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Abstract
Cloning mammals by nuclear transfer is a powerful technique that is quickly advancing the
development of genetically defined animal models. However, the overall efficiency of nuclear
transfer is still very low and several hurdles remain before the power of this technique will be fully
harnessed. Among these hurdles include an incomplete understanding of biologic processes that
control epigenetic reprogramming of the donor genome following nuclear transfer. Incomplete
epigenetic reprogramming is considered the major cause of the developmental failure of cloned
embryos and is frequently associated with the disregulation of specific genes. At present, little is
known about the developmental mechanism of reconstructed embryos. Therefore, screening
strategies to design nuclear transfer protocols that will mimic the epigenetic remodeling occurring
in normal embryos and identifying molecular parameters that can assess the developmental
potential of pre-implantation embryos are becoming increasingly important. A crucial need at
present is to understand the molecular events required for efficient reprogramming of donor
genomes after nuclear transfer. This knowledge will help to identify the molecular basis of
developmental defects seen in cloned embryos and provide methods for circumventing such
problems associated with cloning the future application of this technology.

Introduction
Nuclear transfer (NT) is a powerful technique for explor-
ing functional changes in the genome during differentia-
tion. Its application is currently being expanded to
generate genetically modified animals. Theoretically,
using NT technology can establish a population with
genetic characteristics from one genetically modified or
genetically specific individual. Although somatic nuclear
transfer has been successfully achieved in various species,
its efficiency has been very low until recently. The ineffi-
ciency lies in many areas, such as in the donor cell types,
cell cycle stages, genetic background of donor cells and
recipient oocytes, nuclear transfer procedure, and culture

environments [1–3]. Because little is known about the
developmental mechanisms of reconstructed embryos, it
is difficult to optimize the conditions for increasing their
efficiency. In this article, we will summarize new advances
in NT and the quandaries that have yet to be resolved.

Progress in Nuclear Transfer
The factors involved in the success of NT are very complex.
Although many protocols have been modified and uti-
lized in NT processes, some events continue to remain ill-
defined. NT in theory attempts to re-establish the "devel-
opmental program" of a somatic donor genome to a pri-
mordial "ES-cell like" state. Regardless of the inefficiencies
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of this process currently, morphologically normal living
animals have been produced in 10 species during the past
few years including sheep [4], mouse [5], cow [6], goat
[7], pig [8], rabbit [9], cat [10], mule [11], horse [12], and
rat [13]

In all successful NT cloning experiments, the unfertilized
cytoplasm of the oocyte was confirmed to be the capable
recipient, suggesting that certain factors in unfertilized
oocyte are essential for reprogramming the donor
genome. Such factors are lost or insufficient following fer-
tilization of the oocyte. The events in the first several cell
cycles of cloned embryos, therefore, are critical to the
establishment of fully reprogrammed genomes. Gastrula-
tion is a vital stage for cloned embryos. A high rate of
abortion during gestation has been observed in cloning
experiments performed on different species [5,16,17].
These late miscarriages are also frequently associated with
abnormal development of the placenta [18]. Cloned
embryos and offspring also often show many abnormali-
ties, including circulatory distress, placenta edema,
hydrallantois, and chronic pulmonary hypertension. The
surviving offspring also have large placentas and increased
birth weights, and they suffer a high incidence of death
[14,15].

The low efficiency and abnormal development of cloned
animals are mainly due to incomplete reprogramming
and abnormal gene expression. The expression of several
important genes has been assessed in cloned embryos
[19,20]. In a study in which global gene expression was
analyzed by microarray in NT embryos derived from stem
cells and somatic cells, 4% of more than 10,000 genes dif-
fered in expression from the controls [21].

Quandaries in Nuclear Transfer
Although some achievements have been made in the field
of nuclear transfer, many quandaries still persist. One
example is the aberrant reprogramming observed in phys-
ically normal cloned adults.

Aberrant Reprogramming and Physically Normal Cloned 
Adults
Considering the frequency of abnormal gene expression,
it could be considered surprising that physically, function-
ally, and histologically normal cloned adults have been
produced in several species. When a fertile cloned animal
is delivered, the donor cells should be reprogrammed into
a state compatible with embryonic development. How-
ever, most cloned embryos have been observed to fail to
develop to term, and some of the surviving cloned ani-
mals have shown abnormalities. The major cause may
reside in faulty or incomplete epigenetic reprogramming
of the donor nucleus, which affects the gene expression
needed for every developmental stage of cloned embryos

and offspring. Most cloned embryos lose their develop-
mental abilities during pre-implantation and gastrulation.
Moreover, the surviving adults often show abnormalities.

To better understand the issues controlling incomplete
epigenetic reprogramming, we have compared the long-
term viability of mice derived from ES nuclei and somatic
nuclei. Reconstructed embryos were transferred into foster
mothers, and caesarean sections were performed at day 19
of gestation. The combined weight of placentas for all
cloned pups obtained was approximately double the
weight of the control. From the standpoint of live birth
cloned pups, more than half of the pups suffered from res-
piratory failure and general weakness and died only a few
hours after delivery. The weight curves of NT mice that did
survive were followed for 12 to 19 months and were sim-
ilar to those of the controls. This study also resulted in two
infertile cloned mice out of 9, both of which could mate
and give vaginal plugs normally; however, histology of
the testicle of one of them showed a reduced number of
germinal cells with no spermatozoa detectable in the
epididymis, and surprisingly, spermatozoa were found in
the epididymis of the other male, although it was proven
not to be able to produce fertilised zygotes after natural
mating. Some mice died after one year, suffering from
multiple necrotic wounds. In order to obtain physical
parameters, we sacrificed some cloned mice at different
ages (1, 8, and 19 months old) and compared them to
control animals of the same ages. Blood count and for-
mula were determined, and several organs (the lung, liver,
spleen, testis, and kidney) were processed for histology.
No marked differences could be detected between normal
and cloned animals. Of the seven NT animals, only two
were overweight, compared to one out of five for the con-
trols. Our data, together with the fact that one of our first
NT mice obtained from somatic nuclei (cumulus) was still
physiologically normal before mercy killing at two and
half years, provide evidence that nuclear transfer, despite
multiple disorders, can result in physiologically normal,
fertile animals.

