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Visual performance depends on polar angle, even when eccentricity is held constant; on
many psychophysical tasks observers perform best when stimuli are presented on the hori-
zontal meridian, worst on the upper vertical, and intermediate on the lower vertical meridian.
This variation in performance ‘around’ the visual field can be as pronounced as that of dou-
bling the stimulus eccentricity. The causes of these asymmetries in performance are largely
unknown. Some factors in the eye, e.g. cone density, are positively correlated with the
reported variations in visual performance with polar angle. However, the question remains
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better at visual tasks performed to the left or right of the center of gaze, compared to
above or below at the same distance from gaze. We sought to understand what aspects of
biology govern this fundamental pattern in visual behavior. To do so, we implemented a
computational observer model that incorporates known facts about the front end of the
human visual system, including optics, eye movements, and the photoreceptor array in
the retina. We found that even though some of these properties are correlated with perfor-
mance, they fall far short of quantitatively explaining it. We conclude that later stages of
processing in the nervous system greatly amplify small differences in the way the eye sam-
ples the visual world, resulting in strikingly different performance around the visual field.

Introduction

Psychophysical performance differs with visual field position

Psychophysical performance is not uniform across the visual field. The largest source of this
non-uniformity is eccentricity: acuity is much higher in the central visual field (fovea), limiting
many recognition tasks such as reading and face recognition to only a relatively small portion
of the retina. As a result, central visual field loss, such as macular degeneration, can be debili-
tating. Even a modest difference in eccentricity can have substantial effects on performance.
For example, contrast thresholds on an orientation discrimination task approximately triple at
8° compared to 4° eccentricity [1, 2]. Similar effects are found for a wide range of tasks (for a
review on peripheral vision, see [3]).

Interestingly, visual performance differs not only as a function of distance from the fovea
(eccentricity), but also around the visual field (polar angle). The polar angle effects can be
quite systematic. At a fixed eccentricity, contrast sensitivity and spatial resolution are better
along the horizontal than the vertical meridian, and better along the lower than the upper ver-
tical meridian. The two effects have been described by Carrasco and colleagues and called the
“horizontal-vertical anisotropy” and the “vertical meridian asymmetry” [2, 4-8]. Such effects,
often called performance fields, are found in numerous tasks, including contrast sensitivity and
spatial resolution [5, 6, 9-23] (Fig 1), visual search [24-31], crowding [32-34], motion percep-
tion [35], visual short-term memory [36], contrast appearance [7] and spatial frequency
appearance [37]. These effects can be large. For example, contrast thresholds at 8° eccentricity
can be 5 times lower on the horizontal meridian compared to the vertical [5], a larger effect
than doubling the eccentricity, from 4° to 8° [2].

The causes of performance differences with polar angle are not known. Some eye factors
may contribute to them as they do to differences across eccentricity. For instance, the drop-off
in density of cones and retinal ganglion cells with eccentricity contributes to decreased acuity
[38, 39]. In this paper, we take a modeling approach to quantify the extent to which optics and
photoreceptor sampling could plausibly contribute to the reported performance differences
with polar angle.

Cone density differs with visual field position

In the human eye, cone density varies with eccentricity and polar angle. Foveal cones have rel-
atively small diameters and are tightly packed, becoming sparser in the periphery due to both
increased size and larger gaps between them [40, 41].

Cone density also differs as a function of polar angle at a fixed eccentricity. From ~2° to 7°
eccentricity, density is about 30% greater on the horizontal than the vertical meridian [40, 41]
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Fig 1. Example of psychophysical task and performance differences ‘around’ the visual field. (A) Experimental design of a two-alternative forced
choice (2-AFC) orientation discrimination task. While observers maintained fixation, a brief cue appeared, and after a 500 ms ISI, a Gabor stimulus (4
cycles/*) was presented at one of four possible iso-eccentric locations (4.5° eccentricity). A response cue indicated to the observer the target location
they were asked to make an orientation judgment on (clockwise/CW or counter-clockwise/CCW relative to vertical). Contrast varied across trials. (B)
Contrast-dependent psychometric functions of an example observer show best performance for the two horizontal locations (Left and Right), and
poorest performance for upper vertical. The increase in contrast thresholds (contrast at which performance reached 82% correct, dashed line) ranged
from about 2.5% (Left and Right) to 4% (Upper). Data from figure 6 in Cameron, Tai, and Carrasco [5].

https://doi.org/10.1371/journal.pebi. 1007063001

(Fig 2). This 30% difference is about the same as the cone density decrease from 3° to 4° eccen-
tricity along a single meridian. As a result, iso-density contours are elongated by about 30% in
the vertical axis compared to horizontal. Because cone density is higher on the meridian where
performance is better (horizontal compared to vertical), one might be tempted to conclude
that cone density explains the performance difference. We return to this question in subse-
quent sections.

Optical quality differs with visual field position

Before light hits the retina, it has already been transformed by refraction from passing through
different media (cornea, vitreous and aqueous humors), by diffraction from the pupil, as well
as by optical aberrations (chromatic and achromatic) of the lens and intraocular light scatter-
ing (for an overview see [42]). These transformations reduce the optical quality of the image
projected onto the retina.

Optical quality is not uniform across the retina [43, 44]. A clear, systematic effect is that
both defocus and higher-order aberrations become worse with eccentricity. We assume that
myopes and hyperopes wear corrective lenses to achieve good focus at the fovea. Defocus is the
largest contribution to image quality [42]. The effects of defocus are largest in the far periph-
ery, but still evident when comparing fovea to parafovea (e.g., 0 vs. 5°, Fig 3).

Most measurements of optical quality in human are either at the fovea or along the horizon-
tal meridian. These measurements show that in addition to the decline in optical quality with
eccentricity, there are also hemifield effects: For example, in the periphery, the temporal retina
tends to have poorer optics than the nasal retina [44]. There are some [43], but many fewer
measurements along the vertical meridian compared to the horizontal meridian. To our
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Fig 2. Variations in human cone density as a function of eccentricity and polar angle. Cone density falls off sharply
with eccentricity, and also varies between horizontal and vertical retinal axes. Data are pooled across both eyes. Error
bars represent standard error across 10 observers. Arrow indicates difference in cone density between horizontal and
upper visual meridian at 4.5° eccentricity (matching Fig 1). Figure recomputed with data from observers between 22—
35 years old (‘Group 1’) reported by Song et al. [41].

https://doi.org/10.1371/journal.pcbi.1007063.9002

knowledge, it is not yet firmly established whether there are systematic differences in optical
quality between the vertical and horizontal meridians. However, the fact that optical quality
varies with eccentricity as well as between nasal and temporal retina suggests that one should
at least consider optics as a possible explanatory factor for performance differences around the
visual field.

Quantifying the contribution of components in the eye to behavioral
performance using a computational observer model

The meridian differences in cone density are correlated with meridian differences in psycho-
physical performance, with higher cone density and better performance on the horizontal axis
(adjusted r* = 0.88, Fig 4) [40, 41]. However, a correlation does not necessarily imply an expla-
nation. Without an explicit linking hypothesis or model that can predict how a difference in
cone density should affect visual performance on a given task, we cannot know whether this
correlation is meaningful for explaining this behavior. Should a decrease in cone density
increase contrast thresholds? And if so, should a decrease of about 25% in cone density (differ-
ence between horizontal and vertical at 4.5° eccentricity) lead to an increase in contrast thresh-
old of about 25%, as observed psychophysically?

Answering these questions requires a computational model. A computational model of
the eye can quantify the extent of each component’s contribution on visual performance and
potentially reveal which components limit performance on a given task.

In this study, we quantify the contribution of cone density and optical quality on visual
performance according to a computational observer model. We then compare the modeled
contributions to the observed quantities, and ask whether the observed differences in cone
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Fig 3. Variations in optical quality as a function of visual field location for example observer. The letter E was convolved with 5
location-specific point spread functions (PSFs) from an example observer, using wavefront measurements of image quality and
correcting for the central refractive error. The wavefront measures are based on a prior study [43], and provided courtesy of Pablo
Artal.

https://doi.org/10.1371/journal.pcbi.1007063.9003
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density and optical quality as a function of polar angle can explain the observed differences in
performance.

