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ABSTRACT

Nucleic acids can be designed to be nano-machines, pharmaceuticals, or probes. RNA secondary structures can form the
basis of self-assembling nanostructures. There are only four natural RNA bases, therefore it can be difficult to design
sequences that fold to a single, specified structure because many other structures are often possible for a given
sequence. One approach taken by state-of-the-art sequence design methods is to select sequences that fold to the
specified structure using stochastic, iterative refinement. The goal of this work is to accelerate design. Many existing
iterative methods select and refine sequences one base pair and one unpaired nucleotide at a time. Here, the
hypothesis that sequences can be preselected in order to accelerate design was tested. To this aim, a database was
built of helix sequences that demonstrate thermodynamic features found in natural sequences and that also have little
tendency to cross-hybridize. Additionally, a database was assembled of RNA loop sequences with low helix-formation
propensity and little tendency to cross-hybridize with either the helices or other loops. These databases of preselected
sequences accelerate the selection of sequences that fold with minimal ensemble defect by replacing some of the trial
and error of current refinement approaches. When using the database of preselected sequences as compared to
randomly chosen sequences, sequences for natural structures are designed 36 times faster, and random structures are
designed six times faster. The sequences selected with the aid of the database have similar ensemble defect as those
sequences selected at random. The sequence database is part of RNAstructure package at http://rna.urmc.rochester.
edu/RNAstructure.html.
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INTRODUCTION

Fast and accurate nucleic acid design of sequences
to adopt specified structures poses a challenge. One
such design problem is secondary structure design, where
the target structure is a set of canonical base pairs. One
approach is to decompose the structure into regions, ran-
domly or intelligently choose sequences that can fold to
the desired structure in the region, and then refine the
sequences by progressive refinement or exhaustive enu-
meration. The objective functions vary from folding free
energy change to measures of ensemble folding behavior.
Recent papers provide an overview of the objective func-
tions and search routines of a number of availablemethods
(Hofacker et al. 1994; Andronescu et al. 2004; Busch and

Backofen 2006; Gao et al. 2010; Bindewald et al. 2011;
Taneda 2011; Zadeh et al. 2011a; Lyngso et al. 2012;
Garcia-Martin et al. 2013; Lee et al. 2014).
One algorithm for designing nucleic acids is NUPACK

(Zadeh et al. 2011b), which minimizes ensemble defect,
the sum of all nucleotide probabilities forming a desired
structure subtracted from the number of nucleotides in
that structure:

Ensemble Defect = N −
∑N

i=1

Pi, (1)

where N is the total number of nucleotides, Pi is the prob-
ability of a nucleotide i forming the desired pair if it is
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paired in the target structure or the probability of nucleo-
tide i being unpaired if it is unpaired in the target structure.
Ensemble defect was introduced by Zadeh et al. (2011b) as
a measure of the folding quality of the thermodynamic
ensemble. NUPACK uses a tree decomposition scheme,
and optimizes the sequences of fragments of the structure,
where the sequences are chosen at random. Fragments
are then assembled into the complete structure, and the
fragments redesigned as necessary if they are found to
cross-react instead of preferring to form the desired
structures.

An alternative measure commonly used for sequence
design is the folding free energy change of the sequence,
specifically the design of sequences whose lowest folding
free energy structure is the target structure. The rationale
for this approach is that the lowest free energy structure
is the most probable structure at equilibrium, and hence
a sequence that folds with lowest folding free energy
change to the target structure will fold to that structure
with highest probability as compared to alternative struc-
tures. The drawback, however, is that, in spite of the prob-
ability of folding to the desired structure being the highest,
the overall probability may in fact be low. This is because
there can be alternative structures for the sequence with
similarly low folding free energy change as the target
structure.

Ensemble defect minimization, on the other hand, does
guarantee that the target structure will be formed with
high probability. Minimizing ensemble defect tends to
minimize the folding free energy change because a low
ensemble defect also requires the sequence to fold to
the target structure with low folding free energy change
relative to alternative structures. Minimizing ensemble
defect also finds sequences for which there is low propen-
sity to fold to alternative structures. It is worth noting,
however, in spite of the shortcoming of free energy
change as an objective function, a set of sequences de-
signed by a program that optimizes folding free energy
change could be subsequently filtered for low ensemble
defect (or other measures) to also design sequences that
fold with high probability to the desired target.

The current work aims to accelerate the rate of design by
reducing the trial and error in refining sequences chosen
at random. To do this, sequences are not generated at
random, but instead loop and helix sequences are chosen
from databases of sequences. The helix database contains
helices composed of sets of complementary strands, with
lengths from 1 to 10. The loop database contains single
strands that are intended to not base pair. The helices
and loops can be assembled to construct any valid second-
ary structure. Helices longer than 10 base pairs (bp), for
example, can be constructed of multiple adjacent helices
from the database. Internal loops, which contain two
strands, are assembled from two separate strands sampled
from the loop library. Multibranch loops, which are com-

posed of any number of strands that do not pair, are con-
structed by sampling the number of needed strands from
the loop database.

The databases were assembled to have the required
features needed for sequence design. First, the thermody-
namic features of helices in natural RNA structures were
used to guide the selection of the set of helices in the
database. As shown in the Results, RNA helices tend to
have a specific range of folding stability, high probability
of forming the exact helix, and low ensemble defect.
Second, the helix and loop databases were screened
for cross-hybridization with any other sequence in either
database, and only those sequences with little propensity
to interact with others were included in the final set.

The databases of helices and loops improve design
by accelerating design and/or by improving the design
quality, as estimated using ensemble defect, using the iter-
ative design approach pioneered by NUPACK. There is
a trade-off between design time and stringency of the
design, and this trade-off was studied by varying the
user-selected stringency parameters. By accelerating
the design process, users are able to get designs faster
with the same stringency or get improved design strin-
gency with the same computer time.

The databases reported here can be used to design se-
quences that fold to natural RNA structures about 36 times
faster than the conventional method, with similar ensem-
ble defect as the conventional method. By reducing the
trial and error component of the calculation, the databases
facilitate the design of sequences by speeding the pro-
cess. Design times range from less than a second to
5 min for sequences up to 451 nucleotides (nt) in length,
without a strong correlation to sequence length. In com-
parison, the conventional method took up to 4 h to design
a sequence.

