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MultiVERSE: a multiplex 
and multiplex‑heterogeneous 
network embedding approach
Léo Pio‑Lopez1*, Alberto Valdeolivas2, Laurent Tichit1, Élisabeth Remy1 & Anaïs Baudot3,4

Network embedding approaches are gaining momentum to analyse a large variety of networks. 
Indeed, these approaches have demonstrated their effectiveness in tasks such as community 
detection, node classification, and link prediction. However, very few network embedding methods 
have been specifically designed to handle multiplex networks, i.e. networks composed of different 
layers sharing the same set of nodes but having different types of edges. Moreover, to our knowledge, 
existing approaches cannot embed multiple nodes from multiplex‑heterogeneous networks, i.e. 
networks composed of several multiplex networks containing both different types of nodes and edges. 
In this study, we propose MultiVERSE, an extension of the VERSE framework using Random Walks 
with Restart on Multiplex (RWR‑M) and Multiplex‑Heterogeneous (RWR‑MH) networks. MultiVERSE 
is a fast and scalable method to learn node embeddings from multiplex and multiplex‑heterogeneous 
networks. We evaluate MultiVERSE on several biological and social networks and demonstrate 
its performance. MultiVERSE indeed outperforms most of the other methods in the tasks of link 
prediction and network reconstruction for multiplex network embedding, and is also efficient in link 
prediction for multiplex‑heterogeneous network embedding. Finally, we apply MultiVERSE to study 
rare disease‑gene associations using link prediction and clustering. MultiVERSE is freely available on 
github at https:// github. com/ Lpiol/ Multi VERSE.

Networks are powerful representations to describe, visualize, and analyse complex systems in many domains. 
Recently, machine learning techniques started to be used on networks, but these techniques have been devel-
oped for vector data and cannot be directly applied. A major challenge thus pertains to the encoding of high-
dimensional graph-based data into a feature vector. Network embedding (also known as graph representation 
learning) provides a solution to this challenge and allows opening the complete machine learning toolbox for 
network analysis.

The high efficiency of network embedding approaches has been demonstrated in a wide range of applications 
such as community detection, node classification, or link prediction. Moreover, network embedding approaches 
can exploit very large graphs, with millions of  nodes1. Thus, with the explosion of big data, network embeddings 
have been used to study many different networks, such as  social2,  neuronal3 and molecular  networks4.

So far, network embedding approaches have been mainly applied to monoplex networks (i.e. single networks 
composed of one type of nodes and edges)1,5,6. Current technological advances however generate a large spectrum 
of data, which form large heterogeneous datasets. Single monoplex networks are not suited to represent such 
diversity. Therefore, multi-layer networks, including  multiplex7 and multiplex-heterogeneous8 networks have 
been proposed to handle these richer sets of relationships.

Multiplex networks are composed of several layers, each layer being a monoplex network. All the layers 
share the same set of nodes, but their edges belong to different categories (Fig. 1A). Multiplex representation is 
pertinent to depict the diversity of interactions between the same nodes. For instance, in a molecular multiplex 
network, the different layers could represent physical interactions between proteins, their belonging to the same 
molecular complexes or the correlation of expression of the genes across different tissues. Analogously, in social 
multiplex networks, a person can belong to different layers describing different types of relationships, such as 
friendships or common interests.

A heterogeneous network is a multi-layer network in which each layer is a monoplex network with its specific 
type of nodes and edges (Fig. 1B). The two monoplex networks are connected by bipartite interactions, i.e. edges 
linking the different types of nodes belonging to the two monoplex networks. Such heterogeneous networks have 
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been studied in different research fields. For example, in network medicine, a drug-protein target heterogeneous 
network has been constructed with a drug-drug similarity monoplex network, a protein-protein interaction 
monoplex network and bipartite interactions between drugs and their target  proteins9. In social science, cita-
tion networks are constructed with author-author and document-document monoplex networks connected by 
author-documents bipartite interactions, as  in10.

A multiplex-heterogeneous network is a combination of heterogeneous and multiplex networks by connecting 
several multiplex networks through bipartite interactions (Fig. 1C). The multiplex-heterogeneous structure is 
expected to provide a richer view on  biological8,  social11 or other real-world systems describing complex rela-
tions among different components.

Recently, different studies proposed embedding approaches for multiplex  networks11–14 and heterogeneous 
 networks15,16. A recent method uses multiplex-heterogeneous information to embed one category of  nodes17. 
However, to our knowledge, no embedding methods are specifically dedicated to the embedding of nodes of dif-
ferent types from multiplex-heterogeneous networks. In this paper, we present MultiVERSE, a fast, scalable and 
versatile embedding approach to learn node embeddings on multiplex and multiplex-heterogeneous networks. 
MultiVERSE is based on the VERSE  framework18, and coupled with Random Walks with Restart on Multiplex 
(RWR-M) and on Multiplex-heterogeneous (RWR-MH)  networks8. Our contributions are the following:

Figure 1.  Illustrations of the different types of networks. (A) A multiplex network. The different layers 
share the same set of nodes but different types of edges. (B) A heterogeneous network. The two networks are 
composed of different types of nodes and edges, connected by bipartite interactions (black dashed lines). (C) A 
multiplex-heterogeneous network composed of two multiplex networks. The multiplex networks are connected 
by bipartite interactions (dashed lines). For the sake of simplicity, the figure does not represent all the possible 
bipartite interactions (each layer of a given multiplex is in reality linked with every layer of the other multiplex).
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• We propose an evaluation protocol in order to evaluate multiplex network embedding. It is based on 7 data-
sets in 4 disciplines (biological, neuronal, co-authorship and social networks), 6 embedding methods (and 4 
additional link prediction heuristics), and two tasks: link prediction and a new protocol approach based on 
network reconstruction.

• We demonstrate the higher performance of MultiVERSE over state-of-the-art network embedding methods 
in the tasks of link prediction and network reconstruction for multiplex network embedding.

• We propose, to our knowledge, the first multiplex-heterogeneous network embedding method (with an 
embedding of the different types of nodes).

• We propose a method to evaluate multiplex-heterogeneous network embedding on link prediction. We dem-
onstrate the effectiveness of MultiVERSE on this task on two biological multiplex-heterogeneous networks.

• We present a biological application of MultiVERSE for the study of gene-disease associations using link 
prediction and clustering.

Related work in network embedding
Network embedding relies on two key components: a similarity measure between pairs of nodes in the original 
network and a learning algorithm. Given a network and a similarity measure, the aim of network embedding is 
to learn vector representations of the nodes in a lower dimension space, while preserving as much as possible 
the similarity. In the next sections we will present the state-of-the-art of monoplex, multiplex and multiplex-
heterogeneous network embedding.

Monoplex network embedding. Many network embedding methods have been recently developed to 
study a large variety of networks, from biological to social ones. The classical method  deepwalk5 inspired a series 
of methods such as  node2vec6 and LINE (for Large-scale Information Network Embedding)19. Deepwalk uses 
truncated random walks to compute the node similarity in the network. Then, a combination of the skip-gram 
learning  algorithm20 and hierarchical  softmax21 is used to learn the graph representations. Skip-gram is a model 
based on natural language processing. It intends to maximize the probability of co-occurrence of nodes within a 
walk, focusing on a window, i.e. a section of the path around the node.  Node2vec6 upgrades deepwalk by intro-
ducing negative sampling during the learning  phase22. Moreover, node2vec allows biasing the random walks 
towards depth or breadth-first random walks, in order to tune the exploration of the search space.  LINE19 follows 
a different approach to optimize the embedding: it computes the node similarity using an adjacency-based prox-
imity measure in association with negative sampling. Other embedding methods are based on matrix-factoriza-
tion, such as  GraRep23 or  HOPE24. It has been shown that random-walk based methods for network embedding 
can be expressed in terms of matrix-factorization25. Another class of methods are based on neural networks such 
as  GraphSAGE26, graph convolutional networks (GCN)27 or graph auto-encoders (GAE/VGAE)28.

These embedding methods have been applied to link prediction or node labelling tasks. Their performance 
rely upon multiple criteria such as the size of the network, its density, the embedding dimension or the evalua-
tion  metrics29. Overall, they have been designed to handle monoplex networks. However, we now have access to 
a richer representation of complex systems as multiplex networks, and some recent methods have explored the 
embedding of such multiplex networks.