Several studies have proposed ideal observer models of visual tasks limited only by optics
and photoreceptor sampling. When such ideal observer models are compared to human
performance as a function of eccentricity, results show that these factors alone (optics and pho-
toreceptor properties) cannot completely account for the differences in psychophysical perfor-
mance (e.g. [45-48]). Generally, these studies find that human performance falls off more
rapidly with eccentricity than would be predicted based only on optical and photoreceptor
limits, indicating that there are additional downstream processes whose efficiency varies with
eccentricity. These studies have not assessed the degree to which differences in performance as
a function of polar angle are explained by front-end factors.

To implement the computational observer model of the human eye, we used the Image Sys-
tems Engineering Toolbox for Biology (ISETBIO [49-51]), a publicly available toolbox, to sim-
ulate encoding stages in the front-end of the human visual system (available at http://isetbio.
org/). We used this model to simulate a 2-AFC orientation discrimination task using Gabor
stimuli matched in parameters as reported by Cameron, Tai, and Carrasco [5]. Our computa-
tional observer model consists of multiple stages representing the front-end of the visual sys-
tem: the spectral radiance of the experimental visual stimuli, optical quality of the lens and
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Fig 4. Correlation between performance and cone density across polar angles. Contrast thresholds (y-axis) were
averaged across three observers reported in Cameron, Tai, and Carrasco [5]. Thresholds were obtained for stimuli at
4.5° eccentricity, above (gray), below (blue), left (red), and right (green) of fixation as indicated by the legend. Cone
density along the four meridians are the average values reported by Song et al. [41] at 4.5° eccentricity. (For right and
left, cone density was averaged for the nasal and temporal retina, since observers performed the psychophysics task
binocularly). Error bars indicate one standard error across 10 observers (cone density) and 3 observers (contrast
thresholds).

https://doi.org/10.1371/journal.pcbi.1007063.9004

cornea, fixational eye movements, the cone mosaic with different types of photoreceptors and
their isomerization rate for a given stimulus presentation. Finally, the observer model has an
inference engine to classify the stimulus as belonging to one of two possible classes (clockwise
or counter-clockwise). Our inference engine employs a linear support vector machine (SVM)
classifier to learn the two stimulus classes from the cone outputs on training data, and then
applies the SVM to left out test data. Hence the classifier, unlike an ideal observer model, does
not have explicit information about the stimulus, noise distributions, or the system (optics,
cone types).

With a computational observer model, one can show where along the visual pathway infor-
mation loss happens and how this loss of information is inherited or potentially compensated
for in later encoding stages of the visual pathway. Here, we investigate to what extent visual
performance (contrast threshold) depends on variations in cone density and optical quality.
By systematically varying cone density and optical quality (defocus) independently, we can
compare the computational observer model performance to reported differences in the litera-
ture on the human eye to quantify the individual contribution of each of these two factors to
differences in visual performance across the visual field.

By studying polar angle effects, this study complements prior observer model studies of
eccentricity effects; thus, this study provides novel information to our understanding of visual
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perception across the visual field. Moreover, our simulations include stimulus uncertainty
(phase randomization) and fixational eye movements. These factors generate trial-to-trial
noise that is far more complex than simple independent Poisson noise at each receptor, mak-
ing the closed-form solution of an ideal observer model more difficult to implement. Hence,
we use a computational (but not ideal) observer model. This brings model performance closer
to human performance than typical ideal observer models, and more generally, is an important
tool for situations in which ideal observer models cannot be implemented.

Results
Overview of computational observer model

To investigate to what extent performance differences in the visual field depend on variations
in cone density and optical quality, we developed a computational observer model of the first
stages of the human visual pathway. The computational observer was presented with oriented
Gabor stimuli, tilted either clockwise or counter-clockwise from vertical, with a phase of 90°
or 270° (randomized across trials) to simulate a 2-AFC orientation discrimination task. (The
phase was not relevant to the judgment). To compare the performance of the computational
observer to human observers, we matched the stimulus parameters to a psychophysics study
[5].

Scene radiance. The model starts from the photons emitted by a visual display, defined as
the scene radiance. Three frames of two example time-varying achromatic Gabor stimuli are
in panel A of Fig 5. The left column shows the result of each stage for a Gabor with high con-
trast (100% black outline) and middle column for a low contrast Gabor (10%, orange outline).
Both of these Gabor stimuli have a counter-clock-wise orientation from vertical, contain a spa-
tial frequency of 4 cycles/® and are presented at 4.5° eccentricity. The high and low contrast
Gabor stimuli contain the same mean radiance, but the high contrast Gabor has an amplitude
that is 10x larger than the low contrast Gabor (1D representation at dotted line, right column
of panel A).

Retinal irradiance. The second stage of the model simulates the retinal irradiance: the
result of the time-varying radiance passing through the simulated human optics (including
refraction and aberrations caused by the pupil, cornea, and lens). The retinal irradiance is the
light image just before the photons are captured by the photopigment in the retina. Panel B of
Fig 5 shows the retinal irradiance summed across all wavelengths. The effect of the optics is to
blur the Gabor stimuli and to reduce the fraction of short wavelength light. The mean irradi-
ance is the same for the two stimuli.

Isomerization. The third stage implements a cone mosaic and computes photon absorp-
tions for each cone at each time sample (panel C of Fig 5). The cone mosaic is a rectangular
patch with a field of view of 2x2° at 4.5° eccentricity. Each cone type absorbs a percentage of
the emitted photons, depending on the wavelength of the light and the efficiency of the cone
type.

The model implements two sources of noise. The first source comes from small fixational
eye movements. These eye movements cause shifts of the stimulus on the cone mosaic during
the trial. The second noise source is from photons, which are inherently noisy and follow a
Poisson distribution.

During the onset of a high contrast Gabor, the L-, M-, and S-cones increase their absorp-
tions on average by ~50, ~30, and ~4 photons/ms respectively. After stimulus offset, the
absorptions return to baseline at ~110, ~75, and ~12 photons/ms. The absorption rates for a
mean luminance display (~110 photons/ms for the L-cones) are validated by an independent
computation of isomerization given the luminance by Wyszecki and Stiles [52], implemented
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2D images show the radiance summed across wavelengths (400-700 nm) during 1-ms windows. 1D slices through the images are
plotted on the right. (B) Retinal irradiance. The retinal irradiance is the image that has passed through the eye’s optics, before being
processed by the retina. The optics are modeled as a typical human wavefront with a 3-mm pupil, indicated by the schematic point
spread function (PSF) on the lower left of panel A. For illustration purposes, wavelengths of the 2D representation were converted
into RGB values. The yellowing is a result of the spectral filtering by the eye’s optics. (C) Isomerization. The time-varying retinal
irradiance is transformed into photon absorptions using a rectangular grid of L-, M- and S-cones. The dark pixels correspond to S-
cones (see text for more details). (D) Behavioral inference. The last stage of the computational observer is a simplified decision
stage, performing a 2-AFC orientation discrimination task. First, the absorption image at each time point was transformed into the
amplitude domain by the Fourier transform. The amplitude images were used to train a linear support vector machine (SVM)
classifier using 10-fold cross-validation. The images show an example of the trained classifier weights. The weights are high at
locations corresponding to the stimulus frequency (4 cycles/*) and orientation (+15°). Once trained, the classifier predicted the left-
out data. The cross-validated accuracy was fit by a Weibull function (right part of panel D) to determine the contrast threshold.

https:/doi.org/10.1371/journal.pcbi.1007063.9005
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in the ideal observer model by Geisler (equation 2, p.776, [53]), where the average L-cone
absorption under 100 cd/m* with a 3-mm pupil is predicted as ~108 photons/ms. The S-cones
absorb fewer photons than the L- and M-cones. This is because inert pigments in the lens and
macula absorb more light at short wavelengths, and because the photopigment density is lower
in the S-cones. As a result, the locations of S-cones in the absorption array (Fig 5, panel C) are
dark.