RESULTS

Thermodynamic features of natural RNA structures

A list of all helices of lengths from 3 to 10 bp was extracted
from a structure database (Bellaousov and Mathews
2010) that contains 1523 known structures from ten RNA
families: small subunit rRNA (Gutell 1994), large subunit
rRNA (Gutell et al. 1993; Schnare et al. 1996), 5S rRNA
(Szymanski et al. 1998), group I introns (Waring and
Davies 1984; Damberger andGutell 1994), group II introns
(Michel et al. 1989), RNase P RNA (Brown 1998), SRP RNA
(Larsen et al. 1998), tRNA (Sprinzl et al. 1998), tmRNA
(Zwieb et al. 1999), and telomerase RNA (Chen et al.
2000). This set of natural RNA sequences with known
structures provides a wealth of information from which it
can be deduced how evolution selects sequences that
fold to a specific structure (Smit et al. 2006). An additional
list of helices was created by keeping only unique
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sequences from the known structure database. The num-
ber of helices in the database for each helix length is
shown in Table 1. Additionally, a list of all RNA helices,
including G-U pairs, of lengths from 3 to 10 bp was gener-
ated (Table 1).
For each helix, the following parameters were calculat-

ed: bimolecular Gibbs free energy change of folding at
37°C (ΔG°37) (Xia et al. 1998; Mathews et al. 1999); ensem-
ble free energy change for folding of the helix, i.e., −RTln
(Qb), where R is a gas constant, T is the temperature of
310.15 K, and Qb is the bimolecular partition function
(Mathews 2004) for the helix; ensemble defect for the helix
from the folding of two strands; and the probability of
the helix forming from the two strands. Each of these
parameters was calculated as though the two strands
were interacting as separate sequences, i.e., as a bimolec-
ular structure, and the extent of each sequence was the
helix only. These data were calculated using the RNA
folding nearest neighbor rules for free energies of
folding at 37°C (Xia et al. 1998; Mathews et al. 1999,
2004). Prior work has shown that the melting temperature
of sequences correlates with the optimal growth tempera-
ture of the organism from which the sequence was taken.
The accuracy of free energy estimates, however, is poor
for temperatures outside the range of 10°C to 60°C
because of the heat capacity change of folding (Lu et al.

2006). Therefore, for this work, folding energies at 37°C
were used. All the parameters were plotted using cumula-
tive distribution plots for each helix length. Plots for
each parameter for 7 bp helices are provided as Figure
1A–D, and the remaining plots are provided in the
Supplemental Material as Supplemental Figures S1–S7.
Figure 1A shows natural RNA helices tend to have amid-

range Gibbs free energy change of folding, e.g., a folding
free energy change largely between −11 and −6 kcal/mol
for 7 bp helices. Figure 1B shows natural helices tend to
havemid-range ensemble free energy change, e.g., an en-
semble folding free energy change largely between −12
and −7 kcal/mol for 7 bp helices. Figure 1C shows natural
helices tend to minimize ensemble defect. Figure 1D
shows natural helices tend to have higher structure proba-
bility when compared to all possible helices. This informa-
tion suggests helix sequences have common features
regardless of the structure in which they reside.

Creating a database of helices and single-stranded
sequences

To build a database of helix sequences that have the de-
sired properties, the database of all possible RNA helices
of lengths from 3 to 10 bp (excluding GU pairs) was gener-
ated (Table 1) and sequences were removed that did
not meet selection criteria. The set of helix sequences
was trimmed inmultiple steps to choose the best sequenc-
es: first, by choosing sequences with minimal ensemble
defect; second, by choosing sequences with minimal
sum of pairing probabilities for intramolecular base pairs;
and third, choosing sequences with a minimal sum of
base pair probabilities for forming intermolecular base
pairs with other helix strands in the database. This was
done to ensure helices have high propensity to form the
expected structure, but low propensity to form undesired
helices with other sequences in the database. The helix
database has a total of 2000 sequences distributed from
length 1 to 10 bp. The Materials and Methods section
provides a detailed explanation.
A database of single-stranded sequences (to be used for

loops) was also generated with all possible sequences and
then trimmed for desired properties in multiple steps: first,
by removing sequences that form intramolecular struc-
tures; second, by choosing sequences with minimal sum
of pair probabilities for hybridization to each sequence in
the helix database; and third, by choosing sequences
with lowest sums of pair probabilities when hybridized to
other sequences in the loop database. This ensured that
single-stranded sequences have low propensity to form
pairs with sequences in either database. These steps are
detailed in Materials and Methods. The single-stranded
sequence database has a total of 2075 RNA sequences
from lengths 1 to 10 nt. This database was used for the

TABLE 1. Counts for helices from known structure database and
for all possible helices

Helix
length

All helices
from

database

Unique
helices
from

database

All possible
helices with
GU pairsa

All possible
helices

without GU
pairsa

3 2845 105 108 32

4 3015 376 666 136

5 4518 939 3888 512
6 1717 857 23436 2080

7 2076 1030 139968 8192

8 726 435 840456 32896
9 466 311 5038849 131072

10 230 168 30236977 524800

TOTAL 15593 4221 36284348 699720

The structure database contains structures from ten RNA families: small
subunit rRNA (Gutell 1994), large subunit rRNA (Gutell et al. 1993;
Schnare et al. 1996), 5S rRNA (Szymanski et al. 1998), group I intron
(Waring and Davies 1984; Damberger and Gutell 1994), group II intron
(Michel et al. 1989), RNase P RNA (Brown 1998), SRP RNA (Larsen et al.
1998), tRNA (Sprinzl et al. 1998), tmRNA (Zwieb et al. 1999), and telome-
rase RNA (Chen et al. 2000). The number of all possible helices of even
and odd length n equals 22n−1 + 2n−1 and 22n−1, respectively.
aIn this work, A-U, G-C, and G-U pairs are considered canonical base
pairs. G-U pairs are usually as stable as A-U base pairs (Chen et al. 2012).
For design, however, the database was built using only G-C and A-U
base pairs. It was assumed that higher folding specificity would be possi-
ble without G-U pairs.

Accelerating RNA secondary structure design
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design of hairpin loops, internal loops, bulge loops, and
the unpaired regions in exterior and bulge loops.

