent acquisitions of myocytes within these
groups. Furthermore, acquisition of true myocytes and loss of
epitheliomuscular cells in the myxozoan Buddenbrockia and in
Polypodium are likely a direct consequence of the adoption of a
parasitic life style.

Several losses of either striated or smooth muscle cell types
were inferred in Cnidaria, often in relation to the evolution of
their complex life cycles. For instance, the multiple evolutionary
losses of the medusa stage in Hydrozoa led to likewise losses of
striated muscles (Leclère et al., 2009). As a consequence, Hydra
does not develop striated muscle at any stage of its simplified
life cycle (Nawrocki et al., 2012). Similarly, many myxozoan
species completely lost muscle cells following extreme adaptation
to the parasitic life style (Hartikainen et al., 2014). Genomic
data analyses are still scarce (Chapman et al., 2010; Chang et al.,
2015), though, and it remains to be determined how these losses
impacted the structural and regulatory muscle genes.

MUSCLE PLASTICITY AND
REGENERATION IN CNIDARIANS

While regeneration phenomena are widespread among
metazoans, the regenerative capacity varies considerably within
a given phylum and at the organ/tissue levels within an organism
(Bely and Nyberg, 2010; Tiozzo and Copley, 2015). Although
still quite variable within the phylum, cnidarians in general
exhibit tremendous tissue plasticity and regeneration abilities
(Figure 6). Our understanding about (i) muscle plasticity/muscle
regeneration itself (at the tissue, cellular, and/or molecular
levels), and (ii) the role that muscles play in the regenerative
process of lost tissues or body parts is still sparse. In bilaterians,
muscle regeneration is fueled by specific stem cells called satellite
cells, however no such cells have yet been identified in cnidarians.
The PaxD transcription factor Pax3/7, crucial for satellite cell
activation and muscle regeneration/renewal in bilaterians
(Konstantinides and Averof, 2014; reviewed in Dumont et al.,
2015) has been retrieved from anthozoan genomes and further
characterized in Nematostella (Figure 5). However, given its
gene expression pattern in restricted regions of the ectoderm, it
does not seem to be associated with a potential muscle renewal
process (Matus et al., 2007). This rather limited set of evidence
suggests that the cnidarian muscle regeneration process may
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FIGURE 6 | Cnidarian regeneration potential. Regenerative capacities of (A) Hydra, (B) Clytia medusa and (D) Nematostella as cnidarian representatives.

(C) Illustrates the re-symmetrization process of juvenile medusa that is not regeneration per se, but allows a quick regain of the medusa functionality. (E) Illustrates the

transdifferentiation and regeneration potential of striated muscle cells isolated from jellyfish and cultured in vitro. See text for further details.

differ from the one described in bilaterians. In this section we
review current knowledge about muscle regeneration/plasticity
in cnidarians and the potential role played by muscle cells during
injury-response and remodeling processes.

Epithelial Muscle Plasticity in Hydra Polyps
A recent study on Hydra analyzed the repolarization of epithelial
cells during the regenerative process (Seybold et al., 2016), taking

advantage of the fact that dissociated Hydra cells are able of
aggregating and regenerating a polyp. Hydra is indeed a classical
model organism to study whole body regeneration. It can reform
fully functional polyps when bisected (Trembley, 1744; Wittlieb
et al., 2006), from small tissue pieces (Shimizu et al., 1993),
isolated germ layers (Normandin, 1960; Kishimoto et al., 1996)
and even from dissociated cell aggregates (Gierer et al., 1972;
Technau et al., 2000; Seybold et al., 2016) (Figure 6A). The
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regenerative capacity of Hydra and the role of stem cells in this
process have been extensively studied and reviewed elsewhere
(Galliot and Schmid, 2002; Holstein et al., 2003; Bosch, 2007;
Bosch et al., 2010; Galliot and Chera, 2010; Galliot and Ghila,
2010; Hobmayer et al., 2012).

Thanks to the development of a transgenic lifeact::GFP
line (staining actin filaments in vivo, Figures 4Aa), Seybold
et al. (2016) observed that polarized actin structures appeared
progressively, in a cell autonomous manner, between 6 and 24
h post dissociation (hpd). Interestingly, the orientation of the
reforming myonemes (in number of 2–3 per cell) appears to
be polarized within a single cell, but randomly aligned to the
myonemes in surrounding cells (Seybold et al., 2016). Only
at about 48 hpd the myonemes of each cell align to form a
coordinated muscle system. The polarization process takes place
in a very comparable manner within the ectodermal and the
endodermal epithelia, though the two muscle networks will
ultimately be orthogonally oriented (Seybold et al., 2016). Further
work is required to characterize the molecular mechanisms
underlying not only the cellular autonomous repolarization of
the myonemes in Hydra, but also how the individual cells
communicate in order to form the polarized and coordinated
muscle networks.

Striated Muscle Transdifferentiation in
Podocoryna
Cellular plasticity plays a crucial role in most regenerative
processes. The most extensive work aimed at understanding
muscle plasticity in cnidarians, was carried out by Schmid
and colleagues in the hydrozoan jellyfish Podocoryna carnea.
In a seminal series of papers they detailed the remarkable
transdifferentiation process able to convert isolated striated
muscle cells to neuronal or smooth muscle fates (Figure 6E) and
to ultimately regenerate a fully functional manubrium (reviewed
in Schmid, 1988; Schmid et al., 1988; Brockes, 1994; Reber-Müller
et al., 1995).

From the subumbrella of the medusa Podocoryna carnea,
endodermal and striated muscle layers can be isolated and
cultivated for weeks. Following collagenase treatment to
disrupt muscle and ECM interaction, striated muscle cells
transdifferentiate into smooth-like muscle cells (Schmid, 1978,
1992). They lose their striated myofibrils, develop a cilium
and adopt a morphology that is similar to smooth muscle
cells. This process is transcription and translation but not
proliferation dependent (Schmid, 1975;Weber et al., 1987). Once
transdifferentiated, those cells behave in a stem cell fashion, as
they self-renew and give rise to a differentiated cell, following
a strict pattern (Figure 6E). In fact, each subsequent division
results in a nerve cell expressing the neurotransmitter FMRF-
amide and a cycling smooth muscle cell (Alder and Schmid,
1987).

Combined with isolated endodermal cells of the umbrella,
isolated striated muscle cells can regenerate a functional
manubrium containing at least seven new cell types, including
gametes (Schmid, 1974, 1976; Schmid et al., 1982). Further
refinement of the cell separation protocol allowed Schmid and

colleagues to obtain a fully regenerated manubrium from a
pure population of destabilized (collagenase treated) striated
muscle cells (Schmid and Alder, 1984). These transdifferentiation
experiments were also successfully performed using striated
muscles of other hydrozoan medusae (Schmid, 1978) albeit with
lower efficiency than in Podocoryna carnea.

A number of genes expressed in Podocoryna striated muscle
cells and whose expression is altered during transdifferentiation,
have been characterized. While twist is likely not involved in this
process (Spring et al., 2000), msx expression is downregulated in
response to cellular dissociation and strongly reactivated during
smooth-like muscle differentiation (Galle et al., 2005). bmp2/4
expression is initiated immediately after excision and bmp5/8
in the initial phase of the transdifferentiation process (Reber-
Müller et al., 2006). Interestingly, expression of the Podocoryna
Piwi homolog, cniwi, is upregulated during transdifferentiation
(Seipel et al., 2004) and potentially involved in the potency
(Van Wolfswinkel, 2014) of the muscle cells to become neurons.
Although these data suggest an implication of the transcription
factor Msx, the RNA-binding protein Cniwi and BMP signaling
in the transformation potential of striatedmuscles in Podocoryna,
no functional data is available.

Muscle Plasticity during Jellyfish
Self-Repair
Following up on this in vitro work on Podocoryna, Lin and
colleagues analyzed wound healing and remodeling of the
striated muscle cells in toto, in the umbrella of the jellyfish
Polyorchis penicillatus (Lin et al., 2000). After wounding, the
striated muscles cells can lose their condensed actin fibers
and dedifferentiate, enabling them to migrate toward the
wound. During the migration process, which is dependent on
intracellular calcium resources, the cells lose also their contractile
ability while surrounding intact epitheliomuscular cells remain
able to contract in response to a chemical stimulus (Lin et al.,
2000). The dedifferentiation-migration response to wounding
takes about 8–10 h and does not seem to involve cell proliferation.
Once the dedifferentiated cells have filled up the wound site, they
stop migrating and begin to re-differentiate and re-polarize, for
finally becoming fully functional muscle cells within 24–48 h post
injury (Lin et al., 2000).