Behavioral inference. The last stage computes a 2-AFC inference of the stimulus orienta-
tion from the cone absorptions. An ideal observer would have full knowledge of the response
statistics (mean and distributions of responses of each cone at each time point from each of the
possible stimuli, including the higher order statistics across the cones). The only information it
does not have access to is the sampled noise in the particular trial. It uses the full knowledge to
make the optimal decision given a particular measurement. It is unlikely that human decision-
making has access to this full knowledge.

Here we implement a computational observer that learns patterns from the data, as a
human observer might do during an experiment (or in real life). Our computational observer
uses a linear support vector machine (SVM) classifier. The classifier uses the weights learned
from training data to classify the stimulus orientation of the left-out data.

Because the within-class stimuli differ in phase and because the eyes move during the trial,
the outputs of individual cones are not informative about the decision. This would cause a lin-
ear classifier trained directly on the cone outputs to fail. Similarly, a simple template match
would fail because each time the eye moves the template changes. We therefore decided to
transform the cone outputs prior to training the classifier by computing the 2D Fourier trans-
form on the cone array at each time point. We retain the amplitudes and discard the phase
information. Because the Fourier transform separates the phase and amplitude for each spatial
frequency and orientation, with sufficient signal to noise it is possible to infer the stimulus ori-
entation (irrespective of phase) from the amplitude spectrum. Transforming the outputs of the
cone array in this way can be thought of as giving the observer model partial information
about the task: namely, that orientation and spatial frequency (but not phase) might be
relevant.

As a proof of concept, the classifier shows two expected patterns. First, the largest weights
of the classifier are centered on the peak spatial frequency (4 cycles/*) and orientations (£15°)
of the stimuli (Fig 5, panel D). Second, the classifier accuracy increases with stimulus contrast
(Fig 5, panel D, right). To summarize the data for a given simulated experiment, we computed
the contrast threshold by fitting a Weibull function to the cross-validated accuracy as a func-
tion of stimulus contrast. The contrast threshold for the computational observer with typical
human optics and a cone mosaic matched to ~4.5° eccentricity was 2.7%. This is slightly lower
(thus better performance) than thresholds reported in the psychophysics experiment with the
same stimulus parameters [5], which ranged from 3.6-9% contrast for human observers.

The effect of stimulus uncertainty and small fixational eye movements in
the computational observer model

Two aspects of our simulated experiments give rise to stimulus uncertainty, small fixational
eye movements and phase randomization of the stimulus (90° or 270°). The effects of these are
similar. We consider eye movements first.

We model eye movements using an algorithm developed by Cottaris et al. [54], which is
included in ISETBIO. This algorithm combines a statistical model of fixational drift by Mer-
genthaler and Engbert [55] with a model of microsaccades based on statistics reported by Mar-
tinez-Conde et al. [56, 57]. The displacement of the stimulus due to eye movements in our
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simulations is relatively small: within one trial (a single colored line), the retinal displacement
tends to be about 2-4 cones or less (Fig 6A). This is small compared to the spatial scale of our
stimulus, for which a full cycle corresponds to ~6 cones at 4.5° eccentricity. Given that the tri-
als last only 54 ms, the probability of a microsaccade is low. Hence when both microsaccades
and drift are present, eye movements are dominated by drift.

The fixational eye movements have a large effect on the computational observer model.
Compared to a model with no phase uncertainty and no eye movements, adding fixational eye
movements causes the contrast threshold to about double (Fig 6B, black solid line versus black
dashed line). It might be surprising that eye movements have any effect on the model perfor-
mance: An image translation is equivalent to a phase shift in the Fourier domain and the
model discards phase information. However, because the retinal mosaic contains multiple
cone types with different sensitivities, a shift in the stimulus causes a change in both the ampli-
tude and phase spectra of the absorption images, affecting the information available to the clas-
sifier. Put simply, the possible set of cone responses is more variable in the presence of eye
movements (whether or not the cone outputs are transformed into the Fourier domain), mak-
ing it more difficult for the classifier to cleanly separate the two stimulus classes. Note that in
addition to increasing the threshold, the presence of eye movements also flattens the slope of
the psychometric function. This is because adding eye movements is not equivalent to lower-
ing the contrast: even at the highest contrasts, the classifier may have some uncertainty because
the eye movements can result in a set of cone responses that is very different from the average
set of training responses.

The second source of stimulus uncertainty is phase randomization. On each trial, one of
two phases 180° apart was randomly selected. Again, for a retina with only one cone type, the
change in stimulus phase would translate to a change in the phases of the cone outputs, and
would not impair a classifier operating on the Fourier amplitudes. But with a mixed cone
array, the two phases result in a pattern of cone responses that differ in ways beyond a simple
phases change. Like eye movements, the phase uncertainty makes performance worse (a 5x
increase in threshold compared to the condition with no eye movements and no phase
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Fig 7. The effect of cone type on model performance. (A) Classifier accuracy for absorption rates as a function of stimulus contrast for
the 4 different cone mosaics. Example isomerization images simulated by our computational observer model are shown on the right. A
typical LMS cone mosaic has 60% L-cones, 30% M-cones, and 10% S-cones (black outline). L- and M-cone mosaics (red and green
outline) have very similar absorption rates, whereas the absorption rate for S-cones is 4 times lower (blue outline). Each psychometric
function is the average across performance of 2,000 trials per stimulus contrast (30,000 trials in total). Error bars represent standard
error of the mean across 5 simulated experiments with 400 trials for each stimulus contrast. (B) Same layout as (A) but comparing
simulated experiments with LM-only cone mosaics. We systematically varied the L:M ratio from L-cone only to M-cone only mosaics in
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all LM mixture cone mosaics, fitted with a quadratic function.

https://doi.org/10.1371/journal.pcbi.1007063.9007

uncertainty, solid black vs. solid red line, Fig 6B). Combining the two sources of uncertainty
makes performance a little worse than either one alone (red dashed line).

The effect of cone type on orientation discrimination

Human observers drastically differ in their ratio of L-, M-cones, even at a fixed retinal location
[58, 59]. Our computational observer model assumed a ratio of 0.6:0.3:0.1 L:M:S cones. In sep-
arate simulations we found that varying the ratio between cone types within a mosaic affects
model performance.

To quantify the effect of cone type on our computational model performance, we varied the
ratio of cone types in two ways. First, we tested the effect of cone types using uniform cone
mosaics: L-cone only, M-cone only, or S-cone only, compared to a mixed cone array with a
typical L:M:S ratio of 0.6:0.3:0.1 (Fig 7A).
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There is a very big effect of cone type. A uniform mosaic of only S-cones has a threshold
about 4 times higher than one of only L- or M- cones. The M-cone only and L-cone only
mosaics result in similar performance (a 10% higher threshold for the M-cones). The large
decrease in threshold for S-cone only mosaics is partly explained by chromatic aberration: our
model assumes that the eye is in focus at 550 nm (in between L- and M-cone peak spectral sen-
sitivity), causing large amounts of blur for shorter wavelengths that the S-cones are sensitive
to. Blurring the image is similar to lowering stimulus contrast and therefore increases the con-
trast threshold. Additionally, the S-cones have lower efficiency because of the yellowing of the
lens and the filtering of the macular pigment. The slopes of the psychometric functions for all
three uniform mosaics are similar. This is because the changes in efficiency and in focus are
similar to a change in contrast, meaning a remapping along the x-axis, or a horizontal shift in
the curve.

Interestingly, the trichromatic mosaic results in a shallower psychometric function than
any of the uniform cone arrays, and a threshold comparable to that found for the S-cone only
mosaic. That may be surprising given that our trichromatic retina contained only 10% S-
cones. Why is its performance so poor? This is because of stimulus uncertainty and eye move-
ments: when the array has only one type of receptor, a phase difference in the stimulus or a
position change caused by an eye movement translates to a simple phase difference in the
absorption images, which does not impair the classifier. On the other hand, for a trichromatic
retina, a phase difference or position difference in the stimulus has a more complex effect on
the absorptions, resulting in performance that is worse than expected from simply computing
a weighted average of the performance by the three separate cone types.