Testing the databases of helices and single-stranded
sequences

To test whether a preselected database of sequences
could improve the speed of sequence design, a design
software based on the NUPACK design algorithm (Zadeh
et al. 2011b) was written. This software follows NUPACK
closely, but differs from NUPACK in the decomposition
of structures and energy model (see Design Algorithm
section in Materials and Methods). The software runs in
one of two modes: Design_Random uses random se-
quence selection as done in NUPACK (Zadeh et al.
2011b) to design the sequence, and Design_Preselected
uses the database of preselected sequences to assemble
the sequence. By implementing the Design_Random
and Design_Preselected software, the effect of the data-
bases on the speed and precision of design was specifi-
cally tested.

Design_Random and Design_Preselected have three
adjustable parameters: length-normalized ensemble defect
(NED) threshold, number of branch reoptimizations, and
number of leaf optimizations (Zadeh et al. 2011b). The per-

formance of both modes depends
on these parameters, where lower
NED threshold, higher branch reop-
timizations, and higher leaf optimiza-
tions should result in more stringent
designs at the cost of computer time
(see Design Algorithm section in
Materials and Methods). To evaluate
the changes in performance, 72
and 192 combinations of the three
adjustable parameters were used
with Design_Random and Design_
Preselected, respectively (Table 2).
Both modes were evaluated by de-
signing 24 structures, where twelve
were selected from the set of RNA se-
quences with known structures (listed
in Table 3) and twelve were minimum
free energy RNA structures for random
sequences (reported in Supplemental
Table S1). The structures from random
sequences contain helices, loops,
multibranch loops, bulge loops, and
internal loops and are hard to design
because they may be difficult struc-
tures to fold to with fidelity. Structures
like these have been used in prior
work (Zadeh et al. 2011b).
For each set of the three parame-

ters, because time performance is
stochastic, the calculations were repeated using five and
ten random number seeds for Design_Random and
Design_Preselected, respectively. The number of trials
for Design_Random was fewer because these calculations
require more computer time. Mean NED andmean design
time in seconds were calculated for each designed se-
quence and thesewere averaged over all sequences within
the same parameter sets. The results were plotted as a

All Generated Helices
All Helices from Known Structures

1

A B

C D

FIGURE 1. Trends in natural sequences. Distributions of folding free energy change, ensem-
ble folding free energy change, ensemble defect, and structure probability for 7 bp helices.
Cumulative distribution plots are provided in red for unique sequences observed in the data-
base of RNA structures and in blue for all possible helices. PanelA is Gibbs free energy change,
panel B is ensemble Gibbs free energy change, panelC is ensemble defect, and panelD is the
probability of helix formation.

TABLE 2. Parameters used to evaluate performance of two
design modes

Parameter type Design_Preselected Design_Random

Normalized
ensemble defect
threshold

0.02, 0.03, 0.04,
0.05, 0.06, 0.07,
0.08, 0.09

0.005, 0.01,
0.015, 0.02,
0.03, 0.04,
0.05, 0.06

Number of branch
reoptimizations

5, 10, 15, 20 5, 10, 15

Number of leaf
optimizations

5, 10, 15, 20, 25, 30 3, 4, 5

Total combinations 192 72

All possible combinations of parameters were used. The parameters se-
lected as defaults for subsequent performance testing are shown in bold.
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scatter plot (Fig. 2), demonstrating that there is a clear
tradeoff between selection time and the quality of the se-
lected sequence for either Design_Random or Design_
Preselected. For a given time cost, Design_Preselected
produces sequences with lower ensemble defect than
Design_Random. Conversely, for a given ensemble defect,
Design_Preselected costs less time than Design_Random.
Both modes were then benchmarked on another set

of 50 structures (listed in Tables 4 and 5) for a single set
of parameters each. Twenty-five structures (Table 4) are
known RNA structures for natural sequences. The RNA
families include families not used in prior training (7SK
RNA, hairpin ribozyme, hammerhead ribozyme type I,
hammerhead ribozyme type III, RNase E 5′ UTR, and Y
RNA). An additional 25 structures (Table 5) are lowest
free energy structures for random RNA sequences of
identical length as the 25 natural RNA structures. The
parameters were chosen to balance time performance
and NED (shown in bold in Table 2 and subsequently
chosen as the default parameters for the software). The
parameters were also chosen so that both programs would
design sequences with similar NEDs. For Design_Random
and Design_Preselected, respective NED thresholds were
0.03 and 0.06, respective numbers of leaf optimizations
were 5 and 20, and number of branch reoptimizations
was 15 for both algorithms (Table 2, shown in bold). The
mean NEDs and mean design times are reported in
Tables 4 and 5. The benchmarks were performed ten times
for each sequence and averaged. The structures were both
known RNA structures and structures found by minimizing
RNA folding free energies for random sequences shown in
Supplemental Table S2. Similar to the structures in the pre-
vious set, these structures contain helices, loops, multi-
branch loops, bulge loops, and internal loops.
Mean time performance is the most important measure

of design cost for large-scale projects, such as web servers,

but mean performance can be distorted by outliers.
Supplemental Table S3 provides median performance
on natural structures for both time and NED for
Design_Random and Design_Preselected. The NED
performance is the same for mean and median values.
The average time performance (mean across structures)
is 9% shorter for median compared to mean for Design_
Random and it is 4% shorter for Design_Preselected.
Supplemental Table S4 provides the median performance
on random structures. The median performance is lower
than the mean performance for NED for Design_
Random. Evidently, outliers have a large influence on
NED. For Design_Preselected, the median NED is
the same as the mean. The average time performance
is 20% shorter for median compared to mean for
Design_Random and 15% shorter forDesign_Preselected.
To demonstrate that the speed improvement is tangible

compared to other sequence design programs, NUPACK
was also benchmarked for time and quality performance.
Supplemental Tables S5 and S6 show the performance
on natural structures and random structures, respectively.
NUPACK and Design_Random performed similarly, al-
though the comparison is not exact because NUPACK
and Design_Random use different sets of thermodynamic
parameters, the 1999 (Mathews et al. 1999) and 2004
(Mathews et al. 2004) sets, respectively. It is not clear
how differences in parameter sets might affect the time
performance of these algorithms.
Based on Tables 4 and 5, the databases of preselected

sequences improve the speed of nucleic acid design by

TABLE 3. Structures used for testing parameter dependence

Length (nt) Species name RNA family

64 Ascaris suum tRNA<AUa

92 Mycoplasma capricolum tRNAUGA

104 Ureaplasma urealyticum 5S RNA

113 Legionella pneumophilia SRP RNA

118 Exidia glandulosa 5S RNA
256 Schizosaccharomyces pombe SRP RNA

360 Desulfovibrio desulfuricans RNase P RNA

361 Pneumocystis carinii Group I Intron
367 Buchnera aphidicola tmRNA

368 Chlorella saccharophila Group I Intron

397 Mus musculus Telomerase RNA
413 Ureaplasma urealyticum tmRNA

a
“<” represents unknown modified cytidine.