In culture, the migrating striated muscle cells in Podocoryna
induce a change in gene expression that is rapidly communicated
to the non-migrating cells, thus allowing a coordinated
tissue reorganization (Yanze et al., 1999). In addition to the
transdifferentiation potential of striated muscle cells in vitro,
these observations show the de- and re-differentiation capacity
of the same muscle cell type in vivo.

Another hydrozoan jellyfish that has been used to understand
medusa self-repair mechanism is Clytia hemisphaerica
(previously named Phialidium hemisphaericum or Campanularia
johnstoni). Differently sized fragments of the jellyfish umbrella
are able to rapidly restore the bell shape by a “morphodynamic
process” and subsequently reform, at various degrees, missing
structures such as the canals, tentacles and gonads (Figure 6B;
Schmid and Tardent, 1971; Schmid et al., 1976). The mechanisms
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by which Clytia medusae reform the missing structures and
restore the bell shape are still unknown.

More recently, the scyphozoan Aurelia aurita was used to
gain insights into a particular mechanism that enables injured
ephrya (juvenile jellyfish) to rapidly regain a functional shape and
pursue its development into adulthood (Abrams et al., 2015). In
this specific case, the “healing” process does not involve cellular
proliferation or apoptosis but a so-called symmetrization (term
introduced by Abrams et al., 2015). This process reshapes the
animal by reorganizing the existing parts, without reformation
of the missing parts (Figure 6C). This self-repairing event
is crucial to allow subsequent development of the damaged
juvenile jellyfish into a radially symmetrical adult. Unlike during
regeneration in other cnidarians (Chera et al., 2009; Passamaneck
and Martindale, 2012; Amiel et al., 2015), inhibition of cellular
proliferation or apoptosis does not affect the symmetrization
process in Aurelia aurita (Abrams et al., 2015). Interestingly,
inhibiting the muscle reconnection following injury using low
doses of cytochalasin D (to avoid nonspecific actin dependent
effects and to still allow contraction of the existing muscles) does
not affect symmetrization (Abrams et al., 2015). However, further
analyses using muscle relaxants, such as magnesium chloride or
menthol causing the decrease of the pulsation frequency and the
inhibition of symmetrization, revealed that contraction forces
that are generated by the musculature network of the juvenile
jellyfish are likely important for this process (Abrams et al., 2015).
If this contraction dependent symmetrization process is specific
to Aurelia aurita ephrya, or represents a general strategy for
maintaining the swimming capacity in injured adult jellyfish, is
currently unknown.

Muscle and Regeneration in Nematostella
Nematostella vectensis is emerging as a new regeneration model
(Reitzel et al., 2007; Trevino et al., 2011; Passamaneck and
Martindale, 2012; Bossert et al., 2013; DuBuc et al., 2014; Amiel
et al., 2015), particularly well-suited to compare development
and regeneration within the same organism (Burton and
Finnerty, 2009; Layden et al., 2016). Recent studies have
analyzed its basic regeneration capacity (Figure 6D; Reitzel
et al., 2007; Amiel et al., 2015), establishing precise staging
systems to analyze the regeneration process under physiological
and perturbation conditions (Bossert et al., 2013; Amiel et al.,
2015), and developing new in vivo tools to asses wound
healing, pharynx formation and tissue tracing (Amiel et al.,
2015). These studies have shown that cellular proliferation is
induced at the amputation site and required for the regeneration
process (Passamaneck and Martindale, 2012; Amiel et al., 2015).
Additional work in Nematostella is required to identify stem and
progenitor cells.

The muscle regeneration process in Nematostella was initially
studied with a MyHC1::mCherry transgenic line labeling the
retractor muscles (Renfer et al., 2010). Immediately after
amputation, these muscles retracted from the wound site. Later
in the process, numerous cells accumulated at the regenerating
site expressing the MyHC1::mCherry transgene (in a non-
polarized manner) suggesting active cellular differentiation and
reorganization events in this region (Renfer et al., 2010).

However, nothing is known about the cellular origin of the newly
formed retractor muscle fibers, nor the cellular and molecular
mechanisms underlying this process.

A recent study suggested that muscle contraction could play a
role in regeneration of missing body parts (Bossert et al., 2013).
In fact, contraction of the circumferential muscle fibers may be
involved in reducing the size of the wound in isolated adult physa
(the most aboral part of the polyp in burrowing actiniaria) and
thus, potentially promoting the wound healing process and the
reformation of oral structures. A detailed characterization of the
oral regeneration process in juveniles shows a very stereotyped
and dynamic behavior of the tissues during the regeneration
program (Amiel et al., 2015), suggesting that muscle contractions
may play a role also during later steps of regeneration. Additional
analyses are required to understand the process of muscle
fiber regeneration and repolarization as well as the role that
muscles and muscle contractions play during wound healing and
regeneration in Nematostella.

CONCLUSION AND PERSPECTIVES

In this overview, we have introduced the cnidarians (Figure 1),
a group of animals with diverse life cycles (Figure 2) and
holding a key phylogenetic position as the sister group to
bilaterians. Cnidarian muscles are composed of a set of
epitheliomuscular cell types and, in some species, include
additional, independently–evolved, striated muscles (Figure 4)
and myocytes. The epitheliomuscular cells play a role in prey
capture, locomotion or defense from predators (Figure 3).
Intriguingly, cnidarians possess genes that are generally
associated with muscle formation in bilaterians (e.g., Mef2),
but lack classical myogenic regulatory factors such as MyoD
(Figure 5) as well as terminal differentiation proteins typical
of bilaterian striated muscles such as the Troponins and Titin.
Cnidarians possess quite extraordinary regenerative capacities as
they can regrowmissing body parts from isolated fragments or in
some species even from dissociated cells aggregations (Figure 6).
Although the regenerative capacity has intrigued scientists for
over 300 years, currently little is known about their capacity to
reform/regenerate injured muscles. In order to better understand
the similarities and differences of muscle plasticity in cnidarians,
an emphasis has to be put on carrying out functional studies in
existing as well as new models. Recent technological advances
will be greatly beneficial for both aspects.

Open Questions in Cnidarian Muscle
Development and Regeneration
As described above, muscle plasticity has only been studied in
a handful of cnidarians and is to date rather descriptive. Work
carried out in jellyfish suggest that de- and re-differentiation
as well as cell migration might be involved in wound healing
and reformation of striated muscle fiber network. The fact that
cellular proliferation is not detected during this process raises
the question about how cellular homeostasis is maintained.
Are there undifferentiated precursors involved in the wound
healing process as well? Which are the molecular signals

Frontiers in Cell and Developmental Biology | www.frontiersin.org 14 January 2017 | Volume 4 | Article 157

http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Leclère and Röttinger Cnidarian Muscle Diversity

inducing dedifferentiation process, cellular migration and its
guidance, as well as the re-differentiation into striated muscles?
While latter questions are rather medusa specific, there are
also questions that are relevant to all cnidarians. How are
the condensation and the polarization of the actin fibers
controlled to reform a perfectly organized and integrated
muscle network? What are the molecular cues responsible
for myoneme polarization during re-aggregation/regeneration
experiments in Hydra? What controls the suggested de-
and re-differentiation of retractor muscle cells during oral
regeneration in Nematostella? Does this anthozoan possess
epithelial stem cells similar to the ones described in hydrozoans
or do they possess multi-potent stem cells? What causes
the condensation and orientation of the thick longitudinal
retractor muscle fibers, compared to the thin circumferential
muscle fibers, both residing in the endodermal epithelium?
Are those dependent on signaling molecules released by
the mesenteries, mechanical forces induced by mesenterial
infoldings, or a combination of the two? Do “smooth-
muscle-like” epitheliomuscular cells possess transdifferentiation
potential similar to the ones described from striated jellyfish
muscle cells? Answering this non-exhaustive catalog of open
questions is not only important to provide new insights into
cnidarian muscle plasticity, but will also help providing a better
understanding of the mechanisms underlying initial cnidarian
muscle development.