Multiplex network embedding. The most straightforward approach to deal with multiplex networks is to 
merge the different layers into a monoplex  network30. However, this merging creates a new network with its own 
topology, and loses the topological features of the individual layers. This new topology is logically biased towards 
the initial topology of the denser  layers31. Different network embedding methods have been introduced in order 
to avoid merging multiplex network layers and take advantage of the multiplex  structure11–14. Overall, these 
approaches are based on truncated random walks to compute the similarity in the multiplex network.  Ohmnet13 
relies on  node2vec6 and requires the definition of a hierarchy of layers to model dependencies between them. 
But usually, this layer hierarchy information is not known or easy to establish, particularly for multiplex net-
works such as social or molecular networks. The Scalable Multiplex Network Embedding (MNE)  method12 is 
also based on  node2vec6. For each network node, it extracts one high-dimensional common embedding shared 
across all the layers of the multiplex network. In addition, MNE computes a lower-dimensional embedding for 
every node in each layer of the multiplex network. Multi-node2vec14 is another method based on node2vec that 
constructs the multiplex embedding with the random walks jumping from one layer to another. Multi-Net11 also 
proposes a random walks procedure in the multiplex network, inspired  from32. Similarly to multi-node2vec, the 
random walks can jump from one layer to another. Multi-Net learns the embeddings using stochastic gradient 
descent. The performances of  Ohmnet13, Multi-net11 and  MNE12 have been compared in the context of network 
 reconstruction11. In this task, the aim is to reconstruct one layer of the multiplex network from the embeddings 
of the other layers. The results show better performances for Multi-net on a set of social and biological multiplex 
 networks11.

Multiplex‑heterogeneous network embedding. Some methods can perform the embedding of het-
erogeneous  networks15,16. A famous approach is  metapath2vec15. It extends skip-gram to learn node embed-
dings for heterogeneous networks using meta-paths, which are predefined composite relations between different 
types of nodes. For instance, in the context of a drug-protein target heterogeneous network, the meta-path 
drug-protein target-drug in the network could bias the random walks to extract the information related to drug 
combinations.

Nevertheless, to our knowledge, no approach is specifically dedicated to the embedding of different types 
of nodes from multiplex-heterogeneous networks. In the next section, we present formally MultiVERSE, a new 
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method for multiplex and multiplex-heterogeneous network embedding relying on  VERSE18 and coupled with 
Random Walks with Restart extended to Multiplex (RWR-M) and Multiplex-Heterogeneous graphs (RWR-MH)8.

MultiVERSE
In this section, we present the key components of MultiVERSE: the VERSE general framework, the learning 
objective, and our particular implementation with Random Walk with Restart for Multiplex networks (RWR-M) 
and Random Walk with Restart for Multiplex-Heterogeneous networks (RWR-MH) (Fig. 2). We finally describe 
the MultiVERSE algorithm.

VERSE: a general framework for network embedding. The aim of VERSE network embedding is 
to learn a low-dimensional nonlinear representation wi of the nodes vi to a d-dimensional continuous vector, 
where d < n , using Kullback-Leibler  optimization18. We denote d the dimension of the embedding space, and 
n the dimension of the adjacency matrix. VERSE was originally developed for the embedding of monoplex 
 networks18. The VERSE framework is nevertheless general and versatile enough to be expanded to multiplex and 
multiplex-heterogeneous networks.

Similarity distributions. Consider an undirected graph G = (V ,E) with V = {vi , i = 1, . . . , n} the set of nodes 
( |V | = n ), and E ⊆ V × V  the set of edges, and simG : V × V → R a given similarity measure on G such that

Hence, the similarity for any node v is expressed as a probability distribution simG(v, .).
We note wi the vector representation of node i in the embedding space (W is a (n× d)-matrix). The (non-

normalized) similarity between two nodes embeddings wu and wv is defined as the dot product wu · w
T
v  . Using 

the softmax function, we obtain the normalized similarity distribution in the embedding or vector space:

Finally, the output of any network embedding method is a matrix of embeddings W such as, ∀v ∈ V  , 
simEmb(v, .) ≈ simG(v, .) . This requires a learning phase, which is described in the next section.

Learning objective. This step updates the embeddings at each iteration in order to project simG into the embed-
ding space leading to the preservation of the topological structure of the graph. In the framework of VERSE, 

(1)∀v ∈ V ,
∑

u∈V

simG(v, u) = 1 .

(2)simEmb(v, .) =
exp(wv · w

T )∑n
i=1 exp(wv · wi)

.

Figure 2.  Overview of the MultiVERSE pipeline. Starting from a multiplex-heterogeneous network, we 
represent its structure through an adjacency matrix (size |V | × |V | ); we then compute a similarity matrix using 
Random Walk with Restart algorithm, and apply an optimized version of the VERSE algorithm to compute the 
embeddings. The resulting matrix of embeddings will be used for the applications.
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as simEmb and simG are both probability distributions, this optimization phase aims to minimize the Kullback-
Leibler divergence (KL-divergence) between these two similarities:

We can keep only the parts related to simEmb as it is the target to optimize and simG is constant. This leads to the 
following objective function:

simEmb is defined as a softmax function and needs to be normalized over all the nodes of the graph at each itera-
tion, which is computationally heavy. Therefore, following the VERSE  algorithm18, we used Noise Contrastive 
Estimation (NCE) to compute this objective  function33,34. NCE trains a binary classifier to distinguish node sam-
ples coming from the distribution of similarity in the graph simG and those generated by a noise distribution Q. 
We define D as the random variable representing the classes, D = 0 for a node if it has been drawn from the noise 
distribution Q or D = 1 if it has been drawn from the empirical distribution and E is the expected value. With 
u a node drawn from P and v drawn from simG(u, .) , with NCE we draw s < n negative samples vneg from Q(u).

In this framework, the objective function becomes the negative log-likelihood that we want to minimize via 
logistic regression:

where PW is computed as the sigmoid ( σ(x) = (1+ e−x)−1 ) of the dot product of the embeddings wu and wv , 
and simEmb(u, .) is computed without normalization. It has been proven that the derivative of NCE converges to 
gradient of cross-entropy when s increases, but in practice small values work  well34. Therefore, we are minimiz-
ing the KL-divergence from simG.

Overall, VERSE is a general framework for network embedding with the only constraint that simG must be 
defined as a probability distribution. In this work, we computed simG using Random Walks with Restart on 
Multiplex (RWR-M) and Random Walks with Restart on Multiplex-Heterogeneous (RWR-MH)  networks8. We 
describe this particular implementation in the next section.

Random walk with restart on multiplex and multiplex‑heterogeneous networks. Random 
walk (RW) and random walk with restart (RWR). Let us consider a finite graph, G = (V ,E) , with adjacency 
matrix A. In a classical RW, an imaginary particle starts from a given initial node, v0 . Then, the particle moves 
to a randomly selected neighbour of v0 with a probability defined by its degree. We can define pt(v) as the prob-
ability for the random walk to be at node v at time t. Therefore, the evolution of the probability distribution, 
pt = (pt(v))v∈V , can be described as follows:

where M denotes a transition matrix that is the column normalization of A. The stationary distribution of Eq. (6) 
represents the probability for the particle to be located at a specific node when times tends to  infinity35.

Random Walk with Restart (RWR) additionally allows the particle to jump back to the initial node(s), known 
as seed(s), with a probability r ∈ (0, 1) at each step. In this case, the stationary distribution can be interpreted 
as a measure of the proximity between the seed(s) and all the other nodes in the graph. We can formally define 
RWR by including the restart probability in Eq. (6):

The vector p0 is the initial probability distribution. Therefore, in p0 , only the seed(s) have values different from 
zero. Equation (7) can be solved in a iterative  way8.

In our previous work, we expanded the Random Walk with Restart algorithm to Multiplex (RWR-M) and 
Multiplex-Heterogeneous networks (RWR-MH)8. Below, we show how the output of RWR-M and RWR-MH 
can easily be adapted to produce simG , the required input for the VERSE framework.