FIGURE 2. Algorithm performance distribution for sets of parame-
ters. Blue and red dots represent performance of Design algorithm
in Preselected and Random modes, respectively. Green shows the
performance of the Design algorithm in Preselected mode using all
adenines in place of single stranded regions. Each dot is the mean
performance for a single set of parameters. Black outlines show the
parameter sets that are used for further performance evaluation on
a different set of structures. Performance is evaluated as mean time
as function of mean NED.
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a factor of 36 and six for natural and random structures,
respectively. At the same time, the NED remains
comparable.

Simplification of loop model

As an additional test, structures were designed using only
adenines in the loops to test the hypothesis that this
would result in lower ensemble defect and faster design

time. For many applications, this may not be desirable
because the loop sequences lack the complexity required,
for example, to functionalize the structure. This approach,
however, further decreases both the design time and the
NED of the designed sequence (Fig. 2) as compared to
Design_Preselected with loops of heterogeneous compo-
sition. When testing this, the helix sequences were select-
ed from the database of selected helices, as is done in
Design_Preselected.

TABLE 4. Performance comparison between two modes for natural sequences

Names Length

Design_Preselected Design_Random

Mean NED Mean time (s) Mean NED Mean time (s)

Schistosoma haematobiuma 48 0.14±0.042 2±1 0.18±0.053 11±4

Peach latent mosaic viroidb 54 0.02±0.013 1±1 0.03±0.033 1±1
Synthetic constructc 61 0.21±0.041 0±0 0.14±0.011 64±19

Saccharomyces cerevisiaed 74 0.03±0.017 1±1 0.02±0.016 2±1

Gallus gallus domesticuse 75 0.03±0.018 1±0 0.02±0.012 3±2
Galago senegalensisf 75 0.01±0.010 0±0 0.01±0.002 6±5

Nicotiana rusticag 76 0.04±0.014 0±0 0.03±0.016 3±2

Mycoplasma mycoidesh 77 0.05±0.011 1±0 0.03±0.005 17±18

Thermus thermophilush 105 0.08±0.013 4±0 0.03±0.002 238±132
Homo sapiensf 110 0.01±0.010 0±0 0.01±0.002 36±21

Stilbum vulgarei 118 0.07±0.010 2±1 0.02±0.005 42±23

Avocado sunblotch viroida 119 0.19±0.069 5±3 0.09±0.048 314±162
Methanococcus vannieliii 120 0.08±0.010 2±1 0.04±0.011 59±41

Streptomyces griseusi 120 0.07±0.019 5±3 0.04±0.026 70±41

Homo sapiensc 226 0.09±0.014 8±2 0.07±0.005 90±26
Anabaenaj 252 0.06±0.006 30±20 0.10±0.062 244±78

Homo sapiens Ah 300 0.06±0.007 180±134 0.04±0.007 651±564

Sulfolobus acidocaldariusk 315 0.09±0.013 206±64 0.07±0.038 7587±3633
Homo sapiensl 331 0.20±0.037 132±48 0.21±0.056 12508±10294

Escherichia colim 337 0.07±0.021 86±49 0.07±0.055 312±84

Escherichia colin 363 0.05±0.022 50±21 0.12±0.042 1338±455
Streptomyces aureofaciensn 382 0.05±0.017 291±175 0.15±0.049 8023±3122

Mus spretuso 397 0.07±0.009 94±106 0.14±0.041 13115±5659

Tetrahymena thermophilaj 433 0.06±0.022 236±137 0.10±0.038 622±307
Oryctolagus cuniculuso 451 0.06±0.004 68±39 0.04±0.009 5381±4852

Natural structure average 201 0.07 56 0.07 2029

All calculations were run on a single core of a node of a cluster with 24 dual processors, six core Opteron 2427 nodes.
aHammerhead ribozyme type I.
bHammerhead ribozyme type III.
cHairpin ribozyme.
dtRNAACG.
etRNABCA, where “B” represents 2′-O-methylcytidine.
fY RNA.
gtRNAGPA, where “P” represents pseudouridine.
hSRP RNA.
i5S RNA.
jGroup I intron.
kRNase P.
l7SK RNA.
mRNase E 5′ UTR.
ntmRNA.
oTelomerase RNA.
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Asymptotic behavior

To study the difference in algorithm behavior on longer
structures, the benchmarks were extended to include
structures with up to 1995 nt in length using structures
drawn from the RNA STRAND database (Supplemental
Table S7; Andronescu et al. 2008). The gap in the time per-
formance of Design_Preselected widens considerably for
longer structures (>600 nt) as compared to NUPACK and
Design_Random (Fig. 3), withDesign_Preselected running
over an order of magnitude faster and two orders of mag-
nitude faster for many cases. For the two longest structures
(1793 and 1995 nt), Design_Random and NUPACK did
not complete all ten calculations within the allowed time
of 75 d. Additionally, for NUPACK, the 697 nt structure
did not complete all ten calculations. The NED was more
consistently close to the threshold of 0.10 for NUPACK
(Supplemental Fig. S8). The NED for Design_Preselected
tended to have lower values than NUPACK for structures
shorter than 600 nt, but was consistently higher for struc-
tures longer than 1000 nt.