Understanding Muscle Polarization in
Cnidarians
Epitheliomuscular cells associate to form condensed muscle
fibers (e.g., muscle net in Hydra Figures 4Aa,a’ or longitudinal
muscle fibers in Nematostella, Figures 4Cc,c’) in diverse
orientations (Figures 4A–C). While recent work has nicely
described the repolarization process in Hydra (Seybold et al.,
2016), the molecular and/or mechanical signals that control
the condensation and orientation/polarization of cnidarian
muscle fibers during development are unknown. A study
using transgenic Nematostella MyHC1::mCherry (Renfer et al.,
2010) has shown that condensed muscle fibers of the retractor
muscles appear progressively during the late planula-primary
polyp transition (Jahnel et al., 2014). One intriguing aspect
of muscle development in Nematostella is that the polarity of
epitheliomuscular cells within the same endodermal epithelium
varies according to their spatial coordinates. The myonemes
localized in the portions of the body column in-between the
mesenteries form the circumferential ring musculature, while
those included at and in the mesenteries (parietal and retractor
muscles) are oriented longitudinally (Figures 4Cc,c’; Jahnel et al.,
2014). As the infolding of the endodermal epithelium is likely
contributing to the formation of the mesenteries (Jahnel et al.,
2014; Leclère and Rentzsch, 2014), it would be interesting to
investigate the mechanical aspects of this process, by looking at
the role that mechanical forces play on the orientation of the
myonemes, or conversely, the role that longitudinal muscle fibers
have on the guidance/formation of mesenteries.

Cnidarians as New Models to Study
Myoepithelial Development/Plasticity
Studies on cnidarians (Figure 1) could help gaining insights into
the evolution of themesodermal germ layer (absent in cnidarians,
but present in bilaterians) and thus about those tissues that
in bilaterians are mesodermal derivatives, such as muscles
(reviewed by Seipel and Schmid, 2006; Burton, 2008; Technau
and Steele, 2011; Layden et al., 2016). The developmental
program of cnidarian muscles is currently largely unknown and
requires intense functional work. Thus, addressing this question
has been initiated by studying the expression (Spring et al., 2000,
2002; Fritzenwanker et al., 2004; Martindale et al., 2004) and
function (Genikhovich and Technau, 2011) of “mesodermal”
genes (e.g., brachyury, mef2) or the gene regulatory networks
controlling endomesoderm development (Röttinger et al., 2012).
However, these studies have an undeniable bias, the implicit
assumption being that cnidarian muscle cells are essentially
similar to bilaterian muscles. If on one hand the hypothesis of an
independent origin for cnidarian and bilaterian striated muscles
has been taken into account (Steinmetz et al., 2012), on the other
hand all other cnidarian muscle cell types have generically been
considered as “smooth muscle cells” (Seipel and Schmid, 2005;
Burton, 2008; Steinmetz et al., 2012). The latter statement is
supported by the fact that they are mononucleated and express
“smooth muscle” proteins such as Myosin Heavy Chain (Renfer
et al., 2010).

It is however important to keep in mind that the
embryological origin of cnidarian muscle cells is not the
mesodermal germ layer, but either the endodermal or the
ectodermal layer and, importantly, that cnidarian muscle cells
are mostly epithelial. As for cnidarian epitheliomuscular cells,
bilaterians myoepithelial cells originate from tissues of various
developmental origins (Petersen and van Deurs, 1989; Schmidt-
Rhaesa, 2007; Tamgadge et al., 2013). Furthermore, myoepithelial
cells in mammalians are receiving increasing interest, because of
their importance in processes such as gland development, growth
and differentiation, in pathologies such as breast cancer (Silva
et al., 2015) as well as their capacity to control tumorigenesis
(Gudjonsson et al., 2005; reviewed in Deugnier et al., 2002;
Sopel, 2010). Thus, it could be particularly fruitful to compare
bilaterian myoepithelial and cnidarian epitheliomuscular cells,
their developmental origin, the molecular or mechanical signals
that control their polarization, condensation and organization
into muscle nets, rings or fibers and how they regenerate after
injury. The easy access to biological material offered by cnidarian
models, combined with various modern approaches that are
now routinely performed on these organisms make them very
interesting models to investigate myoepithelium formation and
regeneration.

Potential Roles of Muscles in Cnidarian
Regeneration
Recent work suggests that muscle contraction could play a
primary role during the regenerative process, by promoting
wound healing in Nematostella (Bossert et al., 2013) and
allowing juvenile scyphozoan jellyfish to reshape rapidly into a
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functional body, in a process recently called “symmetrization”
(Abrams et al., 2015). Interestingly, mammary myoepithelial
cells, in addition to their contractile function, preserve also the
regenerative potential of the tissue and are able to modulate in
an integrin mediated process the proliferation and differentiation
of surrounding cells (Deugnier et al., 2006; Shackleton et al.,
2006; Stingl et al., 2006; Sleeman et al., 2007; reviewed
in Moumen et al., 2011). In planarians, which similarly to
cnidarians display impressive regenerative capacities, several
lines of evidence show that the vast majority of “position control
genes,” (Reddien, 2011) such as wnt1 or notum (Adell et al.,
2009; Petersen and Reddien, 2011), are not only responsible for
the polarity and patterning events during regeneration, but are
also expressed in the muscles cells (Witchley et al., 2013). These
observations led to the hypothesis that planarian muscle cells
provide positional information to the surrounding stem cells,
thus promoting regional differentiation and body polarization
(Witchley et al., 2013; reviewed in Cebrià, 2016). Along these
lines, it would be particularly interesting to address whether
cnidarian epitheliomuscular cells and/or muscle networks play
a role during wound healing and subsequent regenerative
processes by providing biochemical or biomechanical cues.

The development of new molecular tools in a handful
of hydrozoan and anthozoan species has already provided
new insights into several long-standing evolutionary and
developmental questions (Houliston et al., 2010; Technau and
Steele, 2011; Galliot, 2012; Nebel and Bosch, 2012; Plickert et al.,
2012; Sinigaglia et al., 2013; Layden et al., 2016; Rentzsch and
Technau, 2016). Those tools, in combination with “omics” and

functional genomics approaches (Momose and Houliston, 2007;
Rentzsch et al., 2008; Amiel et al., 2009; Chera et al., 2009;
Genikhovich and Technau, 2009; Boehm et al., 2012; Röttinger
et al., 2012; Layden et al., 2013; Lapébie et al., 2014; Bradshaw
et al., 2015) as well as with the recently developed techniques
for genome editing (Ikmi et al., 2014) are now opening
new opportunities to functionally and thoroughly address the
developmental and regenerative program of cnidarian muscles
systems, but also the role(s) that epitheliomuscular cells, muscle
fibers and muscle contraction can play on the regeneration
process.
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Krasińska, V. S. (1914). Beiträge zur Histologie der Medusen. Inaugural-

Dissertation, Universität Zürich, Wilhelm Engelmann (Leipzig; Berlin).

Kraus, J. E. M., Fredman, D., Wang, W., Khalturin, K., and Technau, U. (2015).

Adoption of conserved developmental genes in development and origin of the

medusa body plan. EvoDevo 6, 67–15. doi: 10.1186/s13227-015-0017-3

Kraus, Y., Aman, A., Technau, U., and Genikhovich, G. (2016). Pre-

bilaterian origin of the blastoporal axial organizer. Nat. Comm. 7:11694.

doi: 10.1038/ncomms11694

Kraus, Y., Fritzenwanker, J. H., Genikhovich, G., and Technau, U. (2007).

The blastoporal organiser of a sea anemone. Curr. Biol. 17, R874–R876.

doi: 10.1016/j.cub.2007.08.017

Kumar, M. S., and Owens, G. K. (2003). combinatorial control of smooth

muscle–specific gene expression. Arterioscler. Thromb. Vasc. Biol. 23, 737–747.

doi: 10.1161/01.ATV.0000065197.07635.BA

Künzel, T., Heiermann, R., Frank, U., Müller, W., Tilmann, W., Bause, M., et al.

(2010). Migration and differentiation potential of stem cells in the cnidarian

Hydractinia analysed in eGFP-transgenic animals and chimeras. Dev. Biol. 348,

120–129. doi: 10.1016/j.ydbio.2010.08.017

Lapébie, P., Ruggiero, A., Barreau, C., Chevalier, S., Chang, P., Dru, P.,

et al. (2014). Differential responses to Wnt and PCP disruption predict

expression and developmental function of conserved and novel genes

in a cnidarian. PLoS Genet. 10:e1004590. doi: 10.1371/journal.pgen.10

04590

Layden, M. J., Boekhout, M., and Martindale, M. Q. (2012). Nematostella vectensis

achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis

and represents an ancient component of the metazoan neural specification

pathway. Development 139, 1013–1022. doi: 10.1242/dev.073221

Layden, M. J., Rentzsch, F., and Röttinger, E. (2016). The rise of the starlet

sea anemone Nematostella vectensis as a model system to investigate

development and regeneration. Wiley Interdiscip. Rev. Dev. Biol. 5, 408–428.

doi: 10.1002/wdev.222

Layden, M. J., Röttinger, E., Wolenski, F. S., Gilmore, T. D., and Martindale, M. Q.