Random walk with restart on multiplex networks (RWR‑M). We define a multiplex graph as a set of L undi-
rected graphs, termed layers, which share the same set of n  nodes7,36. The different layers, α = 1, . . . , L , are 
defined by their respective n× n adjacency matrices, A[α] = (A[α](i, j))i,j=1,...,n . A[α](i, j) = 1 if node i and node 
j are connected on layer α , and 0  otherwise37. We do not take into account potential self-interactions and there-
fore set A[α](i, i) = 0 ∀ i = 1, . . . , n . In addition, we consider that vαi  represents the node i in layer α.

Thus, we can represent a multiplex graph by its adjacency matrix:

(3)
∑

v∈VM

KL(simG(v, .) � simEmb(v, .))

(4)L = −
∑

v∈VM

simG(v, .) log(simEmb(v, .))

(5)

LNCE =
∑

u ∼ P

v ∼ simG(u, .)

[
logPW (D = 1 | simEmb(u, v))

+ s.Evneg∼Q(u)logPW (D = 0 | simEmb(u, ṽ))
]

(6)pTt+1 = MpTt

(7)pTt+1 = (1− r)MpTt + rpT0

(8)A = A[1]
, . . . ,A[L]
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and define it as GM = (VM ,EM) , where:

RWR-M should ideally explore in parallel all the layers of a multiplex graph to capture as much topological 
information as possible. Therefore, a particle located in a given node, vαi  , may be able to either walk to any of its 
neighbours within the layer α or to jump to its counterpart node in another layer, vβi  with β  = α38. Additionally, 
the particle can restart in the seed node(s) on any layer of the multiplex graph. In order to match these require-
ments, we previously defined a multiplex transition matrix and expanded the restart probability vector, allowing 
us to apply Eq. (6) on multiplex  graphs8.

In this study, we independently run the RWR-M algorithm n times, using each time a different node as 
seed. As a result, we obtain a n× n matrix in which each column describes the probability of finding the 
particle in every network node when the steady state is reached. We use this probability distribution as a 
measure of similarity between a given node and all the other nodes of the multiplex graph. Hence, we have ∑

u∈VM
simG(v, u) = 1 ∀ v ∈ VM , therefore fulfilling the requirements of the VERSE input. We set the RWR-M 

parameters to the same values used in our original study ( r = 0.7 , τ = (1/L, 1/L, . . . , 1/L) , δ = 0.5)8.

Random walk with restart on multiplex‑heterogeneous networks (RWR‑MH). A heterogeneous graph is com-
posed of two graphs with different types of nodes and edges. In addition, it also contains a bipartite graph in 
order to link the nodes of different type (bipartite edges)39. In our previous  study8, we described how to extend 
the RWR to a graph which is both multiplex and heterogeneous. However, this study considered only one mul-
tiplex graph in the multiplex-heterogeneous graph. For the present work, we additionally expanded RWR-MH 
to a complete multiplex-heterogeneous graph, i.e. both components of the heterogeneous graph can be multiplex 
(Fig. 1C), based on the work  of40. Let us consider a L-layers multiplex graph, GM = (VM ,EM) , with n× L nodes, 
VM =

{
vαi , i = 1, . . . , n, α = 1, . . . , L

}
 . We also define a second L-layers multiplex graph, with m× L nodes, 

UM =
{
uαj , j = 1, . . . ,m, α = 1, . . . , L

}
 . We additionally need a bipartite graph GB = (VM ∪ UM ,EB) with 

EB ⊆ VM × UM . The edges of the bipartite graph only connect pairs of nodes from the different sets of nodes, 
VM and UM . It is to note that the bipartite edges should link nodes with every layer of the multiplex graphs. We 
therefore need L identical bipartite graphs, G[α]

B = (VM ∪ UM ,E
[α]
B ) to define the multiplex-heterogeneous 

graph. We can then describe a multiplex-heterogeneous graph, GMH = (VMH ,EMH ) , as:

In the RWR-MH algorithm, the particle should be allowed to move in any of the multiplex graphs as described 
in the RWR-M section. In addition, it may be able to jump from a node in one multiplex graph to the other 
multiplex graph following a bipartite edge. We also have to bear in mind that the particle could now restart in 
different types of node(s), i.e. we can have seed(s) of different category (see Fig. 1C). We accordingly defined a 
multiplex-heterogeneous transition matrix and expanded the restart probability vector. This gave us the oppor-
tunity to extent and apply Eq. (6) on multiplex-heterogeneous  graphs8,40.

In the context of MultiVERSE, we independently run the RWR-MH algorithm n+m times. In each execu-
tion, we select a different seed node until all the nodes from both multiplex graphs have been used as indi-
vidual seeds. As a result, we can define a node-to-node similarity matrix matching VERSE input criteria, i.e ∑

u∈VMH
simG(v, u) = 1 ∀ v ∈ VEM . We set the RWR-MH parameters to the same values used in the original 

study ( r = 0.7 , τ = (1/L, 1/L, . . . , 1/L) , δ = 0.5 , � = 0.5 , η = 0.5)8.

MultiVERSE algorithm. Algorithm 1 presents the pseudo-code of MultiVERSE based on RWR on multi-
plex and multiplex-heterogeneous  networks8 and Kullback-Leibler optimization from the VERSE  algorithm18.

Our implementation of VERSE with NCE is slightly different from the original. We perform first the RWR-M 
or RWR-MH for all the nodes of the network in order to obtain the similarity distribution simGM . The output of 
this step is the probability matrix p , where pu is the probability vector representing the similarities between u and 
all the other nodes. The matrix of the embedded representation of the nodes, W, is randomly initialized. For each 
iteration, from one node u sampled randomly from a uniform distribution U , we truncate the probability vector 
pu . We keep the Nmax highest probabilities because the shape of the distribution of probabilities falls very fast to 
very low probabilities. Doing so, we can speed up the calculation and reduce memory constraints by filtering out 
the lowest probabilities and by reducing the size of the similarity matrix. We normalize this resulting probability 
vector ṗu , and sample one node v according to its probability in pu . We set empirically the parameter Nmax = 300 
for networks with more than 5000 nodes. For smaller networks, we set this parameter to 10%− 20% of the 
number of nodes of the network, depending on the shape of the distribution. These choices of Nmax have been 
done for memory and quality of embeddings reasons. Indeed, these values are sufficient to obtain high quality 
embeddings, and avoid storing and manipulating the whole output of RWR-M(H), which is a n× n matrix. We 
store with this truncated sampling strategy a n× Nmax matrix. These two steps (lines 6 and 7) were not in the 

VM =
{
vαi , i = 1, . . . , n, α = 1, . . . , L

}
,

EM =
{
(vαi , v

α
j ), i, j = 1, . . . , n, α = 1, . . . , L, A[α](i, j) �= 0

}⋃

{
(vαi , v

β
i ), i = 1, . . . , n, α �= β

}
.

VMH ={VM ∪ UM}

EMH =
{
∪α=1,...,LE

[α]
B ∪ EVM ∪ EUM

}
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original VERSE. We parallelized the repeat loop (line 4) and added a parallelized for loop after line 5 in order to 
run the code from line 6 to 12 in parallel P times. In our simulations, we set P = 100.

Then, we update Wu and Wv according to algorithm 2 by reducing their distances in the embedding space. 
We added the bias for NCE: biaspos = log(N) and biasneg = log(N/s).

Then, s negative nodes are sampled from Q(u) and we update the corresponding embeddings by increasing 
their distances in the embedding space. The parameter s has been set to s=10 for networks with a number of 
nodes superior to 5000 and to s = 3 as in the VERSE original algorithm for smaller networks. The precision of 
the NCE depends on the parameter s, and small values work well in  practice34. The update can also be seen as 
the training part with lr as the learning rate of the binary classifier of the NCE estimation as described in Eq. (5). 
The whole process is repeated until the maximum steps are reached.

Regarding computational time, it depends mainly on the available number of cores and number of nodes 
((as RWR has a time complexity of O(n2))=. On a i7-6820HQ CPU @2.70GHz with 8 cores and 48 Gb of RAM, 
the whole computation of MultiVERSE for the molecular multiplex network (see next section) with d = 128 
and s = 10 takes 45 minutes.