Second, to better understand the effect of arrays with cone mixtures, we simulated experi-
ments with retinas with only L- and M-cones in various ratios. Best performance was found
for uniform retinas (100% L-cones, and then almost as good, 100% M-cones) (Fig 7B). When
introducing a mixture of cones in the mosaic, even a small fraction, thresholds increase. For
example, a mosaic with 10% M-cones and 90% L-cones increases the threshold from 0.71% (L-
cone only) to 1.0% stimulus contrast. The worst performance is found for an L:M ratio of
50:50. The computational observer model shows an approximately quadratic relation between
contrast threshold and probability of L-cones in the LM mixture cone mosaic (r* = 0.83, Fig
7C). These results indicate that our model is sensitive to the variability caused by differences in
mean absorption rates across cone types, even with small differences in peak spectral sensitiv-
ity and efficiency between L- and M-cones. This pattern, whereby the best performance occurs
for uniform retinas, depends on there being stimulus uncertainty (phase differences in the
stimulus and/or small fixational eye movements). With no uncertainty, there would be little
effect of mixing L- and M-cones.

For individual differences in L:M:S cone ratios to explain the meridional effect in human
performance between the horizontal and upper visual field, one would need to have a typical
ratio of L:M:S on the inferior retina (upper visual field), but a retina with exclusively L-cones
or M-cones along the horizontal meridian. Given that the arrangement of L-, M- and S-cones
in human retina is approximately random [60], such a scenario is biologically implausible.

The effect of optical quality on orientation discrimination

Large levels of defocus worsen visual acuity [61], where defocus levels larger than 0.75 diopters
(corresponding to 20/40 vision on the Snellen acuity chart for near sightedness) are usually
compensated for with visual aids. Here, we tested the effect of defocus on the 2-AFC orienta-
tion discrimination task reported by Cameron, Tai, and Carrasco [5] to investigate whether
variations in defocus could explain the decrease in performance with polar angle. If the task is
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Fig 8. The effect of optical quality on model performance. (A) The modulation transfer function (MTF) of our computational observer model is
shown using different levels of defocus (an addition to diffraction and higher order aberrations). The MTFs are based on a typical human wavefronts
using the statistical model provided by Thibos [62] based on data from Thibos et al. [63]. The three example MTFs in black, red and yellow lines
indicate a defocus Zernike coefficient of 0, 1 or 2 pum respectively (equivalent to 0, 3.08 or 6.16 diopters for a 3-mm pupil). Dotted line represents 4
cycles/®. A 1D slice through the stimulus shows the effect of the three levels of defocus. (B) Classifier accuracy for absorption rates as a function of
stimulus contrast for 9 different defocus levels for a cone mosaic simulated at 4.5° eccentricity. Accuracy is averaged across performance of 2,000 trials
per stimulus contrast (30,000 trials in total). Error bars represent standard error of the mean across 5 simulated experiments with 400 trials for each
stimulus contrast. (C) Contrast thresholds from panel B as a function of defocus in diopters, fitted with a linear function.

https://doi.org/10.1371/journal.pcbi.1007063.9008

very sensitive to the level of defocus, then small differences in optical quality as a function of
polar angle might explain the observed differences in performance.

Defocus affects the modulation transfer function of a typical human wavefront by attenuat-
ing the high frequencies (Fig 8A). The Gabor patches in our experiment had a peak spatial fre-
quency of 4 cycles/* (dashed line). For this spatial frequency, the simulated levels of defocus in
the observer model cause a modest reduction in contrast.

As expected, large increases in defocus cause the computational observer model to perform
worse, evidenced by a rightward shift of the psychometric curve (Fig 8B). When comparing
contrast thresholds as a function of defocus level, the computational observer model shows a
monotonic relation with defocus, which, for simplicity, we approximate with a linear fit (r* =
0.86, Fig 8C).

The effect of defocus on model performance is small. To explain an increase of 1.5% in con-
trast threshold, similar to what is observed psychophysically as a function of polar angle, the
computational observer model would require an additional 7 diopters of defocus. This is far
higher than any plausible difference in defocus as a function of polar angle at 4.5°. Typically,
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Fig 9. The effect of cone density on model performance. (A) Example cone mosaics simulated by our computational observer model. The highest
tested cone density (22,500 cones/deg’) is equivalent to the cone density in the fovea (0°) whereas the lowest (466 cones/deg’) is equivalent to a cone
density at 40° eccentricity, according to data from Curcio et al. [40]. In our computational observer model, lower cone density implicitly results in
larger absorption rates, because the cone area increases and therefore captures more photons. (B) Classifier accuracy for absorption rates as a function
of stimulus contrast for 13 different cone density levels, each psychometric function is the average across performance of 2,000 trials per stimulus
contrast (30,000 trials in total). Error bars represent standard error of the mean across 5 simulated experiments with 400 trials for each stimulus
contrast. (C) Contrast thresholds from panel B as a function of log cone density (cones/deg?), fitted with a log-linear function.

https://doi.org/10.1371/journal.pchi.1007063.g009

defocus at 4.5° along the horizontal or vertical meridian is within ~0.2 diopters of defocus at
the fovea [43, 44]. The difference between the vertical and horizontal locations at 4.5° would
be even less. Assuming a difference in defocus of 0.2 diopters, the optical quality would explain
only about 3% of the effect of visual performance as a function of polar angle for this task.

The effect of cone density on orientation discrimination

The cone mosaic varies substantially with retinal location. As eccentricity increases, cone
diameter increases, as does spacing between the cones, resulting in lower density. We used our
computational observer model to quantify the extent to which variations in the cone mosaic
could explain the changes in performance with polar angle. We simulated a large range of
cone densities, from about 3 times lower to 15 times greater than the typical density at 4.5°
eccentricity (i.e., the eccentricity of the psychophysical experiment in [5]). As we varied the
cone density, we also varied the cone size and spacing between cones according to the reported
relation between density and coverage [40]. The denser mosaics sample the stimulus more
finely, with fewer absorptions per cone, because as the cone area decreases it captures fewer
photons. (Fig 9A).
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Our computational observer model shows a decrease in contrast threshold as a function of
cone density (Fig 9B and 9C). However, the effect is relatively small. For every 6-fold increase
in cone density, the computational model contrast threshold reduces by 1 percentage point
(e.g., from 4% to 3%). The meridional effect on human performance is ~4.4% (upper vertical
meridian) vs. 3.4% (horizontal). For cone density to account for this observed difference in
human contrast thresholds, there would need to be more than a 500% meridional difference in
cone density. This is far greater than the 20-30% reported difference in cone density at 4.5°
eccentricity [40, 41, 64]. This indicates that, according to our computational observer model,
cone density accounts for less than 10% of the differences in visual performance with polar
angle on the orientation discrimination task reported by Cameron et al. [5].

Discussion

An explicit model is needed to link biological measurements with
psychophysical performance

Our goal was to assess the degree to which front-end properties of the visual system explain
well-established psychophysical performance differences around the visual field. In particular,
we quantified the contribution of two factors in the eye-cone density and optical quality (defo-
cus)-to contrast thresholds measured at different polar angles in an orientation discrimination
task as reported by [5]. These front-end factors have been reported to vary with polar angle,
and in principle, the observed performance differences could be a consequence of the way the
first stages of vision process images. For instance, cone density is higher on the horizontal
meridian compared to the vertical meridian (up to 20° eccentricity [40, 41, 64]). Nonetheless,
without a model to link these factors to performance, how much explanatory power they have
cannot be assessed. We therefore developed a computational observer model to test these
potential links. The underling software we used, ISETBIO, has recently been used to model a
number of basic psychophysical tasks, including contrast sensitivity [50], Vernier acuity [65],
illumination discrimination [66], color perception [67], chromatic aberration [68], visual per-
ception with retinal prosthesis [69], and spatial summation in Ricco’s area [70].