(2013). Microinjection of mRNA or morpholinos for reverse genetic analysis

in the starlet sea anemone, Nematostella vectensis. Nat. Protoc. 8, 924–934.

doi: 10.1038/nprot.2013.009

Leclère, L., Copley, R. R., Momose, T., and Houliston, E. (2016). Hydrozoan

insights in animal development and evolution. Curr. Opin. Genet. Dev. 39,

157–167. doi: 10.1016/j.gde.2016.07.006

Leclère, L., and Rentzsch, F. (2014). RGM regulates BMP-mediated secondary axis

formation in the sea anemone Nematostella vectensis. Cell Rep. 9, 1921–1930.

doi: 10.1016/j.celrep.2014.11.009

Leclère, L., Schuchert, P., Cruaud, C., Couloux, A., and Manuel, M. (2009).

Molecular phylogenetics of Thecata (Hydrozoa, Cnidaria) reveals long-term

maintenance of life history traits despite high frequency of recent character

changes. Syst. Biol. 58, 509–526. doi: 10.1093/sysbio/syp044

Lewis, C., and Long, T. A. F. (2005). Courtship and reproduction in

Carybdea sivickisi (Cnidaria: Cubozoa). Mar. Biol. 147, 477–483.

doi: 10.1007/s00227-005-1602-0

Lin, Y. C., Grigoriev, N. G., and Spencer, A. N. (2000). Wound healing in jellyfish

striated muscle involves rapid switching between two modes of cell motility

and a change in the source of regulatory calcium. Dev. Biol. 225, 87–100.

doi: 10.1006/dbio.2000.9807

López de Haro, M. S., Salgado, L. M., David, C. N., and Bosch, T. C. (1994). Hydra

tropomyosin TROP1 is expressed in head-specific epithelial cells and is a major

component of the cytoskeletal structure that anchors nematocytes. J. Cell. Sci.

107, 1403–1411.

Lu, J., Webb, R., Richardson, J. A., and Olson, E. N. (1999). MyoR:

a muscle-restricted basic helix-loop-helix transcription factor that

antagonizes the actions of MyoD. Proc. Natl. Acad. Sci. U.S.A. 96, 552–557.

doi: 10.1073/pnas.96.2.552

Mackie, G. O. (2004). Central neural circuitry in the jellyfish Aglantha: a model

“simple nervous system”. Neurosignals 13, 5–19. doi: 10.1159/000076155

Magie, C. R., Pang, K., and Martindale, M. Q. (2005). Genomic inventory and

expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev.

Genes Evol. 215, 618–630. doi: 10.1007/s00427-005-0022-y

Martin, V. J., and Chia, F.-S. (1982). Fine structure of a scyphozoan planula,

Cassiopeia xamnchana. Biol. Bull. 163, 320–328. doi: 10.2307/1541269

Martindale, M. Q., Pang, K., and Finnerty, J. R. (2004). Investigating the origins

of triploblasty: “mesodermal” gene expression in a diploblastic animal, the

sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa).

Development 131, 2463–2474. doi: 10.1242/dev.01119

Matus, D. Q., Pang, K., Daly, M., and Martindale, M. Q. (2007). Expression of Pax

gene family members in the anthozoan cnidarian, Nematostella vectensis. Evol.

Dev. 9, 25–38. doi: 10.1111/j.1525-142X.2006.00135.x

McClendon, J. F. (1906). On the locomotion of a sea anemone (Metridium

marginatum). Biol. Bull. 10, 66–67. doi: 10.2307/1535667

Miglietta, M. P., and Tommasa, D. L. (2000). Approaches to the ethology

of hydroids and medusae (Cnidaria, Hydrozoa). Sci. Mar. 64, 63–71.

doi: 10.3989/scimar.2000.64s163

Molkentin, J. D., Black, B. L., Martin, J. F., and Olson, E. N. (1995). Cooperative

activation of muscle gene expression by MEF2 and myogenic bHLH proteins.

Cell 83, 1125–1136. doi: 10.1016/0092-8674(95)90139-6

Momose, T., and Houliston, E. (2007). Two oppositely localised frizzled

RNAs as axis determinants in a cnidarian embryo. PLoS Biol. 5:e70.

doi: 10.1371/journal.pbio.0050070

Moumen, M., Chiche, A., Cagnet, S., Petit, V., Raymond, K., Faraldo, M. M.,

et al. (2011). The mammary myoepithelial cell. Int. J. Dev. Biol. 55, 763–771.

doi: 10.1387/ijdb.113385mm

Frontiers in Cell and Developmental Biology | www.frontiersin.org 19 January 2017 | Volume 4 | Article 157

https://doi.org/10.1098/rspb.2010.1301
https://doi.org/10.1002/dvdy.10227
https://doi.org/10.1152/physrev.00019.2004
https://doi.org/10.1016/j.tig.2010.01.008
https://doi.org/10.1002/jmor.1051840307
https://doi.org/10.1038/ncomms6486
https://doi.org/10.1186/2041-9139-2-12
https://doi.org/10.1186/1742-9994-11-44
https://doi.org/10.1016/S1095-6433(03)00168-5
https://doi.org/10.1016/j.cub.2013.03.057
https://doi.org/10.1242/jcs.097345
https://doi.org/10.1002/jmor.1051490405
https://doi.org/10.1126/science.1243529
https://doi.org/10.1186/s13227-015-0017-3
https://doi.org/10.1038/ncomms11694
https://doi.org/10.1016/j.cub.2007.08.017
https://doi.org/10.1161/01.ATV.0000065197.07635.BA
https://doi.org/10.1016/j.ydbio.2010.08.017
https://doi.org/10.1371/journal.pgen.1004590
https://doi.org/10.1242/dev.073221
https://doi.org/10.1002/wdev.222
https://doi.org/10.1038/nprot.2013.009
https://doi.org/10.1016/j.gde.2016.07.006
https://doi.org/10.1016/j.celrep.2014.11.009
https://doi.org/10.1093/sysbio/syp044
https://doi.org/10.1007/s00227-005-1602-0
https://doi.org/10.1006/dbio.2000.9807
https://doi.org/10.1073/pnas.96.2.552
https://doi.org/10.1159/000076155
https://doi.org/10.1007/s00427-005-0022-y
https://doi.org/10.2307/1541269
https://doi.org/10.1242/dev.01119
https://doi.org/10.1111/j.1525-142X.2006.00135.x
https://doi.org/10.2307/1535667
https://doi.org/10.3989/scimar.2000.64s163
https://doi.org/10.1016/0092-8674(95)90139-6
https://doi.org/10.1371/journal.pbio.0050070
https://doi.org/10.1387/ijdb.113385mm
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Leclère and Röttinger Cnidarian Muscle Diversity

Mueller, J. F. (1950). Some observations on the structure of Hydra, with

particular reference to the muscular system. Trans. Am. Microsc. Soc. 69, 133.

doi: 10.2307/3223402

Müller, P., Seipel, K., Yanze, N., Reber-Muller, S., Streitwolf-Engel, R., Stierwald,

M., et al. (2003). Evolutionary aspects of developmentally regulated helix-loop-

helix transcription factors in striatedmuscle of jellyfish.Dev. Biol. 255, 216–229.

doi: 10.1016/S0012-1606(02)00091-X

Müller, W. A., Teo, R., and Frank, U. (2004). Totipotent migratory stem cells in a

hydroid. Dev. Biol. 275, 215–224. doi: 10.1016/j.ydbio.2004.08.006

Nakanishi, N., Camara, A. C., Yuan, D. C., Gold, D. A., and Jacobs, D.

K. (2015). Gene expression data from the moon jelly, Aurelia, provide

insights into the evolution of the combinatorial code controlling animal

sense organ development. PLoS ONE 10:e0132544. doi: 10.1371/journal.pone.

0132544

Nakanishi, N., Yuan, D., and Jacobs, D. K. (2008). Early development, pattern, and

reorganization of the planula nervous system in Aurelia (Cnidaria, Scyphozoa).