As the length (in nucleotides) of a designed structure
was increased, NUPACK was previously found to converge
on a fixed ratio of total design cost (in time) to the cost
of the evaluation metric (in time) (Zadeh et al. 2011b).
The evaluation metric requires a cubic-scaling partition
function calculation, but this observation demonstrates
that sequences can be designed with a bound to the
total cost that related to simply the evaluation. This finding
is reproducible for the two types of structures studied in
the paper reporting NUPACK (engineered structures
and random structures; Supplemental Fig. S9). It appears,
however, for structures from biologically relevant RNA
sequences, that the cost either does not asymptotically
converge or it converges much farther out in length
(Supplemental Fig. S10). Additionally, we observe similar
behavior for Design_Random and for Design_Preselected
on the design of natural structures (Supplemental Fig.
S11). In contrast to NUPACK, Design_Random and
Design_Preselected do not asymptotically converge for
engineered structures (Supplemental Fig. S12). This dif-
ference is likely the consequence of the alternative

TABLE 5. Performance comparison between two modes for random sequences

Names Length

Design_Preselected Design_Random

Mean NED Mean time (s) Mean NED Mean time (s)

Sequence 1 48 0.11±0.04 0±0 0.04±0.02 6±2

Sequence 2 54 0.12±0.05 0±0 0.01±0.002 2±3
Sequence 3 61 0.10±0.07 1±1 0.20±0.12 11±3

Sequence 4 74 0.05±0.02 2±1 0.03±0.003 12±8

Sequence 5 75 0.04±0.01 1±0 0.05±0.03 10±6
Sequence 6 75 0.08±0.03 1±1 0.01±0.004 6±4

Sequence 7 76 0.04±0.01 1±0 0.02±0.005 2±1

Sequence 8 77 0.05±0.01 2±1 0.04±0.04 6±4

Sequence 9 105 0.06±0.01 16±12 0.07±0.07 73±72
Sequence 10 110 0.13±0.03 1±1 0.01±0.001 16±16

Sequence 11 118 0.08±0.02 15±8 0.03±0.01 55±31

Sequence 12 119 0.09±0.02 2±1 0.02±0.02 27±10
Sequence 13 120 0.06±0.01 47±39 0.04±0.02 39±30

Sequence 14 120 0.07±0.02 1±0 0.02±0.01 40±25

Sequence 15 226 0.08±0.04 18±14 0.01±0.01 106±50
Sequence 16 252 0.05±0.01 25±24 0.03±0.02 99±63

Sequence 17 300 0.08±0.01 51±28 0.04±0.02 303±174

Sequence 18 315 0.09±0.10 380±175 0.05±0.05 676±338
Sequence 19 331 0.07±0.01 164±101 0.01±0.005 448±252

Sequence 20 337 0.12±0.03 258±159 0.07±0.07 2427±1358

Sequence 21 363 0.09±0.01 423±362 0.03±0.002 4050±5959
Sequence 22 382 0.05±0.01 97±83 0.05±0.05 292±180

Sequence 23 397 0.05±0.01 402±269 0.04±0.01 814±359

Sequence 24 433 0.06±0.01 751±585 0.03±0.003 6051±2340
Sequence 25 451 0.06±0.01 277±214 0.03±0.01 1217±860

Random structure average 201 0.07 117 0.04 672

All calculations were run on a single core of a node of a cluster with 24 dual processors, six core Opteron 2427 nodes.
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decomposition strategy used by Design (which decom-
poses by dividing structures at unpaired nucleotides in
exterior and multibranch loops) as compared to NUPACK
(which decomposes by dividing structures within helices).
NUPACK by default will decompose structures down to
20 nt. Design, in contrast, performs up to five binary de-
compositions by default. The NUPACK strategy is specifi-
cally chosen for engineered structures that might contain
fewer multibranch loops (Zadeh et al. 2011b).

DISCUSSION

Helix sequences derived from RNA sequences with known
secondary structure showed clear trends in folding free en-
ergy change distribution, ensemble defect distribution,
and structure probability distribution when compared to
all possible helix sequences. This suggests a selection by
evolution at the level of sequence components, and also
suggests that sequences can be optimized to better de-
sign structures.

Using the observed biases for helix sequences, a data-
base of sequences was assembled for RNA structure de-
sign. In addition to having features that mimic the RNA
structure database, the sequences were selected to mini-
mize cross-reactivity. This type of approach was previously
used for DNAword design for the field of DNA computing
(Shortreed et al. 2005). The database composition selec-
tions were costly in terms of total computer time, but this
needed to be done only once and then the databases
were ready for design of arbitrary structures.

For this work, NUPACK was reproduced so that random
selection and selection from the database could be
directly compared, controlling for other variables in the
design process, such as energy function and decomposi-
tion scheme. The design software implemented here
is not a replacement for NUPACK, which has a much
richer set of features, such as the ability to constrain
sequences and to design multimolecular complexes. On
average, Design_Random and NUPACK have similar per-
formance. For the natural structures, the mean time for
Design_Random was 2029 sec and the mean NED was
0.07; the mean time for NUPACK was 1806 sec and the
mean NED was 0.09. The comparison, however, is not
exact because NUPACK used the 1999 thermodynamic
parameters (Mathews et al. 1999), and Design_Random
uses the 2004 thermodynamic parameters including
coaxial stacking (Mathews et al. 2004). There are likely
differences in performance that relate to the set of thermo-
dynamic parameters that are used.

Another important aspect of this work is that it focuses on
designs of sequences that fold into natural biological struc-
tures. The fact that the asymptotic convergence to a fixed
cost ratio of design to evaluation is not reached for these
structures, running out to 1995 nt in length, suggests there
are some important differences compared to random struc-
tures and also engineered structures. First, natural structures
probably rely more on noncanonical interactions to stabilize
the overall structure. The focus of these designs is just on
canonical pairs. The thermodynamic parameters include
some of the sequence dependence of noncanonical inter-
actions in loops, but there are many more sequence-
specific interactions that are not included. Future work
might focus on also including noncanonical pairs, perhaps
using the MC-Fold approach (Parisien and Major 2008;
Honer zu Siederdissen et al. 2011; Sloma and Mathews
2017). A second difference is that natural structures con-
tain pseudoknots, which are neglected here. Accurate
modeling of pseudoknots without sequence comparison
or experimental mapping data remains an important chal-
lenge (Bellaousov and Mathews 2010; Hajdin et al. 2013).