Optics and cone density can explain only a small part of performance fields

Although cone density along the cardinal meridians correlates with behavior, our model
showed that this correlation has little explanatory power: Differences in cone density can only
account for a small fraction of the variation in visual performance as a function of meridian.
Similarly, variation in optical quality within a plausible biological range has only a very small
effect on contrast thresholds in the model of our task. Our observer model puts a ceiling on
these two factors at less than 10% of the observed psychophysical effects. To fully explain these
visual performance differences with polar angle, our computational model would require a dif-
ference of more than 7 diopters in defocus and a difference of more than 500% in cone density
for the horizontal compared to the upper vertical meridian. Such large differences are far out-
side the range of plausible biological variation; defocus at 4.5° eccentricity is typically within
0.1-0.2 diopters of the fovea [44] and cone density at the horizontal meridian is ~20-30%
more than the vertical at this eccentricity [40].

Downstream processing contributes to performance fields

The fact that neither optics nor the cone sampling array can explain more than a small fraction
of the effect of polar angle on contrast thresholds indicates that downstream mechanisms must
explain the majority of this effect. This conclusion is in line with similar work using an ideal
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observer model to study eccentricity-dependent effects (along the horizontal meridian) in
which optics and photoreceptor properties cannot completely account for the eccentricity-
dependent performance seen in human contrast sensitivity or spatial resolution [46, 48]. In
particular, human performance falls off with eccentricity more sharply than would be pre-
dicted by the optics or photoreceptor properties alone. One reason for this is that downstream
processing further accentuates the loss of neural resources with eccentricity. For example, the
ratio of retinal ganglion cells per cone declines with eccentricity [71]. Accounting for this effect
brings predicted performance closer to human in terms of the rate of decline with eccentricity,
although ideal observer models that account for RGC density still perform much better than
human [45, 46]. More accurate models of human detection performance are achieved by
incorporating cortical computations in addition to optical and retinal factors (e.g. [47]).

Could performance differences with polar angle be explained by variation in retinal gan-
glion cell density? Midget retinal ganglion cells are the most prevalent class across the retina
(~80% of the retinal ganglion cell population), have small cell bodies and small dendritic trees,
and are hypothesized to set a limit to achromatic spatial acuity [72]. Like photoreceptors,
midget retinal ganglion cells sample the visual field asymmetrically. For example, at 4.5° eccen-
tricity, the density of midget retinal ganglion cells on the horizontal meridian is reported to be
1.4 times greater than on the vertical meridian (~1,330 vs. ~950 cells/deg” on the horizontal vs.
inferior retina) [71, 73]. This 40% meridional effect is larger than the 20-30% effect at the level
of the cones, indicating that polar angle asymmetries in cone density are accentuated in further
retinal processing. We have not included retinal ganglion cells in our model, but given our
observer model with the cone array, we speculate that this further meridional difference in
ganglion cell density alone will not be sufficient to explain the reported meridional psycho-
physical effects.

Properties of retinal ganglion cells other than density might also vary with polar angle, such
as receptive field size. If so, this too, could contribute to performance differences. For example,
retinal ganglion cell receptive field size increases with eccentricity [38]. This increase, com-
bined with random inputs of cone type to ganglion cell, has been proposed to explain the
precipitous fall-off in chromatic acuity with eccentricity [74]. Little is known about retinal gan-
glion cell receptive field size as a function of polar angle in human. As estimated from post-
mortem dendritic size, midget retinal ganglion cell receptive field sizes are smaller in the nasal
quadrant than other quadrants [75, 76]. In macaque, Croner and Kaplan [77] report differ-
ences in midget cell density (e.g., nasal vs. temporal) but do not find receptive field size differ-
ences with polar angle. Without clear reports of meridional differences in midget ganglion cell
receptive field and dendritic field sizes, it is unlikely that properties of retinal ganglion cells
would fully account for the reported meridional effects in visual performance.

A second potential factor is visual cortex. Some aspects of performance fields manifest as
amplitude differences in the BOLD fMRI signal in V1. Liu, Heeger and Carrasco [78] reported
a40% larger BOLD amplitude in V1 for stimuli on the lower than the upper vertical meridian.
This asymmetry was found for high but not low spatial frequency stimuli, matching psycho-
physical results. They did not report differences between stimuli on the vertical versus hori-
zontal meridians. Performance fields may also be reflected in the geometry of visual cortex.
For example, a template of the V1 map fit to a population of 25 observers showed more cortical
area devoted to the horizontal than the vertical meridian, although the authors acknowledged
that this could be a fundamental fact about V1 or an artifact of the flattening process used in
their analyses [79]. This areal difference has been confirmed in an independent data set [80].
These data also showed that population receptive fields (pRFs) in V1 and V2 are ~10% smaller
when comparing horizontal to vertical quadrants. The geometry and the pRF size effects are
complementary: greater area and smaller pRFs along the horizontal meridian are both
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consistent with this part of visual cortex analyzing the visual field in greater detail. However,
there are also psychophysical differences between the upper and the lower vertical meridian [2,
6, 7], for which no pRF differences have been reported [80]. Our ongoing work suggests that
there are in fact differences in cortical magnification between the upper and lower meridian. It
is not yet known whether any of these meridional effects in V1 (such as greater area for the
horizontal than vertical meridian) are inherited properties from the retina, or whether V1 fur-
ther amplifies the polar angle differences.

Just as visual cortex does not sample all locations in the visual field in the same manner, it
also does not sample spatial frequencies and orientations perfectly uniformly (e.g. [81]). Inter-
estingly, psychophysical asymmetries with polar angle are reported to differ as a function of
spatial frequency (larger asymmetries at higher spatial frequencies), but not as a function of
stimulus orientation [4-8]. However, it is unknown whether and how cortical sampling differ-
ences would account for the observed behavioral patterns. A model is needed to explicitly link
non-uniform coverage across V1 to behavioral performance with regard to stimulus spatial
frequency.

In addition to factors in early visual cortex, cognitive factors will also be important to con-
sider in developing a full understanding of visual performance across polar angles. Exogenous
covert visual attention does not compensate for discriminability differences across polar angles
[4-6, 19], but endogenous covert attention may do so. We are currently investigating this
possibility.

Limitations of the model

Our goal in building a computational observer model was to explicitly link known facts about
the biology of the visual system with psychophysical performance. The value of the model is
evidenced by the difference in the inference one might have drawn from a purely correlational
approach (performance is best where cone density is highest) and the inference drawn from
the model (little relation between cone density and performance). Nonetheless, all models are
simplifications, and ours is no exception.

First, our model contained only one eye, whereas most of the psychophysical evidence in
support of performance fields comes from binocular experiments. But the few studies with
monocular stimulus presentation confirm differences in performance across polar angle and
show a similar magnitude of the effect as for binocular stimulus presentation [4, 8]. Hence this
limitation is unlikely to affect our conclusions. The effects of binocular viewing on our model
performance are likely to be complicated. On the one hand, by doubling the number of photo-
receptors, the signal to noise ratio would increase, consistent with the fact that contrast thresh-
olds are lower with binocular viewing [82]. On the other hand, differences between the eyes,
such as in the optics, the cone mosaic, or eye movements, could result in impaired perfor-
mance. To quantify performance differences between binocular and monocular experiments,
one would need to combine the information from the two eyes at some stage. In the human
visual system, signals from the two eyes converge in V1 [83-85], although where exactly in V1
is still debated (e.g. [86, 87]). Because our model does not explicitly model visual processing
beyond the photoreceptors, we leave the implementation of a biologically accurate binocular
viewing condition for future studies.

Second, we modeled the cone mosaic as a rectangular patch with uniform density for each
simulation, whereas the photoreceptors in human retina are organized in a hexagonal grid
with a gradual change in density as a function of eccentricity. The uniformly spaced rectangu-
lar grid was implemented to save computational resources. The difference between an eccen-
tricity-dependent mosaic and a uniform mosaic can be important for modeling performance
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near the fovea [67], as density declines rapidly over a short distance [40]. However, further in
the periphery, the density changes are modest across a small patch. And given that our model
showed that very large differences in the cone array were needed to explain variation in psy-
chophysical performance, it is unlikely that using a hexagonal, eccentricity-dependent array
would have altered our conclusions.