Dev. Genes Evol. 218, 511–524. doi: 10.1007/s00427-008-0239-7

Nawrocki, A. M., Schuchert, P., and Cartwright, P. (2012). A novel mode of colony

formation in a hydrozoan through fusion of sexually generated individuals.

Curr. Biol. 22, 825–829. doi: 10.1016/j.cub.2012.03.026

Nawroth, J. C., Lee, H., Feinberg, A. W., Ripplinger, C. M., McCain, M. L.,

Grosberg, A., et al. (2012). A tissue-engineered jellyfish with biomimetic

propulsion. Nat. Biotechnol. 30, 792–797. doi: 10.1038/nbt.2269

Nebel, A., and Bosch, T. C. G. (2012). Evolution of human longevity: lessons from

Hydra. Aging 4, 730–731. doi: 10.18632/aging.100510

Normandin, D. (1960). Regeneration of Hydra from the endoderm. Science 132,

678. doi: 10.1126/science.132.3428.678

Okubo, N., Hayward, D. C., Forêt, S., and Ball, E. E. (2016). A comparative

view of early development in the corals Favia lizardensis, Ctenactis echinata,

and Acropora millepora - morphology, transcriptome, and developmental gene

expression. BMC Evol. Biol. 16:48. doi: 10.1186/s12862-016-0615-2

Passamaneck, Y. J., and Martindale, M. Q. (2012). Cell proliferation is necessary

for the regeneration of oral structures in the anthozoan cnidarian Nematostella

vectensis. BMC Dev. Biol. 12:34. doi: 10.1186/1471-213X-12-34

Passano, L. M. (1973). Behavioral control systems in medusae: a comparison

between hydro- and scyphomedusae. Pub. Seto Mar. Biol. Lab. 20, 615–645.

Passano, L. M., and McCullough, C. B. (1963). Pacemaker hierarchies controlling

the behaviour of hydras. Nature 1999, 1174–1175. doi: 10.1038/1991174a0

Passano, L. M., and McCullough, C. B. (1964). Co-ordinating systems and

behaviour in Hydra: I. Pacemaker system of the periodic contractions. J. Exp.

Biol. 41, 643–664.

Petersen, C. P., and Reddien, P. W. (2011). Polarized notum activation at wounds

inhibits Wnt function to promote planarian head regeneration. Science 332,

852–855. doi: 10.1126/science.1202143

Petersen, O. W., and van Deurs, B. (1989). Distinction between vascular smooth

muscle cells and myoepithelial cells in primary monolayer cultures of human

breast tissue. In Vitro Cell. Dev. Biol. 25, 259–266. doi: 10.1007/BF026

28464

Piraino, S., Zega, G., Di Benedetto, C., Leone, A., Dell’Anna, A., Pennati,

R., et al. (2011). Complex neural architecture in the diploblastic larva of

Clava multicornis (Hydrozoa, Cnidaria). J. Comp. Neurol. 519, 1931–1951.

doi: 10.1002/cne.22614

Plickert, G., Frank, U., and Müller, W. A. (2012). Hydractinia, a pioneering model

for stem cell biology and reprogramming somatic cells to pluripotency. Int. J.

Dev. Biol. 56, 519–534. doi: 10.1387/ijdb.123502gp

Potthoff, M. J., Arnold, M. A., McAnally, J., Richardson, J. A., Bassel-Duby, R.,

and Olson, E. N. (2007). Regulation of skeletal muscle sarcomere integrity

and postnatal muscle function by Mef2c. Mol. Cell Biol. 27, 8143–8151.

doi: 10.1128/MCB.01187-07

Potthoff, M. J., and Olson, E. N. (2007). MEF2: a central regulator

of diverse developmental programs. Development 134, 4131–4140.

doi: 10.1242/dev.008367

Putnam, N. H., Srivastava, M., Hellsten, U., Dirks, B., Chapman, J.,

Salamov, A., et al. (2007). Sea anemone genome reveals ancestral

eumetazoan gene repertoire and genomic organization. Science 317, 86–94.

doi: 10.1126/science.1139158

Quaglia, A. (1981). The muscular system of coelenterates. Ital. J. Zool. 48, 51–56.

doi: 10.1080/11250008109438715

Raikova, E. V., Ibragimov, A. Y., and Raikova, O. I. (2007). Muscular system of a

peculiar parasitic cnidarian Polypodium hydriforme: a phalloidin fluorescence

study. Tissue Cell 39, 79–87. doi: 10.1016/j.tice.2007.01.003

Reber-Müller, S., Spissinger, T., Schuchert, P., Spring, J., and Schmid, V. (1995).

An extracellular matrix protein of jellyfish homologous to mammalian fibrillins

forms different fibrils depending on the life stage of the animal. Dev. Biol. 169,

662–672. doi: 10.1006/dbio.1995.1177

Reber-Müller, S., Streitwolf-Engel, R., Yanze, N., Schmid, V., Stierwald, M.,

Erb, M., et al. (2006). BMP2/4 and BMP5-8 in jellyfish development and

transdifferentiation. Int. J. Dev. Biol. 50, 377–384. doi: 10.1387/ijdb.052085sr

Reddien, P. W. (2011). Constitutive gene expression and the specification

of tissue identity in adult planarian biology. Trends Genet. 27, 277–285.

doi: 10.1016/j.tig.2011.04.004

Reitzel, A., Burton, P., Krone, C., and Finnerty, J. (2007). Comparison of

developmental trajectories in the starlet sea anemone Nematostella vectensis:

embryogenesis, regeneration, and two forms of asexual fission. Invert. Biol. 126,

99–112. doi: 10.1111/j.1744-7410.2007.00081.x

Renfer, E., Amon-Hassenzahl, A., Steinmetz, P. R. H., and Technau, U.

(2010). A muscle-specific transgenic reporter line of the sea anemone,

Nematostella vectensis. Proc. Natl. Acad. Sci. U.S.A. 107, 104–108.

doi: 10.1073/pnas.0909148107

Rentzsch, F., Fritzenwanker, J. H., Scholz, C. B., and Technau, U. (2008). FGF

signalling controls formation of the apical sensory organ in the cnidarian

Nematostella vectensis. Development 135, 1761–1769. doi: 10.1242/dev.

020784

Rentzsch, F., and Technau, U. (2016). Genomics and development of Nematostella

vectensis and other anthozoans. Curr. Opin. Genet. Dev. 39, 63–70.

doi: 10.1016/j.gde.2016.05.024

Robson, E. A. (1961). The swimming response and its pacemaker system in the

anemone Stomphia coccinea. J. Exp. Biol. 38, 685–694.

Robson, E. A. (1963). The nerve-net of a swimming anemone, Stomphia coccinea.

J. Cell Sci. s3-104, 535–549.

Robson, E. A. (1966). “Swimming in Actiniaria,” in The Cnidaria and their

evolution, ed W. J. Reese (New York, NY: Academic Press), 333–360.

Rodriguez, E., Barbeitos, M. S., Brugler, M. R., Crowley, L. M., Grajales, A.,

Gusmão, L., et al. (2014). Hidden among sea anemones: the first comprehensive

phylogenetic reconstruction of the order Actiniaria (Cnidaria, Anthozoa,

Hexacorallia) reveals a novel group of hexacorals. PLoS ONE 9:e96998.

doi: 10.1371/journal.pone.0096998

Ross, D. M., and Sutton, L. (1961). The response of the sea anemone Calliactis

parasitica to shells of the hermit crab Pagurus bernhardus. Proc. R. Soc. Lond. B.

Biol. Sci. 155, 266–281. doi: 10.1098/rspb.1961.0070

Ross, D. M., and Sutton, L. (1967). Swimming sea anemones of

Puget Sound: swimming of Actinostola new species in response to

Stomphia coccinea. Science 155, 1419–1421. doi: 10.1126/science.155.

3768.1419

Röttinger, E., Dahlin, P., and Martindale, M. Q. (2012). A Framework for the

Establishment of a cnidarian gene regulatory network for “endomesoderm”

specification: the inputs of ß-Catenin/TCF signaling. PLoS Genet. 8:e1003164.

doi: 10.1371/journal.pgen.1003164

Ruggieri, R. D., Pierobon, P., and Kass-Simon, G. (2004). Pacemaker activity

in hydra is modulated by glycine receptor ligands. Comp. Biochem.

Physiol. A Mol. Integr. Physiol. 138, 193–202. doi: 10.1016/j.cbpb.2004.