MultiVERSE is freely available on github at https:// github. com/ Lpiol/ Multi VERSE.

Evaluation protocol
We propose a benchmark to compare the performance of MultiVERSE and other embedding methods for mul-
tiplex and multiplex-heterogeneous networks. The performances are evaluated through link prediction for both 
multiplex and multiplex-heterogeneous networks, and with network reconstruction for multiplex networks.

Evaluation of multiplex network embedding. In the next sections, we describe the datasets, the evalu-
ation tasks and the methods used for evaluations.

Multiplex network datasets. We used 7 multiplex networks (2 molecular, 1 disease, 1 neuronal, 1 co-authorship 
and 2 social networks) to evaluate the different approaches of multiplex network embedding. The networks 
CKM, LAZEGA, C.ELE, ARXIV, and HOMO have been extracted from the CoMuNe lab database https:// 
comun elab. fbk. eu/ data. php. We constructed the other two networks, DIS and MOL. A description of each of 
these multiplex networks follows. The number of nodes and edges of the different layers are detailed in Table 1.

• CKM physician innovation (CKM) is a multiplex network describing how physicians in four towns in Illinois 
used the new drug  tetracycline41. It is composed of 3 layers corresponding to three questions asked to the 
physicians: i) to whom do you usually turn when you need information or advice about questions of therapy? 
ii) who are the three or four physicians with whom you most often find yourself discussing cases or therapy 
in the course of an ordinary week – last week for instance? iii) would you tell me the first names of your three 
friends whom you see most often socially?

• Lazega network (LAZEGA) is a multiplex social network composed of 3 layers based on co-working, friend-
ship and advice between partners and associates of a corporate law  partnership42.

https://github.com/Lpiol/MultiVERSE
https://comunelab.fbk.eu/data.php
https://comunelab.fbk.eu/data.php
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• Caenorabidis Elegans connectome (C.ELE) is a neuronal multiplex network composed of 3 layers correspond-
ing to different synaptic  junctions43,44: electrical, chemical poladic and chemical monadic.

• ArXiv network (ARXIV) is composed of 8 layers corresponding to different ArXiv categories. The dataset has 
been restricted to papers with ’networks’ in the title or abstract, up to May  201445. The original data from 
the CoMuNe Lab database is divided in 13 layers. We extracted the 8 layers (1-2-3-5-6-8-11-12) containing 
more than 1000 edges.

• Homo sapiens network (HOMO) is composed of 4 layers extracted from the original network on CoMuNe 
 Lab44, keeping physical association, direct interaction, association and co-localization layers. The data are 
initially extracted from  BioGRID46

• Disease multiplex network (DIS) has been constructed, composed of 3 layers: i) A disease-disease network 
based on a projection of a disease-drug network from the Comparative Toxicogenomics Database (CTD)47 
extracted from  BioSNAP48. In this network, an edge between two diseases is created if the Jaccard Index 
between the neighborhoods of the two nodes in the original bipartite network is superior to 0.4. Two diseases 
are thereby linked if they share a similar set of drugs. This projection has been done using  NetworkX49. ii) A 
disease-disease network where the edges are based on shared symptoms. The network has been constructed 
from the bipartite disease-symptoms network  from50. Similarly  to50, we use the cosine distance to compute 
the symptom-based diseases similarity for this network. We kept for the disease-disease network all interac-
tions with a cosine distance superior to 0.5 iii) A comorbidity network from epidemiological data extracted 
 from51.

• Human molecular multiplex network (MOL) is a molecular network, consisting of 3 layers: (i) A protein-
protein interaction (PPI) layer corresponding to the fusion of 3 datasets: APID (apid.dep.usal.es) (Level 2, 
human only), Hi-Union and Lit-BM (http:// www. inter actome- atlas. org/ downl oad). (ii) A pathways layer 
extracted from  NDEx52 and corresponding to the human Reactome  data53. iii) A molecular complexes layer 
constructed from the fusion of Hu.map54 and  Corum55, using  OmniPathR56.

Table 1.  Description of the 7 multiplex networks used for the evaluation protocol.

Dataset Layers Nodes Edges

CKM

1 215 449

2 231 498

3 228 423

LAZEGA

1 71 717

2 69 399

3 71 726

C.ELE

1 253 514

2 260 888

3 278 1703

ARXIV

1 1558 3013

2 5058 14,387

3 2826 6074

4 1572 4423

5 3328 7308

6 1866 4420

7 1246 1947

8 4614 11,517

HOMO

1 12,,345 48,528

2 14,770 83,414

3 1626 1953

4 5680 18,381

DIS

1 3891 117,527

2 4155 101,104

3 434 3137

MOL

1 14,704 122,211

2 7926 194,500

3 8537 63,561

http://www.interactome-atlas.org/download
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Methods implemented for comparisons. We compare MultiVERSE with 6 methods designed for monoplex 
network embedding (deepwalk, node2vec, LINE) and multiplex network embedding (Ohmnet, MNE, Multi-
node2vec), and 4 link prediction heuristic scores (only in the link prediction task).

Monoplex network embedding methods. 

• deepwalk5: This method is based on non-biased random walks, and apply the skip-gram  algorithm20 to learn 
the embeddings. We set the context window to 10, and the number of random walks to start at each node to 
10.

• node2vec6: This method is an extension of deepwalk with a pair of parameters p and q that biases the random 
walks for Breadth-first Sampling or Depth-first Sampling. We set p = 2 and q = 1 to promote moderate 
explorations of the random walks from a node, as stated  in6. We set the other parameters as for deepwalk.

• LINE19: LINE is not based on random walks, but computes the similarities using an adjacency-based proxim-
ity measure in association with negative sampling. It approximates the first and second order proximities in 
the network from one node. First order proximity refers to the local pairwise proximity between the nodes 
in the network (only neighbours), and second order proximity look for nodes sharing many connections. 
We set the negative ratio to 5.

Multiplex network embedding methods. 

• OhmNet13: This approach takes into account the multi-layer structure of multiplex networks. It is a random 
walk-based method that uses node2vec to learn the embeddings layer by layer. We applied the same param-
eters as in node2vec. The user has to define a hierarchy between layers. We created a 2-level hierarchy for 
all multiplex networks with first layer as the higher in the hierarchy and the other layers are defined at the 
second level of the hierarchy, in the same way  as11.

• MNE12: This method is also designed for multiplex networks and uses node2vec to learn the embeddings layer 
by layer. For each node, MNE computes a high-dimensional common embedding and a lower-dimensional 
additional embedding for each type of relation of the multiplex network. The final embedding is computed 
using a weighted sum of these two high-dimensional and low-dimensional embeddings. We used the default 
parameters (https:// github. com/ HKUST- KnowC omp/ MNE).

• Multi‑node2vec14: This multiplex network embedding method is also based on node2vec. The random walks 
can jump to different layers and explore in this way the multiplex neighborhood. The length of the random 
walks is set to 100.

We used OpenNE (https:// github. com/ thunlp/ OpenNE) to implement deepwalk, node2vec and LINE. The other 
methods have been implemented from the source code associated to the different publications.

Link prediction heuristics. In order to evaluate the relevance of the aforementioned network embedding 
methods, we also compared them with four classical and straightforward link prediction heuristic scores for 
node  pairs6. Table 2 provides formal definitions of these heuristic scores.

Evaluation tasks. On multiplex networks, we evaluate the different methods by measuring their performances 
in two different tasks: link prediction and network reconstruction. For all the evaluations, we set the embedding 
dimension to d = 128 as  in5,6,13 for fair comparisons, and used the package EvalNE v0.3.157. EvalNE is a package 
dedicated to the evaluation of network embedding.

From node embeddings to edges. MultiVERSE and the other embedding methods allow learning vector rep-
resentations of nodes from networks. We aim here to test their performance on link prediction and network 
reconstruction. We hence need to predict whether an edge exists between every pairs of node embeddings. To do 
so, given two nodes u and v, we define an operator ◦ over the corresponding embeddings f(u) and f(v). This gives 
g : V × V → R

d , with d the dimension of the embeddings, V the set of nodes and g(u, v) = f (u) ◦ f (v) . Our 
test network contains both true and false edges (present and absent edges, respectively). We apply five different 
operators ◦ : Hadamard, Average, Weighted-L1, Weighted-L2 and Cosine (Table 3)).