Third, we did not model differences in photopigment density or macular pigment density
as a function of retinal position. Pigment density has an effect on wavelength sensitivity and
overall efficiency [52]. Although our model did not vary pigment density, it did include posi-
tion-dependent efficiency, implemented by varying the cone coverage, which ranged from
close to 1 (no gaps between cones) near the fovea to ~0.25 in the far periphery. Hence, addi-
tional variation in efficiency arising from pigment density would be unlikely to have a substan-
tial impact on model performance. Moreover, macular pigment density does not vary
systematically with polar angle at iso-eccentric locations [88].

Finally, our computational model only deals with visual processes up to photon absorptions
by the cones. Processes up to this point, optics, photon noise, and cone sampling, are well char-
acterized and can be accurately modeled. In future work, we will build on our computational
observer model to investigate the contribution of downstream factors, such as post-receptor
retinal circuitry and pooling of signals by retinal ganglion cells and visual cortex.

The inference engine

The performance of a classifier depends, in part, on how much knowledge of the task the clas-
sifier has access to. Our observer model had far less information than an ideal observer model.
By definition, ideal observer models have complete knowledge about the relationship between
inputs and outputs (except for the trial-to-trial stochastic noise) and use this knowledge to
make optimal decisions, thereby setting an upper limit on performance [28, 29, 46, 53, 89-91].
When ideal observer models are applied to very early signals in the visual system such as cone
responses, they typically outperform human observers by a large margin, e.g., by a factor of 10
to 100 [46, 92]. In contrast, our computational observer model performs similar to human
observers (~2-4% contrast thresholds in our task). The similarity to human performance
should be interpreted with caution, however, since small variations in our model, such as the
number of training trials, affect the performance of the model.

Our inference engine has two types of knowledge about the task, one more general about
visual processing and one more specific to the particular experiment we simulated. The gen-
eral (and implicit) knowledge arises from transforming the 2D time-varying cone absorption
images to amplitude spectra. Transforming the data in this way preserves most of its repre-
sentation and it effectively gives the observer model knowledge that spatial frequency and
orientation (but not phase) might be relevant for the task. This transform does not indicate
which spatial frequencies or orientations are relevant. Although the visual system does not
literally compute a Fourier transform of the cone responses, cells in visual cortex are tuned
to orientation and spatial frequency in local patches of the image [93, 94], and complex cells
in V1 are relatively insensitive to phase [84, 95]. Hence the implicit knowledge we provide to
the classifier via transform to the amplitude spectra is an approximation that is conceptually
inspired by general processing strategies in the visual system, but is not a specific implemen-
tation of a V1 stage with complex cells or knowledge about our particular task. Pilot simula-
tions in which the classifier operated directly on the absorption images resulted in near-
chance performance. This is expected, because the phase randomization of the stimuli causes
the number of absorptions for any particular cone to be uninformative as to the stimulus
orientation.
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Fig 10. Ideal versus computational observer model performance. Comparison of model performance for simulations in which there were only one
stimulus phase and no eye movements, presented at 4.5° eccentricity and typical human optics without defocus. Ideal observer was implemented using
the derivation and formula from Geisler [53]. The analytical computation (filled black circles) is the closed form solution given the two (noiseless)
templates, assuming the only source of noise is photon noise (Poisson). The ideal observer by simulation (unfilled black circles) applies the ideal
decision for 200 trials per stimulus class, where each trial has no uncertainty other than photon noise. The two ideal observer calculations will converge
to the same values with sufficiently large simulations. Computational observer performance is replotted from Fig 6B, where a linear SVM classifier
learns the mean and variance of cone absorptions for the two stimulus classes for 200 trials per stimulus class (green line). The same computational
observer model performs slightly better with more trials (800 per stimulus class, red line).

https://doi.org/10.1371/journal.pcbi.1007063.9010

More specific knowledge in the computational observer model comes from the training tri-
als, which are used to learn the best linear separation (hyperplane) between the two stimulus
classes. The plane is defined by a weighted sum of the classifier inputs (amplitude spectra in
our case), which can be thought of as an approximation to receptive field analysis by down-
stream neurons. The high weights learned by the classifier for this task correspond to oriented,
band-pass filters, which match properties of the stimuli (Fig 5, panel D). Because the model
has incomplete knowledge, values far from the stimulus (very high or very low spatial fre-
quency, and orientations far from the stimulus orientations) have non-zero weights, which are
learned during training on a finite number of noisy trials.

Our model differs from ideal observer models. To understand how the differences affect
performance, we implemented an ideal observer model as described by Geisler [53]. An ideal
observer model for simulations with multiple cone types and fixational eye movements is
extremely complex, and hence for this comparison, we examined the case of no eye move-
ments and only a single stimulus phase for each of the two stimulus classes. The ideal observer
performs far better than our computational observer, with a threshold about 10x lower (Fig 10,
black vs. green line). This difference is caused by the fact that the linear SVM classifier needs
to learn the stimulus classes and the noise distributions, rather than starting with such knowl-
edge. If we increase the number of trials fourfold, the SVM computational observer perfor-
mance improves a little (red vs. green line in Fig 10), because it has more samples to estimate
learn the classes. As shown by Cottaris et al. [50] for a related task, the SVM may require thou-
sands to millions of trials to reach ideal performance levels. With the additional uncertainty
from multiple stimulus phases and fixational eye movements, the computational observer
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model performs even worse, as shown in Fig 6. It is this performance—the SVM classifier
trained with 200 trials operating on simulations that include fixational eye movements and
two stimulus phases—that is similar to human performance. The type of computational
observer model implemented here is useful when the ideal observer model is unwieldy or
intractable and has the benefit of being potentially more similar to how the human learns the
task.

Conclusion

Opverall, our model includes a relatively detailed, biologically plausible front-end, which incor-
porates realistic details about the optics, photon noise, small fixational eye movements, and
wavelength- and position-sampling by photoreceptors. This front-end processing was com-
bined with a linear classifier that performs at levels comparable to the human without provid-
ing explicit knowledge about the tasks. Future work will incorporate more biologically explicit
models of downstream processing, including retinal and cortical circuitry. Such models are
likely to reveal that later processing in the nervous system inherits, and possibly amplifies,
asymmetries in processing around the visual field that begin in the earliest stages of vision, and
thus, to explain a larger portion of the psychophysical asymmetries found in many visual tasks.

Methods
Computational observer model software overview

The computational observer model relies on the publicly available, MATLAB-based Image
Systems Engineering Toolbox for Biology (ISETBIO [49-51]), available at http://isetbio.org/.
The ISETBIO toolbox incorporates the image formation process, wavelength-dependent filter-
ing, optical quality, and the spatial arrangement and biophysical properties of cones. We used
the ISETBIO toolbox for the core model architecture and supplemented it with experiment-
specific custom MATLAB code. The experiment-specific code implements stimulus parame-
ters matched to a prior psychophysical study [5], manipulation of biological parameters to
assess their impact on performance, and a 2-AFC linear support vector machine classifier.

In the interest of reproducible computational methods, the experiment-specific code, for
both simulation and analysis, is publicly available via GitHub (http://github.com/isetbio/
JWLOrientedGabor). In addition, the data structures created by the simulation and analyses
are permanently archived on the Open Science Framework URL: https://osf.io/mygvu/.