03.015

Ruppert, E. E., Fox, R. S. and Barnes, R. D. (2004). Invertebrate Zoology:

A Functional Evolutionary Approach, 7th Edn. Belmont, CA: Thomson

Brooks/Cole.

Ryan, J. F., Burton, P. M., Mazza, M. E., Kwong, G. K., Mullikin, J. C., and

Finnerty, J. R. (2006). The cnidarian-bilaterian ancestor possessed at least 56

homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis.

Genome Biol. 7:R64. doi: 10.1186/gb-2006-7-7-r64

Ryan, J. F., Mazza, M. E., Pang, K., Matus, D. Q., Baxevanis, A. D., Martindale,

M. Q., et al. (2007). Pre-bilaterian origins of the Hox cluster and the Hox

code: evidence from the sea anemone,Nematostella vectensis. PLoS ONE 2:e153.

doi: 10.1371/journal.pone.0000153

Saina, M., and Technau, U. (2009). Characterization of myostatin/gdf8/11 in

the starlet sea anemone Nematostella vectensis. J. Exp. Zool. 312, 780–788.

doi: 10.1002/jez.b.21304

Frontiers in Cell and Developmental Biology | www.frontiersin.org 20 January 2017 | Volume 4 | Article 157

https://doi.org/10.2307/3223402
https://doi.org/10.1016/S0012-1606(02)00091-X
https://doi.org/10.1016/j.ydbio.2004.08.006
https://doi.org/10.1371/journal.pone.0132544
https://doi.org/10.1007/s00427-008-0239-7
https://doi.org/10.1016/j.cub.2012.03.026
https://doi.org/10.1038/nbt.2269
https://doi.org/10.18632/aging.100510
https://doi.org/10.1126/science.132.3428.678
https://doi.org/10.1186/s12862-016-0615-2
https://doi.org/10.1186/1471-213X-12-34
https://doi.org/10.1038/1991174a0
https://doi.org/10.1126/science.1202143
https://doi.org/10.1007/BF02628464
https://doi.org/10.1002/cne.22614
https://doi.org/10.1387/ijdb.123502gp
https://doi.org/10.1128/MCB.01187-07
https://doi.org/10.1242/dev.008367
https://doi.org/10.1126/science.1139158
https://doi.org/10.1080/11250008109438715
https://doi.org/10.1016/j.tice.2007.01.003
https://doi.org/10.1006/dbio.1995.1177
https://doi.org/10.1387/ijdb.052085sr
https://doi.org/10.1016/j.tig.2011.04.004
https://doi.org/10.1111/j.1744-7410.2007.00081.x
https://doi.org/10.1073/pnas.0909148107
https://doi.org/10.1242/dev.020784
https://doi.org/10.1016/j.gde.2016.05.024
https://doi.org/10.1371/journal.pone.0096998
https://doi.org/10.1098/rspb.1961.0070
https://doi.org/10.1126/science.155.3768.1419
https://doi.org/10.1371/journal.pgen.1003164
https://doi.org/10.1016/j.cbpb.2004.03.015
https://doi.org/10.1186/gb-2006-7-7-r64
https://doi.org/10.1371/journal.pone.0000153
https://doi.org/10.1002/jez.b.21304
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Leclère and Röttinger Cnidarian Muscle Diversity

Santagata, S., Resh, C., Hejnol, A., Martindale, M. Q., and Passamaneck,

Y. J. (2012). Development of the larval anterior neurogenic domains of

Terebratalia transversa (Brachiopoda) provides insights into the diversification

of larval apical organs and the spiralian nervous system. EvoDevo 3:3.

doi: 10.1186/2041-9139-3-3

Satterlie, R. A. (2008). Control of swimming in the hydrozoan jellyfish Aequorea

victoria: subumbrellar organization and local inhibition. J. Exp. Biol. 211,

3467–3477. doi: 10.1242/jeb.018952

Satterlie, R. A. (2011). Do jellyfish have central nervous systems? J. Exp. Biol. 214,

1215–1223. doi: 10.1242/jeb.043687

Satterlie, R. A., andNolen, T. G. (2001).Why do cubomedusae have only four swim

pacemakers? J. Exp. Biol. 204, 1413–1419.

Satterlie, R. A., Thomas, K. S., and Gray, G. C. (2005). Muscle organization of the

cubozoan jellyfish Tripedalia cystophora Conant 1897. Biol. Bull. 209, 154–163.

doi: 10.2307/3593133

Schmid, V. (1974). Structural alterations in cultivated striated muscle cells from

anthomedusae (Hydrozoa). A metaplasiaic event. Exp. Cell Res. 86, 193–198.

doi: 10.1016/0014-4827(74)90672-7

Schmid, V. (1975). Cell transformation in isolated striated muscle of

hydromedusae independent of DNA synthesis. Exp. Cell Res. 94, 401–408.

doi: 10.1016/0014-4827(75)90506-6

Schmid, V. (1976). The transformational potential of striated muscle in

hydromedusae. Dev. Biol. 49, 508–517. doi: 10.1016/0012-1606(76)90192-5

Schmid, V. (1978). Striated muscle: influence of an acellular layer on the

maintenance of muscle differentiation in anthomedusa. Dev. Biol. 64, 48–59.

doi: 10.1016/0012-1606(78)90059-3

Schmid, V. (1988). The potential for transdifferentiation and regeneration

of isolated striated muscle of medusae in vitro. Cell Differ. 22, 173–182.

doi: 10.1016/0045-6039(88)90009-7

Schmid, V. (1992). Transdifferentiation in Medusae. Int. Rev. Cytol. 142, 213–261.

doi: 10.1016/S0074-7696(08)62077-X

Schmid, V., and Alder, H. (1984). Isolated, mononucleated, striated muscle can

undergo pluripotent transdifferentiation and form a complex regenerate. Cell

38, 801–809. doi: 10.1016/0092-8674(84)90275-7

Schmid, V., Alder, H., Plickert, G., and Weber, C. (1988). Transdifferentiation

from striated muscle of medusae in vitro. Cell Differ. 25, 137–146.

doi: 10.1016/0922-3371(88)90110-4

Schmid, V., Schmid, B., Schneider, B., Stidwill, R., and Baker, G. (1976). Factors

effecting manubrium-regeneration in hydromedusae (Coelenterata). Wilhelm

Roux Arch. Entwickl. Mech. Org. 179, 41–56. doi: 10.1007/BF00857639

Schmid, V., and Tardent, P. (1971). The reconstitutional performances

of the Leptomedusa Campanularia jonstoni. Mar. Biol. 8, 99–104.

doi: 10.1007/BF00350924

Schmid, V., Wydler, M., and Alder, H. (1982). Transdifferentiation and

regeneration in vitro. Dev. Biol. 92, 476–488. doi: 10.1016/0012-1606(82)

90193-2

Schmidt-Rhaesa, A. (2007). The Evolution of Organ Systems. Oxford University

Press.

Schuchert, P., Müller, S. R., and Schmid, V. (1993). Life stage specific expression of

a myosin heavy chain in the hydrozoan Podocoryne carnea. Differentiation 54,

11–18. doi: 10.1111/j.1432-0436.1993.tb00654.x

Seipel, K., and Schmid, V. (2005). Evolution of striated muscle: jellyfish and

the origin of triploblasty. Dev. Biol. 282, 14–26. doi: 10.1016/j.ydbio.2005.

03.032

Seipel, K., and Schmid, V. (2006). Mesodermal anatomies in cnidarian polyps and

medusae. Int. J. Dev. Biol. 50, 589–599. doi: 10.1387/ijdb.062150ks

Seipel, K., Yanze, N., and Schmid, V. (2004). The germ line and somatic stem

cell gene Cniwi in the jellyfish Podocoryne carnea. Int. J. Dev. Biol. 48, 1–7.

doi: 10.1387/ijdb.15005568

Seybold, A., Salvenmoser, W., and Hobmayer, B. (2016). Sequential development

of apical-basal and planar polarities in aggregating epitheliomuscular cells of

Hydra. Dev. Biol. 412, 148–159. doi: 10.1016/j.ydbio.2016.02.022

Shackleton, M., Vaillant, F., Simpson, K. J., Stingl, J., Smyth, G. K., Asselin-Labat,

M.-L., et al. (2006). Generation of a functional mammary gland from a single

stem cell. Nature 439, 84–88. doi: 10.1038/nature04372

Shimizu, H., Koizumi, O., and Fujisawa, T. (2004). Three digestive movements

in Hydra regulated by the diffuse nerve net in the body column. J.

Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 190, 623–630.

doi: 10.1007/s00359-004-0518-3

Shimizu, H., Sawada, Y., and Sugiyama, T. (1993). Minimum tissue size required

for Hydra regeneration. Dev. Biol. 155, 287–296. doi: 10.1006/dbio.1993.1028

Shinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K.,

Tanaka, M., et al. (2011). Using the Acropora digitifera genome to

understand coral responses to environmental change. Nature 476, 320–323.

doi: 10.1038/nature10249

Shpirer, E., Chang, E. S., Diamant, A., Rubinstein, N., Cartwright, P., and

Huchon, D. (2014). Diversity and evolution of myxozoan minicollagens and

nematogalectins. BMC Evol. Biol. 14:205. doi: 10.1186/s12862-014-0205-0

Silva, C. A. B., Martinez, E. F., Demasi, A. P. D., Altemani, A., da Silveira

Bossonaro, J. P., Araújo, N. S., et al. (2015). Cellular senescence and autophagy

of myoepithelial cells are involved in the progression of in situ areas of

carcinoma ex-pleomorphic adenoma to invasive carcinoma. An in vitromodel.

J. Cell Commun. Signal. 9, 255–265. doi: 10.1007/s12079-015-0291-9

Simionato, E., Ledent, V., Richards, G., Thomas-Chollier, M., Kerner, P.,

Coornaert, D., et al. (2007). Origin and diversification of the basic helix-loop-

helix gene family in metazoans: insights from comparative genomics. BMC

Evol. Biol. 7:33. doi: 10.1186/1471-2148-7-33

Singla, C. L. (1978). Locomotion and neuromuscular system of Aglantha digitale.

Cell Tissue Res. 188, 317–327. doi: 10.1007/BF00222640

Sinigaglia, C., Busengdal, H., Leclère, L., Technau, U., and Rentzsch, F. (2013). The

bilaterian head patterning gene six3/6 controls aboral domain development in

a cnidarian. PLoS Biol. 11:e1001488. doi: 10.1371/journal.pbio.1001488

Sleeman, K. E., Kendrick, H., Robertson, D., Isacke, C. M., Ashworth, A., and

Smalley, M. J. (2007). Dissociation of estrogen receptor expression and in

vivo stem cell activity in the mammary gland. J. Cell Biol. 176, 19–26.

doi: 10.1083/jcb.200604065

Sopel, M. (2010). The myoepithelial cell: its role in normal mammary glands and

breast cancer. Folia Morphol. 69, 1–14.

Spicer, D. B., Rhee, J., Cheung, W. L., and Lassar, A. B. (1996). Inhibition of

myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist.

Science 272, 1476–1480. doi: 10.1126/science.272.5267.1476

Spring, J., Yanze, N., Jösch, C., Middel, A. M., Winninger, B., and Schmid, V.

(2002). Conservation of Brachyury, Mef2, and Snail in the myogenic lineage

of jellyfish: a connection to the mesoderm of Bilateria. Dev. Biol. 244, 372–384.

doi: 10.1006/dbio.2002.0616

Spring, J., Yanze, N., Middel, A. M., Stierwald, M., Gröger, H., and Schmid, V.

(2000). Themesoderm specification factor twist in the life cycle of jellyfish.Dev.

Biol. 228, 363–375. doi: 10.1006/dbio.2000.9956

Steinmetz, P. R. H., Kraus, J. E. M., Larroux, C., Hammel, J. U., Amon-Hassenzahl,

A., Houliston, E., et al. (2012). Independent evolution of striated muscles in

cnidarians and bilaterians. Nature 487, 231–234. doi: 10.1038/nature11180

Stierwald, M., Yanze, N., Bamert, R. P., Kammermeier, L., and Schmid, V.

(2004). The Sine oculis/Six class family of homeobox genes in jellyfish with

and without eyes: development and eye regeneration. Dev. Biol. 274, 70–81.

doi: 10.1016/j.ydbio.2004.06.018

Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., et al. (2006).

Purification and unique properties of mammary epithelial stem cells. Nature

439, 993–997. doi: 10.1038/nature04496

Stöckl, A. L., Petie, R., and Nilsson, D.-E. (2011). Setting the pace: new insights into

central pattern generator interactions in box jellyfish swimming. PLoS ONE

6:e27201. doi: 10.1371/journal.pone.0027201

Susic-Jung, L., Hornbruch-Freitag, C., Kuckwa, J., Rexer, K.-H., Lammel,

U., and Renkawitz-Pohl, R. (2012). Multinucleated smooth muscles and

mononucleated as well as multinucleated striated muscles develop during

establishment of the male reproductive organs ofDrosophila melanogaster.Dev.

Biol. 370, 86–97. doi: 10.1016/j.ydbio.2012.07.022

Swain, T. D., Schellinger, J. L., Strimaitis, A. M., and Reuter, K. E. (2015).

Evolution of anthozoan polyp retraction mechanisms: convergent functional

morphology and evolutionary allometry of the marginal musculature in

order Zoanthidea (Cnidaria: Anthozoa: Hexacorallia). BMC Evol. Biol. 15:123.

doi: 10.1186/s12862-015-0406-1

Takaku, Y., Hwang, J. S., Wolf, A., Böttger, A., Shimizu, H., David, C. N., et al.

(2014). Innexin gap junctions in nerve cells coordinate spontaneous contractile

behavior in Hydra polyps. Sci. Rep. 4:3573. doi: 10.1038/srep03573

Frontiers in Cell and Developmental Biology | www.frontiersin.org 21 January 2017 | Volume 4 | Article 157

https://doi.org/10.1186/2041-9139-3-3
https://doi.org/10.1242/jeb.018952
https://doi.org/10.1242/jeb.043687
https://doi.org/10.2307/3593133
https://doi.org/10.1016/0014-4827(74)90672-7
https://doi.org/10.1016/0014-4827(75)90506-6
https://doi.org/10.1016/0012-1606(76)90192-5
https://doi.org/10.1016/0012-1606(78)90059-3
https://doi.org/10.1016/0045-6039(88)90009-7
https://doi.org/10.1016/S0074-7696(08)62077-X
https://doi.org/10.1016/0092-8674(84)90275-7
https://doi.org/10.1016/0922-3371(88)90110-4
https://doi.org/10.1007/BF00857639
https://doi.org/10.1007/BF00350924
https://doi.org/10.1016/0012-1606(82)90193-2
https://doi.org/10.1111/j.1432-0436.1993.tb00654.x
https://doi.org/10.1016/j.ydbio.2005.03.032
https://doi.org/10.1387/ijdb.062150ks
https://doi.org/10.1387/ijdb.15005568
https://doi.org/10.1016/j.ydbio.2016.02.022
https://doi.org/10.1038/nature04372
https://doi.org/10.1007/s00359-004-0518-3
https://doi.org/10.1006/dbio.1993.1028
https://doi.org/10.1038/nature10249
https://doi.org/10.1186/s12862-014-0205-0
https://doi.org/10.1007/s12079-015-0291-9
https://doi.org/10.1186/1471-2148-7-33
https://doi.org/10.1007/BF00222640
https://doi.org/10.1371/journal.pbio.1001488
https://doi.org/10.1083/jcb.200604065
https://doi.org/10.1126/science.272.5267.1476
https://doi.org/10.1006/dbio.2002.0616
https://doi.org/10.1006/dbio.2000.9956
https://doi.org/10.1038/nature11180
https://doi.org/10.1016/j.ydbio.2004.06.018
https://doi.org/10.1038/nature04496
https://doi.org/10.1371/journal.pone.0027201
https://doi.org/10.1016/j.ydbio.2012.07.022
https://doi.org/10.1186/s12862-015-0406-1
https://doi.org/10.1038/srep03573
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive


Leclère and Röttinger Cnidarian Muscle Diversity

Tamgadge, S., Tamgadge, A., and Satheesan, E. (2013). Myoepithelial cell–A

morphologic diversity–A review. Res. Rev. J. Dent. 4, 5–13.

Technau, U., Laue, von, C. C., Rentzsch, F., Luft, S., Hobmayer, B., Bode, H. R.,

et al. (2000). Parameters of self-organization in Hydra aggregates. Proc. Natl.