To test the importance of selecting the database se-
quences against cross-hybridization, a second database
was assembled without selecting against cross-hybridiza-
tion. This database has the same selections based on
the thermodynamic qualities, but instead of removing se-
quences that cross-hybridize, sequences were removed
at random to yield a database of identical size to that
benchmarked above. The results of parameter selection
are provided in Supplemental Figure S13. For relatively
high ensemble defect, this database can accomplish de-
signs faster than Design_Random, but relatively low
ensemble defects cannot be achieved. This is likely
because the limited size of the database does not allow
the Design_Preselected program to find a combination
of sequences that do not cross-hybridize, and highlights
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FIGURE 3. Time performance for long sequences. Designs were
made for sequences of up to 1995 nt (Supplemental Table S7).
Mean time performance is shown for ten calculations for each target
structure. Design times were capped at 75 d of running time
(6,480,000 sec). Points missing for NUPACK (697, 1793, and 1995
nt) and Design_Random (1793 and 1995 nt) had one or more designs
that reached themaximum runtime andwere terminated, so themean
could not be calculated. Design_Random and Design_Preselected
were run with default parameters. NUPACK was run using rna99 ther-
modynamic parameters at 37°C, the NED threshold was set to 0.1 so
that NUPACK produced structures of similar NED asDesign_Random,
and other parameters were set to defaults. Designs were performed
on a single core of an Opteron 2427 processor.
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the importance of selecting sequences for the database
with little propensity to interact in undesired ways.
Figure 2 demonstrates a clear tradeoff in design time

and the quality of the designed structure. The trend of
this tradeoff is better when using the database of prese-
lected sequences than when using random sequences.
With constant ensemble defect, the preselected sequence
databases improved design time for natural structures by a
factor of 36 (Table 4) and, for structures generated by fold-
ing random sequences, by a factor of six (Table 5). Much of
the improvement is observed to be in the longer struc-
tures. For structures composed of fewer than 100 nt, gen-
erally the design time is short with either random or
preselected sequences. For the 300 and 400-mers, the
gap in performance is considerable. Using the preselected
sequence database, design of RNA sequences to fold into
natural RNA structures performed about equally in terms
of NED as compared to the conventional, random, meth-
od. These are important considerations for future work in
RNA sequence design. As designed structures get longer,
the databases of preselected sequences will become in-
creasingly important to both limit overall design time
and to reduce ensemble defect. This is supported by
Figure 3, where a comparison of design times was made
out to sequences of lengths of 1995 nt.
Previously, an approach for sequence design, informed

by natural sequences, was reported (Esmaili-Taheri et al.
2014). This work differs in several significant ways. Esmaili-
Taheri et al. (2014) first predicted structures by free energy
minimization for the natural sequences. Then, they assem-
bled a database of loops and helix sequences from the
predicted structures. The database of natural sequences
was then used as sequence components, i.e., helices or
loops, of the target structure, and the ability of the de-
signed sequence to fold to the desired structure was as-
sessed by free energy minimization. Portions of the
structure that did not fold into the desired structure were
swapped for other sequences in the database. In this
work, the natural sequences are shown to have specific
properties, and then a database of other sequences was
generated de novo to mimic those features. The database
assembled here has little overlap with natural sequences,
as shown by Supplemental Table S8 for helices. Only
8.2% of helices in the database are found in natural RNA
sequences. For the longer helices, where the number of
possible helices is relatively large, a smaller fraction of the
database helices are found in nature, with none of the 10
bp helices appearing in natural sequences. Additionally,
the database used here was selected for sequences that
should not cross-hybridize in undesired ways, and the data-
base speeds the design of sequences with low ensemble
defect. This is important for the design of long sequences,
but it is also important for the design of short sequences
because, for example, it could facilitate thedesignof a large
set of sequences that are elements of a larger complex.

The database was used here for designing sequences
with low ensemble defect, pioneered by the NUPACK
algorithm (Zadeh et al. 2011b), but the approach would
be useful with other nucleic acid design approaches. This
work and the work of Esmaili-Taheri et al. (2014) provide a
new strategy for iterative refinement that should lead to a
new generation of tools. The sequence database and de-
sign software are part of RNAstructure software package
and can be downloaded at http://rna.urmc.rochester.edu/
RNAstructure.html (Reuter and Mathews 2010).

MATERIALS AND METHODS

Helix database selection procedure

To start, all possible helices containing GC and AU base pairs
were generated (Table 1 shows the number of helices by helix
length). This database was then trimmed using multiple criteria
to result in the helix database. Figure 4 shows an overview of
the design procedure.

Generate all helices

699,720 helices

Remove >3 basepair repeats;
Minimize propensity to form 

intramolecular pairs;
Minimize ensemble defect;

19,488 helices

Keep helices with the least 
propensity to cross-hybridize

2000 helices

Generate all sequences

1,398,080 sequences

Eliminate sequences with ability
to form intramolecular pairs;

Remove >3 nucleotide repeats;

433,142 sequences

Minimize propensity to form 
self-complementary duplex;

Minimize propensity to
hybridize with final set of helices;

40,000 sequences

Keep sequences with the least
propensity to cross-hybridize

2,075 sequences

FIGURE 4. Generating the databases of RNA helices and loops. A list
of all possible helices of lengths from 3 to 10 bp, composed of only ca-
nonical A-U and G-C base pairs, was trimmed by removing helices with
more than three consecutive base pair repeats, by removing helices
with strands that form intramolecular pairs, and by removing helices
with high ensemble defect. The list was trimmed further by removing
helices with high propensity to cross-hybridize with other helices in
the list. To generate a list of sequences to use as loops, a list of all pos-
sible sequences of lengths from 3 to 10 nt was trimmed by removing
sequences with more than three consecutive repeating nucleotides,
and by removing sequences that can form intramolecular pairs. The
list was trimmed further by removing sequences with high propensity
of forming pairs with the final helix list and by removing sequences
that can form self-complementary duplexes. The list was trimmed fur-
ther by removing sequences with high propensity to cross-hybridize.
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Step 1: This step ensured that only helices that fold precisely
are included. NED was calculated for each helix in the database
of all possible sequences. 25,854 total helices below a NED
threshold, chosen specifically for each helix length (Table 6)
were kept in the database while the other helices were discarded.
NED thresholds were chosen based on helix yield. The target
yield was 26,000 helices.

Step 2: Helices with more than three repeating consecutive
nucleotides were omitted to prevent a possibility of forming
quadruplex structures or other higher-order motifs.