The outputs of the embedding operators are used to feed a binary classifier for the evaluation tasks. This 
classifier aims to predict if there is an edge or not between two nodes embeddings. Similarly, we use the output 
of the four link prediction heuristic scores described in Table 2 with a binary classifier to predict edges in a 
multiplex network.

Link prediction. We first evaluate the performance of the different methods to predict links removed from 
the original multiplex networks (Fig. 3). We remove 30% of the links in each layer of the original networks. We 
applied the Andrei Broder  algorithm58 in order to randomly select the links to be removed while keeping a con-
nected graph in each layer. This step provides the multiplex training network, to which we apply the 3 categories 
of methods (see Fig. 3):

https://github.com/HKUST-KnowComp/MNE
https://github.com/thunlp/OpenNE
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• The methods specifically designed for monoplex network embedding (node2vec, deepwalk and LINE) are 
applied individually on each layer of the multiplex networks. We thereby obtain one embedding per layer 
and average them (arithmetic mean) in order to obtain a single embedding for each node. We then apply the 
embedding operators. We refer to these approaches in the results section as node2vec-av, deepwalk-av and 
LINE-av.

• Methods specifically designed for multiplex network embedding (Ohmnet, MNE, Multi-node2vec) are 
applied directly on the training multiplex network. We then apply the embedding operators.

• The link prediction heuristic scores JC, CN, AA and PA are applied individually on each layer of the multiplex 
networks. We then average the scores, as JC-av, CN-av, AA-av, and PA-av.

From the outputs of the embedding operators and heuristic scores, we feed and train a binary classifier and 
then test it on the 30% of test edges that have been removed initially. The binary classifier is a logistic regressor.

The evaluation metrics for link prediction is ROC-AUC as it is commonly used for embedding evaluation on 
link prediction and to validate network  embedding6,12. The ROC-AUC is computed as the area under the ROC 
curve, which plots the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. 
An AUC value of 1 represent a model that classifies perfectly the samples.

Table 2.  Definition of the heuristic scores of a link (u, v) in the graph G(V, E). N (u) denotes the set of 
neighbour nodes of node u ∈ V  in G(V, E).

Score Definition

Jaccard Coefficient (JC) |N (u)∩N (v)|
|N (u)∪N (v)|

Common neighbours (CN) |N (u) ∩N (v)|

Adamic Adar (AA)
∑

t∈|N (u)∩N (v)|
1

log |N (t)|

Preferential attachment (PA) |N (u)|.|N (v)|

Table 3.  Embedding operators used to predict edges in the tasks of link prediction and network 
reconstruction. The definitions describe the ith components of g(u, v).

Operators Symbol Definition

Hadamard � [f (u)� f (v)]i =
fi(u)∗fi(v)

2

Average ⊞ [f (u)⊞ f (v)]i = fi(u)+ fi(v)

Weighted-L1 ‖ . ‖1 � fi(u).fi(v) �1 i =| fi(u)− fi(v) |

Weighted-L2 ‖ . ‖2 � fi(u).fi(v) �2 i =| fi(u)− fi(v) |
2

Cosine cos cos[f (u), f (v)]i =
fi(u)∗fi(v)

�fi(u)��fi(v)�

Figure 3.  General approach for link prediction on multiplex networks: (top) for the link prediction heuristics, 
we apply them to each layer and average them across all layers; (center) for monoplex-based methods, we embed 
each layer with the given method, then average it; (bottom) for multiplex-based methods, we apply the specific 
embedding method to the network. The embedding operators are then applied to monoplex- and multiplex-
based method embeddings. The three types of methods are finally evaluated for link prediction using a binary 
classifier and a ROC-AUC is computed.
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Network reconstruction. Network reconstruction is another approach to evaluate network embedding 
 methods11,59,60. In this case, the goal is to quantify the amount of topological information captured by the embed-
ding methods. This is equivalent to predict if we can go back from the embedding to the original adjacency 
matrix of each layer of the multiplex network.

Theoretically, to reconstruct the networks, one would need to apply link prediction to every possible edge in 
the graphs. This is however in practice not scalable to large graphs. Indeed, it would correspond to n(n− 1)/2 
potential edges to classify (for undirected networks of n nodes without self-loops). In addition, the networks in 
our study are sparse, with much more false (absent) than true (present) edges, leading to large class imbalance. 
In this context, ROC-AUC can be misleading, as large changes in the ROC Curve or ROC-AUC score can be 
caused by a small number of correct or incorrect  predictions61. In order to account for class imbalance, we used 
the precision@K59. This evaluation metric is based on the sorting in descending order of all predictions and 
consider the first K best predictions to evaluate how many true edges (the minority class) are predicted correctly 
by the binary classifier. From the outputs of the embedding operators, we perform network reconstruction by 
training a binary classifier on a subset of the original networks (Fig. 4). We choose a subset of 95% of the edge 
pairs from the original adjacency matrix of each layer for the smaller multiplex networks (CKM, LAZEGA and 
C.ELE) to construct the training graph. As the class imbalance increases with the number of nodes and sparsity 
of the networks, we choose smaller subsets for the largest networks, respectively 5% of edges for the ARXIV 
network and 2.5% for the other networks, as in previous  publications59,60. For each layer, K is defined as the 
maximum of true edges in this subset of edge pairs. We use a Random Forest algorithm as a binary classifier for 
network reconstruction, as it is known to be less sensitive to class  imbalance62. In network reconstruction, the 
results correspond to the training phase of the classifier, there is no test phase.

Evaluation of multiplex‑heterogeneous network embedding. Multiplex‑heterogeneous network 
datasets. 

• Gene‑disease multiplex‑heterogeneous network We use the two multiplex networks presented in the previous 
sections: the disease (DIS) and molecular multiplex networks (MOL) (Table 1). In addition, we extracted the 
curated gene-disease bipartite network from the DisGeNET  database63 in order to connect the two multiplex 
networks. This bipartite interaction network contains 75445 interactions between 5188 diseases and 9179 
genes. We obtain a multiplex-heterogeneous network, as represented in Fig. 1C.

• Drug‑target multiplex‑heterogeneous network We use the molecular multiplex network (MOL) from the pre-
vious multiplex-heterogeneous network. We constructed the following 3-layers drug multiplex network: (i) 
the first layer (2795 edges, 877 nodes) has been extracted from Bionetdata (https:// rdrr. io/ cran/ bione tdata/ 
man/ DD. chem. data. html) and the edges correspond to Tanimoto chemical similarities between drugs if 
superior to 0.6, (ii) the second layer (678 edges, 362 nodes) comes  from64 and the edges are based on drug 
combinations as reported in clinical data, (iii) the third layer (13397 edges, 658 nodes) is the adverse drug-
drug interactions network available  in64. The drug-target bipartite network has been extracted from the same 
 publication64, and contains 15030 bipartite interactions between 4412 drugs and 2255 protein targets.

Evaluation task. We validate the multiplex-heterogeneous network embedding using link prediction. We 
remove randomly 30% of the edges but only from the bipartite interactions to obtain a training graph. We then 
train a Random Forest on the training graph, and test on the 30% removed edges. Based on the multiplex-heter-
ogeneous networks described previously, the idea behind this evaluation is to test if we can predict gene-disease 
and drug-gene links. Comparisons with other approaches are not possible as, to our knowledge, no existing 
multiplex-heterogeneous network embedding method are currently available in the literature.

Figure 4.  General approach for network reconstruction on multiplex networks: (top) for monoplex-based 
methods, embed each layer with the given method, then average it; (bottom) for multiplex-based methods, 
apply the specific embedding method to the network. Embedding operators are then applied to monoplex- and 
multiplex-based method embeddings. The three types of methods are finally evalutated for network embedding 
using a binary classifier and a precision@K score is computed.

https://rdrr.io/cran/bionetdata/man/DD.chem.data.html
https://rdrr.io/cran/bionetdata/man/DD.chem.data.html
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Case study: discovery of new gene‑disease associations. Link prediction. Our aim for this case-
study is to predict new gene-disease links. We thereby applied MultiVERSE on the full gene-disease multiplex-
heterogeneous network without removing any edges, and trained a binary classifier (Random Forest) using 
edges from the bipartite interactions. Then, we test all possible gene-disease edges that are not in the original 
bipartite interactions and involve Progeria and Xeroderma pigmentosum VII disease nodes. Finally, we select 
the top 5 new gene-disease associations for each disease.