Acad. Sci. U.S.A. 97, 12127–12131. doi: 10.1073/pnas.97.22.12127

Technau, U., and Steele, R. E. (2011). Evolutionary crossroads in developmental

biology: cnidaria. Development 138, 1447–1458. doi: 10.1242/dev.048959

Tiffon, J. (1987). “Ordre des Cérianthaires” in Traité de Zoologie: Cnidaires,

Ctenaires, Vol. III Fascicule 3, ed P. P. Grassé (Paris: Masson), 211–256.

Tiozzo, S., and Copley, R. R. (2015). Reconsidering regeneration in metazoans: an

evo-devo approach. Front. Ecol. Evol. 3:67. doi: 10.3389/fevo.2015.00067

Trembley, A. (1744). Mémoires pour servir à l’histoire d‘un genre de polypes d’eau

douce, à bras en forme de cornes. Leiden: Chen Jean and Herman Verbeek.

Trevino, M., Stefanik, D. J., Rodriguez, R., Harmon, S., and Burton, P. M. (2011).

Induction of canonical Wnt signaling by alsterpaullone is sufficient for oral

tissue fate during regeneration and embryogenesis in Nematostella vectensis.

Dev. Dyn. 240, 2673–2679. doi: 10.1002/dvdy.22774

Van Praët, M., Doumenc, D., and Pax, F. (1987). “Ordre des Antipathaires” in

Traité de Zoologie: Cnidaires, Ctenaires, vol. III Fascicule 3, ed P. P. Grassé

(Paris: Masson), 189–210.

Van Wolfswinkel, J. C. (2014). Piwi and potency: PIWI proteins in animal stem

cells and regeneration. Integr. Comp. Biol. 54, 700–713. doi: 10.1093/icb/icu084

Vicente-Manzanares, M., Ma, X., Adelstein, R. S., and Horwitz, A. R. (2009). Non-

muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev.

Mol. Cell. Biol. 10, 778–790. doi: 10.1038/nrm2786

Wang, D., Chang, P. S., Wang, Z., Sutherland, L., Richardson, J. A., Small,

E., et al. (2001). Activation of cardiac gene expression by myocardin,

a transcriptional cofactor for serum response factor. Cell 105, 851–862.

doi: 10.1016/S0092-8674(01)00404-4

Wang, Z., Wang, D.-Z., Pipes, G. C. T., and Olson, E. N. (2003). Myocardin is a

master regulator of smoothmuscle gene expression. Proc. Natl. Acad. Sci. U.S.A.

100, 7129–7134. doi: 10.1073/pnas.1232341100

Weber, C., Alder, H., and Schmid, V. (1987). In vitro transdifferentiation of

striated muscle to smooth muscle cells of a medusa. Cell Differ. 20, 103–115.

doi: 10.1016/0045-6039(87)90424-6

Wenger, Y., Buzgariu, W., and Galliot, B. (2016). Loss of neurogenesis in Hydra

leads to compensatory regulation of neurogenic and neurotransmission genes

in epithelial cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371:20150040.

doi: 10.1098/rstb.2015.0040

Werner, B., Chapman, D. M., and Cutress, C. E. (1976). Muscular and

nervous systems of the cubopolyp (Cnidaria). Experientia 32, 1047–1049.

doi: 10.1007/BF01933964

West, D. L. (1978). The epitheliomuscular cell of Hydra: Its fine structure,

three-dimensional architecture and relation to morphogenesis. Tissue Cell 10,

629–646. doi: 10.1016/0040-8166(78)90051-4

Westfall, J. A. (1973). Ultrastructural evidence for neuromuscular systems

in coelenterates. Integr. Comp. Biol. 13, 237–246. doi: 10.1093/icb/13.

2.237

Westfall, J. A., Yamataka, S., and Enos, P. D. (1971). Ultrastructural evidence of

polarized synapses in the nerve net of Hydra. J. Cell Biol. 51, 318–323.

Westlake, H. E., and Page, L. R. (2016). Muscle and nerve net organization

in stalked jellyfish (Medusozoa: Staurozoa). J. Morphol. 278, 29–49.

doi: 10.1002/jmor.20617

Widersten, B. (1966). On the development of septal muscles, supporting fibrils

and periderm in the scyphistoma of semaeostome Scyphozoa. Arkiv. Zool. 18,

567–575.

Williams, R. B. (2003). Locomotory behaviour and functional morphology of

Nemalostella vectensis (Anthozoa: Actiniaria: Edwardsiidae): a contribution to

a comparative study of burrowing behaviour in athenarian sea anemones. Zool.

Verhandel. 345, 437–484.

Witchley, J. N., Mayer, M., Wagner, D. E., Owen, J. H., and Reddien, P. W.

(2013). Muscle cells provide instructions for planarian regeneration. Cell Rep.

4, 633–641. doi: 10.1016/j.celrep.2013.07.022

Wittlieb, J., Khalturin, K., Lohmann, J. U., Anton-Erxleben, F., and Bosch, T.

C. G. (2006). Transgenic Hydra allow in vivo tracking of individual stem

cells during morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 103, 6208–6211.

doi: 10.1073/pnas.0510163103

Yanze, N., Gröger, H., Müller, P., and Schmid, V. (1999). Reversible inactivation of

cell-type-specific regulatory and structural genes in migrating isolated striated

muscle cells of jellyfish. Dev. Biol. 213, 194–201. doi: 10.1006/dbio.1999.9347

Yentsch, C. S., and Pierce, D. C. (1955). “Swimming” anemone from Puget Sound.

Science 122, 1231–1233. doi: 10.1126/science.122.3182.1231

Zapata, F., Goetz, F. E., Smith, S. A., Howison, M., Siebert, S., Church, S. H.,

et al. (2015). Phylogenomic analyses support traditional relationships within

cnidaria. PLoS ONE 10:e0139068. doi: 10.1371/journal.pone.0139068

Zrzavý, J., and Hypša, V. (2003). Myxozoa, Polypodium, and the origin

of the Bilateria: the phylogenetic position of “Endocnidozoa” in

light of the rediscovery of Buddenbrockia. Cladistics 198, 164–169.

doi: 10.1016/S0748-3007(03)00007-0

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Leclère and Röttinger. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 22 January 2017 | Volume 4 | Article 157

https://doi.org/10.1073/pnas.97.22.12127
https://doi.org/10.1242/dev.048959
https://doi.org/10.3389/fevo.2015.00067
https://doi.org/10.1002/dvdy.22774
https://doi.org/10.1093/icb/icu084
https://doi.org/10.1038/nrm2786
https://doi.org/10.1016/S0092-8674(01)00404-4
https://doi.org/10.1073/pnas.1232341100
https://doi.org/10.1016/0045-6039(87)90424-6
https://doi.org/10.1098/rstb.2015.0040
https://doi.org/10.1007/BF01933964
https://doi.org/10.1016/0040-8166(78)90051-4
https://doi.org/10.1093/icb/13.2.237
https://doi.org/10.1002/jmor.20617
https://doi.org/10.1016/j.celrep.2013.07.022
https://doi.org/10.1073/pnas.0510163103
https://doi.org/10.1006/dbio.1999.9347
https://doi.org/10.1126/science.122.3182.1231
https://doi.org/10.1371/journal.pone.0139068
https://doi.org/10.1016/S0748-3007(03)00007-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cell_and_Developmental_Biology
http://www.frontiersin.org
http://www.frontiersin.org/Cell_and_Developmental_Biology/archive

	Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration
	Introduction
	Cnidarian Muscle Functions
	Muscle Functions at the Planula Stage
	Muscle Functions at the Polyp Stage
	Muscle Functions at the Medusa Stage

	Cnidarian Muscle Types
	Muscle Systems in Hydrozoans
	Muscle Systems in Other Medusozoans
	Muscle Systems in Anthozoans
	Muscle Systems in Endocnidozoans

	Ontogeny of Cnidarian Muscles
	Molecular Characterization of Muscles in Cnidarians
	Myogenic Genes
	Structural Muscle Genes

	Origin and Evolution of Cnidarian Muscles
	Muscle Plasticity and Regeneration in Cnidarians
	Epithelial Muscle Plasticity in Hydra Polyps
	Striated Muscle Transdifferentiation in Podocoryna
	Muscle Plasticity during Jellyfish Self-Repair
	Muscle and Regeneration in Nematostella

	Conclusion and Perspectives
	Open Questions in Cnidarian Muscle Development and Regeneration
	Understanding Muscle Polarization in Cnidarians
	Cnidarians as New Models to Study Myoepithelial Development/Plasticity
	Potential Roles of Muscles in Cnidarian Regeneration

	Author Contributions
	Acknowledgments
	References