Step 3: This step ensured that helix sequences do not fold back
on themselves to form undesired structures, rather than interact-
ing with the other strand of the same helix. Intramolecular ensem-
ble pair probabilities (EPP), the sum of probabilities for every
possible pair in the sequence, were calculated for each sequence:

EPPintramolecular =
∑N

i=1

∑N

j=i

Pi−j , (2)

where N is the length of the sequence, and Pi−j is the probability
of pair i-j in the sequence. Pi−j was calculated using a partition
function calculation (Mathews 2004). It measures a propensity
to form intramolecular structure.

Strands with ≥7 nt can form stacked base pairs. To make sure
that the strands in the helix have low propensity to form intramo-
lecular pairs, only helices with low EPPintramolecular were kept. Helix
EPPs were normalized to the length of the helix and themaximum
EPPintramolecular was capped as shown in Table 7. The cutoffs
were chosen to provide sufficient remaining sequences for each
length helix.

Step 4: Each remaining helix was then tested for cross-hybridi-
zation with each other helix in the database, and helices with the
propensity to cross-react were eliminated. For each helix pair,
sums of four intermolecular EPPs (two strands for each helix
pairing in all combinations) were calculated. Intermolecular EPP
is the sum of probabilities for every possible intermolecular pair.
It measures the propensity of intermolecular structure to form:

EPPintermolecular =
∑N

i=1

∑M

j=1

Pi−j , (3)

whereN is the length of strand 1 andM is the length of strand 2 of
the helix. Pi−j, the probability of nucleotide i in strand 1 pairing to

nucleotide j in strand 2, was calculated using a partition function
calculation (Mathews 2004).

Intermolecular EPPs were normalized by dividing by the length
of the shortest strand in the helix. The normalized EPPs were
summed for each helix across all other helices. An iterative refine-
ment of the database was performed, where the helix with the
highest sum was removed from the database and the sums
were recalculated for each step. This procedure was repeated
until the total number of helices reached 1988, as shown in
Supplemental Table S8. The maximum number of removed
helices was tailored for helix length to ensure that each helix
length is not underrepresented (Table 8). Once trimming reached
the specified limit for a given helix length, the iterative refinement
process was no longer allowed to trim a helix of that length.

Subsequently, all 1 and 2 bp helices were added to the
database bringing the total number of helices to 2000.
Supplemental Table S9 provides an overview of the number of
helices remaining after each step of the trimming process.

Loop database selection procedure

Loop sequences were selected from all possible sequences in a
similar fashion. First, all possible RNA loop sequences of length
3 to 10 nt were generated, and sequences were removed to leave
a set with desired properties. Supplemental Table S10 provides
an overview of the number of sequences remaining in the data-
base after each step of the trimming procedure outlined below.

Step 1: This step ensured that loop sequences do not fold back
to form base pairs. Sequences with the length of 7 nt and longer
can potentially form intramolecular structures. Minimum free en-
ergy structures were predicted for these using the Fold program
from RNAstructure (Mathews et al. 2004; Reuter and Mathews
2010). Sequences that formed stable structures, i.e., ΔG°37< 0,
were removed from the database.

Step 2: Sequences with more than three repeating consecutive
nucleotides were trimmed.

Step 3: This step ensured that the loop sequences do not form
base pairs with helix sequences. The remaining 433,142 sequenc-
es were cross-hybridized with each of the two strands of each helix
in the final helix database. EPP for each hybrid was calculated.
EPPs for the two hybrids in each helix were summed and normal-
ized by the length of the shortest strand in the hybrid. Loops with
the lowest total normalized EPP were retained, leaving 50,000
loop sequences.

Step 4: This step ensured that loop sequences do not form self-
complementary duplexes, which might happen in sequences
designed with the same loop sequence appearing more than

TABLE 6. NED inclusion threshold

Helix length (bp) NED

3 0.5

4 0.3
5 0.16

6 0.09

7 0.06
8 0.03

9 0.02

10 0.01

NEDs were chosen based on helix yield.

TABLE 7. Normalized EPP cutoffs

Helix length (bp) Normalized EPP cutoff

7 0.067

8 0.074

9 0.799
10 1.974

Cutoffs were chosen based on helix yield.
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once. The loop database was reduced to 40,000 sequences by re-
moving loop sequences with highest EPP to form self-comple-
mentary structures.

Step 5: This step ensured that loop sequences do not interact
with other loop sequences to form base pairs. All remaining
loop sequences were cross-hybridized with each other. EPP for
each hybrid was calculated and normalized by the length of the
shorter strand. Normalized EPP was summed for each sequence.
An iterative refinement was performed where the sequence with
the highest sum was removed, and the sums were recalculated
omitting the removed sequences. This procedure was repeated
until all sequences with nonzero EPP were removed. All 1 and
2 nt sequences were added to the database bringing the total
number of loop sequences to 2075. The minimum number of
sequences of each size was preset to prevent over-trimming
and ensure diversity (Table 8).

Energy model

To calculate free energy changes, the RNA nearest neighbor
parameters were used (Xia et al. 1998; Mathews et al. 2004).
The only exception was that the per branching helix in a multi-
branch loop parameter was set to −0.6 kcal/mol, according to
the experimental results (Diamond et al. 2001; Mathews and
Turner 2002) as has been done in recent work (Lu et al. 2009;
Bellaousov and Mathews 2010; Harmanci et al. 2011; Seetin
and Mathews 2012). The partition function includes coaxial stack-
ing interactions for multibranch loops and exterior loops.

Design algorithm

TheDesign software was based on the NUPACK design algorithm
by Zadeh et al. (2011b), with modifications to the structure
decomposition and the energy model. For the energy model,
Design uses the latest Turner energy rules for loops (Mathews
et al. 2004), including explicit coaxial stacking in the partition
function calculation (Mathews 2004). NUPACK uses the previous
set of loop rules for RNA design (Mathews et al. 1999).