Clustering. We also applied MultiVERSE to the gene-disease multiplex-heterogeneous gene-disease network, 
followed by spherical K-means65 to cluster the vector representations of nodes. Spherical K-means clustering is 
well-adapted to high-dimensional  clustering66. We define the number of clusters for spherical K-means to 500, 
in order to obtain cluster sizes that can be analysed from a biological point of view.

Table 4.  ROC-AUC scores for link prediction on the 7 reference multiplex networks, for link prediction 
heuristics (CN-av, AA-av, JC-av, PA-av) and network embedding methods combined with different operators 
(Hadamard, Weighted-L1, Weighted-L2, Average, and Cosine). For each multiplex network, the best score is in 
bold; for each operator, the best scores are underlined. Overall, the MultiVERSE algorithm combined with the 
Hadamard shows the best scores.

Operators Method CKM LAZEGA C.ELE ARXIV DIS HOMO MOL

Link prediction heuristics

CN-av 0.4944 0.6122 0.5548 0.5089 0.5097 0.5113 0.5408

AA-av 0.4972 0.6105 0.549 0.5081 0.5428 0.5112 0.5404

JC-av 0.4911 0.523 0.5424 0.5113 0.5425 0.5113 0.5433

PA-av 0.5474 0.6794 0.5634 0.5139 0.496 0.5185 0.5278

Hadamard

node2vec-av 0.7908 0.6372 0.8552 0.9775 0.9093 0.8638 0.8753

deepwalk-av 0.7467 0.6301 0.8574 0.9776 0.9107 0.8638 0.8763

LINE-av 0.5073 0.4986 0.5447 0.8525 0.9013 0.8852 0.8918

Ohmnet 0.7465 0.7981 0.833 0.9605 0.9333 0.9055 0.8613

MNE 0.5756 0.6356 0.794 0.9439 0.9099 0.8313 0.8736

Multi-node2vec 0.8182 0.7884 0.8375 0.9581 0.8528 0.8592 0.8835

MultiVERSE 0.8177 0.8269 0.8866 0.9937 0.9401 0.917 0.9259

Weighted-L1

node2vec-av 0.7532 0.737 0.8673 0.9738 0.885 0.6984 0.7976

deepwalk-av 0.7226 0.7094 0.8635 0.9751 0.8888 0.7142 0.8089

LINE-av 0.6091 0.5776 0.6192 0.7539 0.8586 0.7439 0.7792

Ohmnet 0.7421 0.7849 0.8128 0.8488 0.8503 0.7007 0.6983

MNE 0.6289 0.6523 0.8019 0.7805 0.8313 0.7619 0.8182

Multi-node2vec 0.8611 0.8089 0.8261 0.9659 0.8628 0.8472 0.8997

MultiVERSE 0.7043 0.7789 0.7516 0.8647 0.7754 0.683 0.7273

Weighted-L2

node2vec-av 0.7556 0.6851 0.8691 0.9743 0.8867 0.7048 0.8028

deepwalk-av 0.7221 0.6904 0.864 0.9771 0.8891 0.7145 0.813

LINE-av 0.5851 0.5756 0.6275 0.7609 0.8621 0.7429 0.7835

Ohmnet 0.7505 0.7788 0.8166 0.8439 0.8599 0.7041 0.6992

MNE 0.601 0.5397 0.7999 0.7815 0.8333 0.7483 0.8122

Multi-node2vec 0.8637 0.8091 0.8282 0.968 0.8675 0.8525 0.9004

MultiVERSE 0.7125 0.7801 0.7441 0.8661 0.7808 0.6918 0.7475

Average

node2vec-av 0.59 0.6596 0.6842 0.6615 0.8256 0.8308 0.777

deepwalk-av 0.5954 0.657 0.6784 0.6582 0.8267 0.8307 0.7737

LINE-av 0.5465 0.6581 0.6699 0.6465 0.8477 0.8653 0.8276

Ohmnet 0.5764 0.656 0.7334 0.6772 0.8533 0.8825 0.7962

MNE 0.5882 0.6615 0.7028 0.6723 0.8242 0.8024 0.783

Multi-node2vec 0.5571 0.6584 0.7365 0.6657 0.8222 0.8216 0.7589

MultiVERSE 0.5963 0.6728 0.7438 0.6752 0.8586 0.8643 0.812

Cosine

node2vec-av 0.7805 0.7335 0.8515 0.9711 0.8643 0.7368 0.8105

deepwalk-av 0.7465 0.7066 0.8416 0.9724 0.8667 0.7512 0.8079

LINE-av 0.545 0.5126 0.5477 0.8198 0.7409 0.6745 0.816

Ohmnet 0.7898 0.7352 0.8094 0.9642 0.859 0.7829 0.7909

MNE 0.6203 0.6506 0.7877 0.8951 0.8347 0.6474 0.8102

Multi-node2vec 0.8532 0.7931 0.7815 0.9435 0.7151 0.8477 0.8884

MultiVERSE 0.8148 0.8171 0.8719 0.9909 0.8775 0.8776 0.9103
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Results
Evaluation results for multiplex network embeddings. Link prediction. We evaluate the perfor-
mance of the different methods (link prediction heuristics and network embedding) on the task of link predic-
tion applied to the set of multiplex networks. First, we can observe that the heuristics are not efficient for link 
prediction, with ROC-AUC only slightly better than random classification (Table 4).

The methods based on embedding always perform better than the heuristic baselines. In addition, the ROC-
AUC is in most of the cases higher when the models take into account the multiplex network structure rather 
than the monoplex-average, as observed  in12. For instance, using the Hadamard operator, the ROC-AUC average 
over all the networks of the three monoplex-average approaches (node2vec-av, deepwalk-av, LINE-av) is 0.8025, 
whereas the average of the three multiplex-based approaches (Ohmnet, MNE, Multi-node2vec) is 0.8381. The 
ROC-AUC score average of MultiVERSE in this context is 0.9011. Nevertheless, node2vec-av and deepwalk-
av perform very well and even outperform multiplex-based approaches on various scenarios, for instance link 
prediction on the C.ELE and ARXIV networks.

MultiVERSE combined with the Hadamard operator outperforms the other methods for all the tested net-
works but CKM. In addition, MultiVERSE is the best approach when combined with three out of five operators 
(Hadamard, Average, Cosine). These results suggest that RWR-M is able to better capture the topological features 
of the networks under study.

Network reconstruction. We next evaluate the performances of the different embedding methods on the task of 
network reconstruction applied to multiplex networks We now rely on the evaluation metric, precision@K. The 
experimental results are shown in Table 5.

On one hand, for the small networks (i.e., CKM, LAZEGA and C.ELE), the best precision is achieved with 
LINE-av in combination with any of the operators but Cosine. In particular, LINE-av obtains a perfect score for 
the CKM network using the Weighted-L2 or Hadamard operators. MNE is in second position with more than 
99% of precision using the Weighted-L1 or Weighted-L2 operators. LINE-av also presents good performances 
for the C.ELE network with a precision of 93.67% using the Weighted-L2 operator, almost 20% higher than the 
second best method on this network (Multi-node2vec with a score of 0.7568 using the Weighted-L2 operator).

On the other hand, we can group together the results obtained for the large networks (DIS, ARXIV, HOMO 
and MOL). In this case, MultiVERSE achieves the best performance in combination with different operators. 
Large networks are sparse, leading to high class imbalance. Still, MultiVERSE achieves a good score for the 
HOMO and DIS networks, with precision@K of 0.8729 and 0.6784, respectively. The precision obtained on the 
molecular network (MOL) is the lowest, with a precision@K of 0.4143. The complexity of the task is possibly 
higher as the number of nodes and class imbalance increase.