Psychophysical experiment

Our simulations were created to match a previous psychophysical study [5]. In that study, sti-
muli were achromatic oriented Gabor patches. The Gabors were comprised of harmonics of 4
cycles/®, windowed by a Gaussian with a standard deviation of 0.5°, presented at 4.5° eccen-
tricity, at one of 8 locations equally spaced around the visual field (see also Fig 1A). Gabor
patches were tilted either 15° clockwise or counter-clockwise from vertical, and presented for
54 ms on each trial. The contrast of the Gabor patches varied from trial to trial. The contrast
levels were selected for each observer based on pre-experiment testing, and usually ranged
from about 1% to 10% Michelson contrast using a method of constant stimuli. The observer’s
task was to indicate the orientation of the Gabor stimulus relative to vertical (clockwise or
counter-clockwise) with a button press. Data were analyzed by fitting a Weibull function to
the mean performance (% correct) at each contrast level, independently at different locations
around the visual field.
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Stimuli (scene spectral radiance)

The observer model starts with a description of the stimulus, called a ‘scene’ in ISETBIO. The
scene is defined by the spectral radiance at each location in space and time (the ‘Tlight field’).
The spectral radiance contained wavelengths ranging from 400-700 nm, discretized to 10 nm
steps, with equal photons at each wavelength (3.8x10'> quanta/s/sr/nm/m?). The stimulus was
discretized into 2-ms time steps and 1.8-arcminute spatial steps (32 samples per degree). The
scene comprised Gabor stimuli with parameters described above (Methods section ‘Psycho-
physical experiment’), oriented either clockwise or counter-clockwise, represented within a
field of view of 2° diameter, and presented for 54 ms per trial. The dimensions of the scene
were therefore 64 x 64 x 31 x 28 (height x width x wavelength x time). Gabor patches varied in
Michelson contrast between 0.05% and 10% (or 0.01% and 10% for simulations with one stim-
ulus phase and no fixational eye movements). We also incorporated a stimulus with 0% con-
trast stimulus as a sanity check whether our model would perform at chance level. For all
stimuli, the mean luminance was 100 cd/m?. Because photon noise and eye movement noise
are added later (see Methods sections ‘Optics’ and ‘Cone mosaic’), and because we do not
model the scene before or after the stimulus onset/offset, the scene is in fact identical at all 28
time points.

Machine learning algorithms can exploit sources of information that a human observer
would be unlikely to use. For example, if the value of a single image pixel happened to correlate
with the stimulus class, a classifier could succeed based on only the value of this pixel. We
wanted to prevent our classifier from succeeding in this way. In our simulations (unlike the
Cameron et al. paper [5]), the phase of the Gabor patches was selected from two values 180°
apart (¢ =90° and ¢ = 270°), randomized across trials. A 180° phase difference means that
the two possible stimuli within a class were identical except for a sign reversal. As a result, the
expected value of each pixel in each stimulus class was 0 (relative to the background). Similarly,
the expected value of the cone absorption rates at each location on the retina within a stimulus
class was 0 (relative to the background). Therefore, the linear classifier could not succeed using
the absorption level from any single cone. We believe human observers do not perform the
task this way either, hence randomizing the phase is likely to make the observer performance
more similar to the human performance.

While most of the simulations contained two possible stimulus phases and fixational eye
movements, we also explicitly manipulated these factors in two simulations. In the Results sec-
tion describing the effect of stimulus uncertainty and small fixational eye movements (Fig 6B),
we compare the effect of one vs. two stimulus phases and the presence vs. absence of small fixa-
tional eye movements on model performance. In the Discussion section ‘The inference engine’
(Fig 10), we compare ideal observer model performance to our computational observer model
performance for a simulated experiment with only one stimulus phase and no eye movements.

Optics (retinal irradiance)

The optics transform the scene into a retinal image. We first describe the optics used for the
simulations in Results sections on the effect of stimulus uncertainty and eye movements, cone
type and cone density on model performance (Figs 6, 7 and 9). For these simulations, the
optics were matched to a typical human eye with a 3-mm pupil (diameter) in focus at 550 nm
using a statistical model of wavefront aberrations [62]. This statistical model is based on mea-
surements from healthy eyes of 100 observers [63], and described by a basis set of Zernike
polynomials [96]. The statistical model by Thibos contained the first 15 Zernike coefficients
(Z0-Z14, using OSA standard indexing). The simulated human wavefront was used to con-
struct a point spread function (PSF). This PSF was convolved with the scene at every time
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point to generate the retinal image. After this spatial blurring, the optical image was further
transformed by spectral filtering (light absorption by inert pigments in the lens and macula),
which primarily reduce the intensity of short-wavelength light. Finally, the optical images
were padded by 0.25° on each side with the mean intensity at each wavelength. The padding is
needed to handle eye movements, so that cones near the edge of the simulated retinal patch
have a defined input even when these cones are moved outside the scene boundaries. The
dimensions of the optical image are the same as the dimensions of the scene, except for the
spatial padding: 80 x 80 x 31 x 28 (height x width x wavelength x time), which was discretized
the same way as the scene.

To investigate the effect of optical quality on visual performance of our task, we systemati-
cally added further defocus to the model of human optics (Fig 8). We did this by increasing the
Z4 Zernike coefficient (defocus) from 0-2 pum in steps of 0.25 pm (corresponding to 0-6.16
diopters for a 3-mm pupil), while keeping all other Zernike coefficients from Thibos’ statistical
model unchanged. Note that using a defocus coefficient of 0 does not result in perfect diffrac-
tion limited optics, given that the other aberrations are still non-zero. We manipulated defocus
rather than all the higher-order aberrations because at the stimulus eccentricity we simulated
(4.5°), defocus is the largest contributor to optical quality [44].

Cone mosaic: Spatial sampling and isomerization

We constructed the cone mosaic as a uniformly spaced rectangular patch with a field of view
matched to the stimulus (2x2°). Each cone mosaic contained a random distribution of L-, M-
and S- cones with a ratio of 0.6:0.3:0.1. We used the Stockman-Sharpe [97] cone fundamentals
to estimate cone photopigment spectral sensitivity, assuming 50% optical density for L- and
M-cones, and 40% for S-cones. Peak efficiency was assumed to be equal for each cone class,
66.67% multiplied by the retinal coverage (the fraction of local retina occupied by cones).

For the simulations on the effect of stimulus uncertainty and eye movements, cone type
and optical quality on model performance (Figs 6-8), the cone density was 1,560 cells/deg?,
approximately matched to the density at 4.5° on the horizontal retina as reported by Curcio
et al. [40]. This results in an array of 79 x 79 cones for our 2° patch. The positions of the L-,
M-, and S-cones were randomized within the array (but held to fixed ratio). For these simula-
tions, we assumed a coverage proportion of 0.49, meaning that the cone inner segments sam-
pled from about half of the optical image, and missed about half due to the spaces between
cones. A coverage of less than 1 acts like a reduction in efficiency, since photons are lost to the
gaps between cones. In general, cone coverage decreases with eccentricity as the density of
rods increases, filling the spaces between cones.

For the Results section on the effect of cone types (Fig 7), we quantified model perfor-
mance when the L:M:S cone ratios varied. First, we simulated experiments with mosaics
containing a single cone type, i.e. only L-cones, only M-cones, or only S-cones. Second, we
systematically varied the L:M ratio in a cone mosaic without S-cones. We quantified model
performance for 11 different mosaics, varying from 100% L-cones to 100% M-cones discre-
tized in steps of 10%.

For the set of experiments investigating cone density (Fig 9), we systematically varied cone
density spanning 22,500 to 466 cones/deg” (corresponding to cone arrays ranging from 297 x
297 to 43 x 43). For each cone density, we determined an equivalent eccentricity based on the
relation between eccentricity and density on the nasal meridian from Curcio et al. [40]. We
then adjusted the cone coverage according to this eccentricity, assuming that coverage declines
exponentially as a function of eccentricity, from 1 (fovea, no gaps between cones) to 0.25 at

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007063 May 24, 2019 22/29


https://doi.org/10.1371/journal.pcbi.1007063

O PLOS

COMPUTATIONAL

BIOLOGY

A computational observer model of visual performance fields

40°. This approximation is similar to that used by Banks et al. [46], which was based on data
from Curcio et al. [40].