Like NUPACK, Design is capable of sequence design for
pseudoknot-free structures. The Design program is in C++, and
was built using a design class that inherits the RNA class from
RNAstructure (Reuter and Mathews 2010). The Design algorithm,

however, does not implement all the features in theNUPACK soft-
ware, such as multiple-sequence design and the ability to specify
sequence constraints.
Design first decomposes the target structure with a binary tree

decomposition. A sequence of nucleotides that can fold to the
desired structure is assigned to each leaf at random, and the en-
semble defect is calculated. Ensemble defect is normalized to the
number of nucleotides in the leaf, and is evaluated against the de-
fault threshold (Table 2). For leaves with nucleotides missing from
the backbone connections, i.e., with a discontinuous backbone
because of the decomposition, 6 nt that neither pair nor stack
are used to connect the two strands for the partition function
calculation needed to determine the NED. If the NED is above
the threshold, the leaf sequence is redesigned using the ensem-
ble defect-weighted mutation sampling as described by Zadeh
et al. (2011b). The process terminates successfully when the
NED of the leaf is below the threshold. In the case where every
nucleotide has been mutated four times by default, leaf optimiza-
tion terminates and restarts up to the default maximum number
of times set by the “number of leaf optimizations” parameter
(Table 2). If threshold NED is still not reached, the threshold
NED is modified to reflect the lowest NED achieved (Zadeh
et al. 2011b). This helps to minimize runtime for structures that
are difficult to design.
Once all leafs are designed, they aremerged into branches and

the NED is calculated for each branch. If the NED of every branch
is below theNED threshold, branches aremerged to form branch-
es of longer structures. If the NED of a branch is above the target
threshold, NEDs of the current and nearest sub-branch are multi-
plied by randomly generated number from 0 to 1 and the sub-
branch with the highest product is reoptimized and merged
back. This involves traversing the tree back to the level of the
leaf. This branch reoptimization step repeats up to the default
maximumnumber of times set by the “number of branch reoptim-
izations” parameter (Table 2), at which point the threshold NED is
modified to reflect the lowest NED achieved so far. This process is
repeated at everymerging step until the full sequence is reached.
The random number generator algorithm (ran2) from “Numerical
Recipes” was used (Press et al. 1992).
Hierarchical structure decomposition: The structure is recur-

sively decomposed into two fragments at multibranch loops and
exterior loops to a user-specified maximum depth (Fig. 5, black
arrows). This is in contrast to NUPACK, which decomposes struc-
tures by dividing within helices. ForDesign, the default maximum
depth is five decompositions, and this default was used for all the
designs reported here. For each decomposition, the goal is to di-
vide the sequence into two fragments of equal length as closely
as possible. The sequence can be cut either one or two times to
the 5′ side of unpaired nucleotides or a helical branch from an ex-
terior or multibranch loop. Additionally, a valid fragment (branch
or leaf) can have only one consecutive set of nucleotides missing,
i.e., one interruption in the backbone. For example, the first cut in
Figure 5 leaves the lower-left fragment with one consecutive set
of missing nucleotides. Also, the minimum length of a fragment
is 6 nt. The fragmentation at multibranch loops was chosen
because the Design software was tested by designing sequences
that will fold to natural structures. NUPACK fragments at struc-
tures helices, and this design choice was motivated because the
authors of NUPACK were considering engineered structures
that would typically have longer helices.

TABLE 8. Minimum number of helices allowed as a function of
helix length

Length Minimum

3 18

4 30

5 60
6 100

7 150

8 200
9 300

10 400

TOTAL 1258
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Mode—Design_Random

The Design_Random mode closely follows the Zadeh et al.
(2011b) NUPACK algorithm but with the revised hierarchical
structure decomposition. In this mode, leaf redesign stepmutates
one unpaired nucleotide or base pair at a time. The goal of the
algorithm is to generate the sequence with NED lower than a
user-defined threshold.

Mode—Design_Preselected

Design_Preselected mode was modified from Design_Random.
The initial leaf sequence is filled with sequences (blocks) from
the preselected sequence databases instead of random sequenc-
es. Helix sequences are drawn from the helix database and loop
sequences are drawn from the loop database. For sequences
up to and including 20 bp (for helices) or nucleotides (for loops),
two blocks are used, with their lengths divided into equal, or
roughly equal portions with the length of the first portion rounded
down, and blocks of those lengths are chosen. Sequences longer
that 20 bp or nucleotides are assembled with blocks of size 10
until 20 or fewer base-pairs or nucleotides are remaining.

In this mode, the leaf redesign step is skipped. When the
NED of the designed leaf is above the threshold, the algorithm
advances to the leaf reoptimization step by selecting all new
blocks. Otherwise assembled leaves are merged together into
branches (Fig. 5, gray arrows) and the whole tree goes through
the subsequence merging and reoptimization process to design
the sequence with the optimal NED.

Structure sets

Parameter dependence of both modes was evaluated using 24
structures: 12 known RNA structures and 12 predicted lowest
free energy RNA structures for random sequences (Table 3;
Supplemental Table S1). Subsequent performance testing for
one set of parameters for each mode was done using 50 struc-
tures: 25 lowest free energy structures for random RNA sequenc-
es and 25 known RNA structures (Tables 4, 5; Supplemental Table

S2). The known structures were chosen to
ensure diversity. They come from thirteen
RNA families: 5S rRNA (Szymanski et al.
1998), Group I intron (Waring and Davies
1984), 7SK RNA (Andronescu et al. 2008;
Nawrocki et al. 2015), hairpin ribozyme
(Andronescu et al. 2008; Nawrocki et al.
2015), hammerhead ribozyme type I
(Andronescu et al. 2008; Nawrocki et al.
2015), hammerhead ribozyme type II
(Andronescu et al. 2008; Nawrocki et al.
2015), RNase E 5′ UTR (Andronescu et al.
2008; Nawrocki et al. 2015), RNase P
RNA (Brown 1998), SRP RNA (Larsen
et al. 1998), telomerase RNA (Chen
et al. 2000), tRNA (Sprinzl et al. 1998),
tmRNA (Zwieb et al. 1999), and Y RNA
(Andronescu et al. 2008; Nawrocki et al.
2015), and span lengths from 48 to 451
nt. All pseudoknots were removed before

designing structures by removing the fewest pairs needed to
break a pseudoknot (Smit et al. 2008; Reuter and Mathews
2010). The random sequences mimic the length of known
structures.

Lowest free energy structures for random sequences were
generated using the Fold program from RNA structure and RNA
folding parameters (Supplemental Tables S1, S2; Reuter and
Mathews 2010). The sequences were generated using equal
probability of nucleotides A, C, G, and U.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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