Overall, the lowest scores are obtained by MNE and, in general, the Cosine operator performs poorly for all 
methods. The network reconstruction process is a complex task, and the performance depends on the size and 
density of the different layers composing the multiplex network. Nevertheless, MultiVERSE obtains good results 
for most of the networks without any processing of the imbalanced data.

Evaluation results for multiplex‑heterogeneous network embedding. The task of link prediction 
on multiplex-heterogeneous networks is applied to MultiVERSE only, as to our knowledge no other methods 
exist for the embedding of multiple nodes from multiplex-heterogeneous networks. MultiVERSE has a score of 
ROC-AUC superior to 0.9 with the Hadamard and Average operators (Table 6), meaning that the method can 
predict with high precision the gene-disease and drug-target links from the corresponding multiplex-heteroge-
neous networks.

Case study results: discovery of new gene‑disease associations. Discovery of new gene‑disease 
associations with link prediction. The results of the evaluations on multiplex-heterogeneous network link pre-
diction show that MultiVERSE combined with the Hadamard and Average operators reach ROC-AUC scores 
superior to 0.9 (Table 6). We here investigate in detail the top 5 new gene-disease associations predicted by Mul-
tiVERSE combined with these operators for Hutchinson-Gilford Progeria Syndrome (HGPS) and Xeroderma 
pigmentosum VII (Table 7) .

Hutchinson-Gilford Progeria Syndrome. Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare premature 
aging genetic disease characterized by postnatal growth retardation, midface hypoplasia, micrognathia, prema-
ture atherosclerosis, coronary artery disease, lipodystrophy, alopecia and generalized  osteodysplasia67. HGPS is 
caused by mutations in the LMNA genes that cause the production of a toxic form of the Lamin A protein called 
Progerin.

MultiVERSE top predictions reveal interesting candidate genes (Table 7). In particular, NOS2 encodes a 
nitric oxide synthase expressed in liver. It has been associated with  longevity68. TNF is a member of the tumor 
necrosis factor superfamily, and produces a multifunctional proinflammatory cytokine. TNF is also known to 
be involved in  aging69 and has been previously linked to  Progeria70. TERF1 and TERF2 both encode telomere-
binding proteins and TERF2IP encodes a protein that is part of a complex involved in telomere length regulation. 
HGPS patients show increased activation of DNA damage signalling at telomeres associated to reduced telomere 
 length71. In addition, it has been reported DNA damage accumulation and TRF2 degradation in atypical Werner 
syndrome (adult Progeria) fibroblasts with LMNA  mutations72. POT1 also produces a telomeric protein that has 
been linked to the Werner  syndrome73, the maintenance of haematopoeitic stem cell activity during  aging74 and 
cellular  senescence75. IL6 encodes a cytokine involved in inflammation, which have also been linked to  aging76. 
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Table 5.  precision@K scores for network reconstruction on the 7 reference multiplex networks, for the 
network embedding methods combined with different embeddings operators (Hadamard, Weighted-L1, 
Weighted-L2, Average, and Cosine). For each multiplex network, the best score is in bold; for each operator, 
the best score is underlined. The percentage of edges used for the reconstruction is indicated in parenthesis 
under the name of the network. In the case of large networks (DIS, ARXIV, HOMO and MOL) MultiVERSE 
achieves the best performance in combination with different operators.

Operators Method CKM (95%)
LAZEGA 
(95%) C.ELE (95%) ARXIV (5%) DIS (2,5%)

HOMO 
(2,5%)

MOL 
(2.5%)

Hadamard

node2vec-av 0.6764 0.9174 0.4526 0.8207 0.5578 0.7599 0.2989

deepwalk-av 0.6564 0.9351 0.4416 0.7886 0.5486 0.7636 0.3164

LINE-av 1.0 0.9924 0.8924 0.8204 0.4955 0.5191 0.4006

Ohmnet 0.7842 0.8334 0.5329 0.9156 0.4811 0.6979 0.2591

MNE 0.9505 0.9094 0.2728 0.7891 0.4218 0.3641 0.1316

Multi-node-
2vec 0.8352 0.8811 0.6875 0.8605 0.6063 0.7584 0.3123

MultiVERSE 0.9687 0.9695 0.7436 0.9015 0.6734 0.8729 0.3674

Weighted-L1

node2vec-av 0.5923 0.9494 0.5129 0.6922 0.5859 0.8123 0.3194

deepwalk-av 0.5791 0.9784 0.4896 0.6878 0.5921 0.7984 0.3206

LINE-av 0.9985 0.9953 0.9229 0.7837 0.4921 0.6839 0.3586

Ohmnet 0.7355 0.8581 0.5785 0.8771 0.6025 0.8019 0.3769

MNE 0.9926 0.975 0.4722 0.8593 0.4377 0.5241 0.1861

Multi-node-
2vec 0.8636 0.9235 0.7379 0.7684 0.6356 0.7649 0.2671

MultiVERSE 0.8545 0.9638 0.7444 0.8705 0.6678 0.7913 0.3559

Weighted-L2

node2vec-av 0.5886 0.9436 0.5097 0.6983 0.5953 0.8193 0.352

deepwalk-av 0.5829 0.9672 0.5146 0.6877 0.5857 0.805 0.3233

LINE-av 1.0 0.9962 0.9367 0.7749 0.4945 0.6697 0.392

Ohmnet 0.7418 0.8687 0.5724 0.8694 0.6209 0.8143 0.3701

MNE 0.9926 0.9764 0.4646 0.8818 0.4351 0.5529 0.176

Multi-node-
2vec 0.8644 0.93 0.7568 0.7548 0.6361 0.7896 0.2922

MultiVERSE 0.8653 0.969 0.754 0.8776 0.6784 0.7876 0.3701

Average

node2vec-av 0.8408 0.917 0.4817 0.889 0.5587 0.6809 0.2686

deepwalk-av 0.8331 0.9379 0.501 0.8853 0.5318 0.6714 0.2795

LINE-av 0.9855 0.9382 0.7103 0.8725 0.5093 0.5677 0.3244

Ohmnet 0.9412 0.8287 0.5825 0.906 0.4989 0.6551 0.2887

MNE 0.9179 0.9151 0.2966 0.7146 0.4175 0.352 0.1444

Multi-node-
2vec 0.9767 0.8937 0.6726 0.9498 0.6243 0.6216 0.2901

MultiVERSE 0.978 0.9059 0.5326 0.9758 0.6316 0.7204 0.4143

Cosine

node2vec-av 0.5103 0.4936 0.18 0.2537 0.1825 0.116 0.0441

deepwalk-av 0.4807 0.4776 0.1741 0.2835 0.1854 0.1036 0.0462

LINE-av 0.3291 0.4974 0.1867 0.2638 0.2384 0.1476 0.0454

Ohmnet 0.5696 0.509 0.1718 0.2655 0.1984 0.1311 0.044

MNE 0.3169 0.4536 0.1768 0.2445 0.1957 0.1667 0.044

Multi-node-
2vec 0.5127 0.52 0.186 0.273 0.195 0.1032 0.0461

MultiVERSE 0.6395 0.5026 0.1818 0.254 0.1983 0.1522 0.0474

Table 6.  ROC-AUC scores for link prediction using MultiVERSE on 2 multiplex-heterogeneous reference 
networks. Link predictions are computed for the bipartite interactions of the multiplex-heterogeneous 
networks. The scores higher than 0.9 are highlighted in bold.

Operators Gene-disease bipartite Drug-target bipartite

Hadamard 0.95 0.9701

Weighted-L1 0.7962 0.8057

Weighted-L2 0.7951 0.8055

Average 0.9603 0.9703

Cosine 0.7765 0.8338
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Finally,SOD1 and SOD2 are members of the superoxide dismutase multigene family that destroy free superoxide 
radicals. They both have been associated to aging and cellular  senescence77,78.

Xeroderma pigmentosum VII. Xeroderma Pigmentosum (XP) is characterized by extreme sensitivity to sun-
light, resulting in sunburns, pigment changes in the skin and a highly elevated incidence of melanoma. It is a 
genetically heterogeneous autosomal recessive disorder. Several XP types exist, and the MeSH term Xeroderma 
pigmentosum VII corresponds to the group G, caused by mutations in the ERCC5 gene, and with symptoms that 
overlap Cockayne  syndrome79,80.