The number of absorptions was computed for each cone in two steps. First, the noiseless
number of absorptions was computed by multiplying the appropriate cone sensitivity
function (L-, M-, or S-cone) by the corresponding location in the optical image (hyperspec-
tral), and scaling this value by the peak efficiency (66.67%). The cone coverage was
accounted for by only sampling the optical image at the locations within the cone inner seg-
ments. Second, the noiseless values were converted to noisy samples by assuming a Poisson
distribution.

The dimensions of the cone array absorptions were 79 x 79 x 28 (rows x columns x time)
for the simulations in the Results section on the effect of stimulus uncertainty and eye move-
ments, cone type and optical quality (Figs 6-8). When the cone density varied (Fig 9), the first
two dimensions of the cone array size also changed.

Eye movements

We added small fixational eye movements (drift and microsaccades), before computing the
isomerization rate for each cone at each time sample. The ISETBIO toolbox provides an algo-
rithm developed by Cottaris et al. [54] that generates eye movement samples based on Mergen-
thaler and Engbert’s drift model [55] and microsaccade statistics reported by Martinez-Conde
etal. [56, 57].

The drift model computes eye movement paths for a single trial with modified Brownian
motion process. The eye movement paths were generated in units of arc minutes and then
converted to discrete cone shifts in the horizontal and vertical direction. If the amplitude of an
eye movement was smaller than the distance between two cones, the displacement was accu-
mulated over multiple time samples, until the threshold was reached, before a new shift was
added to the eye movement path.

The drift model was implemented by adding a displacement vector to the current position
at each time point. The displacement vector was determined by combining 3 inputs: 2D Gauss-
ian noise, an autoregressive term for persistent dynamics at short time scales, and a delayed
negative feedback for antipersistent dynamics at longer time scales. The parameters we used
for this model were the ISETBIO defaults, which contained a horizontal and vertical delay
defined as X = 0.07 s and Y = 0.04 s, feedback steepness of 1.1, and feedback gain of 0.15. The
control function had a mean of 0 and standard deviation of 0.075 and the gamma parameter
was set to 0.25. The mean noise position and standard deviation were set to 0 and 0.35, respec-
tively. Before computing the velocity of a drift period, the drift model applied a temporal
smoothing filter to the eye movement paths using a 3™ order Savitzky-Golay filter over a veloc-
ity interval of 41 ms.

For periods where the drift was stabilized, the eye movement code checked for microsac-
cade jumps to add to the eye movement path. Whether or not a microsaccade was added
depended on when the last microsaccade was. In our experiment, we used the ISETBIO default
where the interval between microsaccades followed a gamma function with a mean of 450 ms,
with a minimum duration of 2 ms. A microsaccade was defined as a vector where the mean
amplitude of a microsaccade was 8 arc minutes. Each vector contained an additional endpoint
jitter of 0.3 arc min in length and 15° in direction. The microsaccade jumps were either ‘cor-
rective’ (towards the center of the mosaic) or ‘random’ (any direction). The microsaccade
mean speed was defined as 39°/s, with a standard deviation of 2°/s. Given that the defined
interval between microsaccades was long compared to the stimulus duration (54 ms), most tri-
als did not contain microsaccades.
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A 216 ms warmup period was implemented before the trials began. Eye movements during
this period affected the eye position at the start of the trial but were not otherwise included in
the analysis.

Simulated experiments and behavioral inference

A simulated experiment comprised 6,000 trials, with 400 trials at each contrast. Most simulated
experiments contained 15 contrast levels within the range of 0-10%. More contrast levels were
used in a few simulations in which the thresholds were very different between conditions (29
contrast levels). In all experiments there were 400 trials per contrast level. These 400 trials
included 200 clockwise and 200 counter-clockwise stimuli, each of which was further subdi-
vided into 100 trials at each of 2 phases. The data from a single contrast level within a single
experiment were represented as a 4D array (m rows x m columns x 28 time-points x 400 trials),
in which m is the number of cones along one side of the retinal patch (79 in the experiments
for Figs 6-8, variable for the experiments in Fig 9).

Within the 6,000 trials of an experiment, all parameters other than the stimulus orientation
(clockwise or counter-clockwise) and phase (90° or 270°) were held constant, including the
spatial distribution of L-, M-, and S-cones, the optics, the cone density, the cone coverage,
and the presence or absence of fixational eye movements. Each simulated experiment was
repeated 5 times, so that a single psychometric function summarized 2,000 trials per contrast
level. The arrangement of L-, M-, and S-cones was regenerated randomly for each of the 5
repeated experiments. Error bars in Figs 6-9 indicate standard errors of the mean across the 5
experiments. Some stimulus contrasts’ error bars were very small (usually for high stimulus
contrasts), which resulted in error bars being masked by the data point.

Classification (clockwise vs. counter-clockwise) via cross-validation was performed sepa-
rately for each stimulus contrast level (set of 400 trials) in each experiment as follows. First,
each m x m image of cone absorptions was transformed into an m x m amplitude spectrum
using the 2D fast Fourier transform and discarding the phase information. This left the
dimensionality unchanged (m rows x m columns x 28 time-points x 400 trials within a single
contrast level). Second, the amplitudes were concatenated across space and time into a 2D
matrix (400 trials x 28 values per trial). A 400-element vector labeled the trials by stimulus
class (1 for clockwise and -1 for counter-clockwise). Third, the 2D matrix and 400-element
vector with labels was used for training and testing a linear support vector machine (SVM)
classifier on the amplitude images using MATLAB’s fitcsvm with 10-fold cross-validation, ker-
nel function set to ‘linear’, and the built-in standardization option (to z-score each row of the
data matrix). The learned classifier weights represented the best linear separation (hyperplane)
between the two stimulus classes. With these trained weights, the classifier predicted the stimu-
lus class label for the left-out trials in a given data fold. We used MATLAB’s kfoldLoss function
to average the accuracy across the 10-folds, which yielded one accuracy measure (% correct)
per contrast level per experiment.

The implementation of an ideal observer model was based on Geisler [53]. First, we com-
puted the ideal observer outputs based on Geisler’s closed-form solution in equation 3
(p. 777). This solution computed the ideal observer discriminability between two stimuli at the
level of the cones given only the expected number of absorptions per cone per stimulus. To
compute these values, we used a noiseless version of our computational observer in ISETBIO
(no photon noise, typical human optics without defocus, no fixational eye movements, single
stimulus phase, and a cone mosaic at 4.5° eccentricity). The d-prime for each contrast level
was converted to percent correct assuming an unbiased criterion. Second, we also computed
the ideal observer percent correct using the sampled (noisy) absorptions, rather than the closed
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form solution (equation 5, p. 781). As expected, with a reasonably large number of trials, the
two implementations converge.

Quantifying the contribution of cone density and optics on the
computational observer performance

To quantify the contribution of a given factor in the eye, we averaged the classifier accuracy for
each stimulus contrast level across the 5 experiments to fit with a Weibull function (Eq 1). This
resulted in full psychometric functions for each cone density, cone type, or optical quality
level. We calculated error bars for each contrast level as the standard error of the mean across
the 5 iterations. For each psychometric function, we defined the contrast threshold as the
power of 1 over the slope of the Weibull function B, in our case B = 3, of the performance level
expected at chance (0.5 for a 2-AFC task). This results in a contrast threshold taken at ~80%
(0.5 = 0.7937, defined as o in Eq2).
y=1-(1—-g)-e®
Where g is the performance expected at chance (0.5), ¢ is the threshold, B is the slope of the
Weibull function, and k is defined as:

k= (os()) @

The contrast thresholds, ¢, were summarized as a quadratic function as a function of L-cone
probability (Fig 7), as linear function of defocus (Fig 8), or an exponential function of cone
density (Fig 9, represented as a straight-line on a semi-log axis). The square of Pearson correla-
tion coefficient was used to report proportion variance explained (1) by the fit. These qua-
dratic, linear, or log-linear fits enabled us to compute the change in cone density or the change
in defocus needed to achieve a 1% increase in contrast threshold-similar to the meridional
effect observed in human performance (~4.4% at the upper vertical meridian vs. ~3.4% at the
horizontal meridian as seen in [5]).
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