MultiVERSE identified various candidates for this disease (see Table 7), we detail here the most interest-
ing ones. TNF has been related to  XP81 and skin tumour  development82. IL6 is involved in melanoma, one of 
the major phenotypes of  XP83. SOD2, also predicted as candidate for HGPS, have been recently associated to 
 melanoma84. TP53 is a tumor suppressor implicated in many cancers, in particular  melanomas85. It has also 
been associated to  XP86. VCAM1 encodes the Vascular Cell Adhesion Molecule, associated to  melanoma87, and 
NUP62 encodes the Nuclear pore glycoprotein p62, involved in cell carcinoma  proliferation88. ERCC2 produces 
the XPD protein, mutated in XP group  D89.

Discovery of new gene‑disease associations with clustering. Another illustration of the advantages of multiplex-
heterogeneous network embedding is clustering. We identify clusters with spectral K-means, and focus more 
particularly on the clusters containing HGPS and Xeroderma pigmentosum VII disease nodes. Clustering is 
particularly interesting as it can be applied directly on the embeddings without supervised training. In addition, 

Table 7.  Top 5 predictions of new gene-disease associations for HGPS and Xeroderma pigmentosum VII by 
MultiVERSE combined with Average and Hadamard operators.

HGPS Xeroderma p. VII

Average Hadamard Average Hadamard

NOS2 POT1 TNF TNF

IL6 TERF1 SOD2 VCAM1

TNF EEF1A1 IL6 NUP62

SOD1 TERF2 TP53 ERCC2

SOD2 TERF2IP FN1 MCC

Figure 5.  Cluster containing the HGPS disease node. Disease-Disease edges from the disease multiplex 
network are represented in green (shared symptoms) and blue (CTD projection). Gene-Gene edges from the 
molecular multiplex network are represented in pink (Reactome pathways), red (protein-protein interactions) 
and orange (molecular complexes). Gene-Disease bipartite interactions are represented with black dashed lines.
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it has been shown that clustering from embeddings outperforms the other methods for the detection of biologi-
cal  communities4.

Cluster containing the HGPS disease node. The cluster containing the HGPS disease node (see Fig. 5) con-
tains the LMNA node. LMNA mutations have been observed in many diseases that also belong to the identified 
cluster, including the Heart-hand syndrome (Slovenian type)90, lipodystrophy associated with mandibuloacral 
 dysplasia91, the Charcot-Marie-Tooth disease, type  2B192, LMNA-related muscular distrophy, and different car-
diac diseases caused by LMNA  mutations93.

We also analysed the cluster’s genes annotations with g:Profiler94 (default parameters). We found significant 
enrichments in several annotations related to cell nuclear organization. One of the most significant enrichments 
is nuclear envelope, involving the following genes: EMD, LEMD2, LMNA, KPNA1, MLIP, TMEM43, and ZMP‑
STE24. HGPS is a disorder of the nuclear  envelope95.

Cluster containing the Xeroderma pigmentosum VII disease node. We also analysed the cluster containing the 
Xeroderma pigmentosum VII disease node (Fig. 6). The cluster contains different diseases, including Xeroderma 
pigmentosum with normal DNA repair rates, and Cerebro-oculo-facio-skeletal syndrome 4, which is also a 
nuclear-excision repair  disorder96.

Several genes known for their implication in XP are present in the cluster, such as ERCC1, ERCC4, ERCC5, 
XPA and XPC97. Using the complete list of genes in the cluster as an input for g:Profiler94 (default parameters), 
we identified several significantly enriched annotations. Among them, we can cite nucleotide-excision DNA 
repair, defective DNA repair after ultraviolet radiation damage or response to ultraviolet radiation. XP patients 
show important impairments in these biological  processes79. SPRTN is another gene of interest. It encodes a 
metalloprotease that repairs DNA-protein crosslinks. SPRTN does not share interactions with genes known to 
be mutated in XP, but has been shown to be involved in UV sensibilization and  cancer98.

Figure 6.  Cluster containing the Xeroderma pigmentosum VII disease node. Gene-Gene edges from the 
molecular multiplex network are represented in pink (Reactome pathways), red (protein-protein interactions) 
and orange (molecular complexes). Gene-Disease bipartite interactions are represented with black dashed lines.
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Discussion and conclusion
We present in this study MultiVERSE, a new approach for multiplex and multiplex-heterogeneous network 
embedding. MultiVERSE is fully parallelized and scalable, even if the current implementation requires the gen-
eration of dense matrices, which can raise memory issues when dealing with very large networks.

For multiplex network embedding, we compared MultiVERSE with state-of-the-art methods using link 
prediction and network reconstruction. We show that MultiVERSE outperforms various methods specifically 
developed for multiplex network embedding. Our results suggest that there are several advantages to use RWR 
for the computation of the similarity between nodes: we experimentally demonstrate that methods based on 
the SkipGram approach with the truncated random walks (such as node2vec-av, deepwalk-av, ohmnet, multi-
node2vec and MNE) are less effective to learn node embedding from multiplex networks than MultiVERSE in 
several contexts. In particular, multi-node2vec, which is an extension of node2vec (and therefore SkipGram) 
to multiplex networks, shows reduced performance for our evaluation tasks than MultiVERSE. In addition, 
node2vec-av is also less effective to learn node embeddings from multiplex networks. SkipGram uses a trun-
cated random walk whereas MultiVERSE uses a (non-truncated) global random walk with RWR to compute the 
similarity. As RWR-M applies a random walk in pseudo-infinite time, it might allow MultiVERSE to effectively 
capture node properties and a better representation of the topological structure of the multiplex network.

The methods we found in the literature with available code for multiplex network embedding (i.e., ohmnet, 
multi-node2vec, MNE) are all based on node2vec. Recently, several graph neural networks approaches have 
been developed for network embedding, including GCN and GAE/VGAE27,28. These methods allow learning 
high quality embeddings for monoplex  networks99. However, to the best of our knowledge, they have not yet 
been extended to multiplex or multiplex-heterogeneous network embedding. It will be interesting to compare 
MultiVERSE with this class of graph neural networks approaches once they will be developed for multiplex and 
multiplex-heterogeneous network embedding.

A natural extension of this work would be to consider multiplex networks composed of both directed and 
undirected layers. In a biological context, this would allow considering metabolic and signalling pathways net-
works into a multiplex structure without losing the information about the information flow. In addition, for 
the optimization phase, we set a neighborhood parameter Nmax that depends on the size of the network. A 
potential improvement could be to develop an adaptive version of the parameter Nmax that would depend on 
node topological properties.

For multiplex-heterogeneous network embedding, MultiVERSE allows the embedding of different types of 
nodes. We demonstrate its effectiveness for link prediction and illustrate its usefulness for the study of gene-
disease associations. We here limited the multiplex-heterogeneous network to two multiplex and one bipartite 
network. Another natural extension of our work would be to generalize RWR for multiplex-heterogeneous for 
n multiplex networks and n(n− 1)/2 bipartite linking them ( n ∈ N ). Doing so, one could easily integrate many 
different types of nodes. The previous discussion about directed networks is in addition also valid for multiplex-
heterogeneous network embedding.

By integrating different types of edges for multiplex network embedding or by integrating different types of 
both edges and nodes for multiplex-heterogeneous network embedding, MultiVERSE could have a wide variety 
of applications in diverse domains such as network biology and medicine, social science, computer science, 
neuroscience or physics. Our illustration of MultiVERSE embedding to study gene-disease associations could 
easily be applied to drug repositioning and drug discovery, for instance with a multiplex drug-drug network, 
a drug-target bipartite and a molecular multiplex. In this way, genes, diseases and drugs could be projected in 
the same vector space for further studies. In neuroscience, multiplex-heterogeneous network embedding could 
be applied to study the links between genes and  neurons100. In social science, multiplex networks are gaining 
interest to understand human  behaviour101. Multiplex-heterogeneous network embedding could give insights 
on epidemic  spread102,103, socio-economic  systems104 or socio-ecological  systems105.
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