Although some apparently normal cloned mice were pro-
duced, an aberrant expression pattern in NT embryos was
observed even in these mice. This pattern concerned genes
thought to be involved in stress adaptation, trophoblastic
function, and DNA methylation during pre-implantation
development. It has been shown that the culture of pre-
implantation embryos affects the regulation of various
imprinted and nonimprinted genes, leading to aberrant
fetal growth and development [22–24].

No significant correlation between the anomalous fetal
growth of cloned mice and abnormal expression of any
single gene was seen [25]. The accumulated actions of
abnormal gene expression at multiple loci ultimately
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resulted in embryonic or postnatal abnormalities. The
high incidence of embryonic loss after implantation and
postnatal death in clones suggests a need for characteriz-
ing molecular parameters that can be used to assess the
developmental potential of pre-implantation embryos.
Researchers are currently experimenting with different
methods of identifying gene expression in nuclear
transfer.

A cohort of such identified genes will provide a useful tool
when analyzing the developmental potential of pre-
implantation embryos. Another valued marker when
assessing embryonic developmental potential is genomic
methylation. Shi reported that aberrant methylation pat-
terns at the two-cell stage zygote are an indicator of early
developmental failure [26]. These authors have used an
antibody to 5-methylcytosine to examine the immunos-
taining patterns of methylated genomic sites in two-cell
zygotes developed from superovulated females, nonsu-
perovulated matings, and in vitro fertilization. A major
conclusion of their work is that a methylcytosine staining
pattern has been shown to be a valuable indicator of early
developmental methylation reprogramming of the two
parental genomes in normal or in vitro fertilized zygotes.
The authors indicate that this immunostaining approach
promises to be potentially useful for determining the
safety and efficiency of technologies that assist with repro-
duction. To best explain aberrant reprogramming and the
acquisition of apparently normal adult animals, there is
an increasing need to explore how NT is affected by vary-
ing genetic backgrounds, the nuclear transfer procedure,
and the synchronization of donors and recipients.

Cell Cycle Coordination and NT Efficiency
Cell cycle synchronization has traditionally been thought
the best way to improve the efficiencies of nuclear trans-
fer. The benefit of using early-stage donor nuclei was con-
firmed by the enhanced rate of development of
manipulated embryos to blastocysts with donor blast-
omeres in the early cell cycle stage (G1). Bypassing the S
phase was also considered important for effective nuclear
transfer [27,28].

After the delivery of the first cloned adult mammal, Dolly
(which was produced by inducing donor nuclei into the
quiescent state [4]), many living offspring were produced
using quiescent, cultured donor cells [7,29–31]. It is gen-
erally believed that a diploid, G0/G1 stage of the cell cycle
is required to initiate reprogramming following transfer of
the donor nucleus into an inactivated, oocyte cytoplasm.
This stage is also thought to ensure that the diploid of the
cloned embryo is normal. Other groups have used cycling
cells in presumptive G1 stage and have also obtained off-
spring [32]. As the majority of cumulus cells are presumed
to be in the G0/G1 stage, they have also been used for
donor cells [5].

We have found that the cell cycle stage of the donor cells
could significantly interfere with in vitro development of
stem cell generated NT embryos [33]. However, the
implantation rate at day 7 is quite similar between the
three types of nuclei (G2, 23%; G1, 16%; and M-phase,
25%). The pup delivery rates are also similar between
metaphase and interphase groups at day 19 (M-phase,
2.0% vs. I-phase G1, 1.6% and G2, 1.9%). The survival
rate of the cloned pups after one week is also similar
between these two groups (M-phase, 38% vs. I-phase G1,
33% and G2, 40%). However, our results show that up to
85.1% of the cloned embryos develop to blastocysts when
metaphase nuclei are injected, whereas this rate drops to
about 20% when interphase nuclei are used (G1 and G2)
(Table 1).

What does cell cycle synchronization alter? Evidence sug-
gests that cell cycle synchronization can only change the
rate of blastocyst formation. When we examined the chro-
matin remodeling of the injected nucleus during activa-
tion, we found that metaphase donor nuclei reformed a
metaphase plate rapidly after transferring. Although 20%
of the spindles were abnormal, with disordered chromo-
somal arrangement, 93.3% could form one pseudo
pronucleus (PN) and one polar body (PB) 6 hrs after acti-
vation. Interphase nuclei underwent premature
chromatin condensation (PCC), after which only 50% of
the G1 formed 2 PN and 63% of the G2 formed one PN
and one PB. In 20% of the cloned embryos derived from

Table 1: The Postimplantation Development of Mouse-Cloned Embryos Derived from Different Cell Cycle Stages

Donor cell cycle No. of transferred No. of implanted (%) No. of pups No. of survival after 1 week

Total % from implanted % from transferred Total % of born pups

G2 276 63 (23) 5 10 2.2 2 40
G1 189 30(16) 3 10 1.6 1 33
M phase 1062 265(25) 21 7 2 8 38
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interphase donor nuclei, fragment chromatin and con-
densed chromatin block were found.

MII cytoplasm is known to induce donor chromatin
remodeling, a process that greatly depends upon the
donor cell cycle stage. Our research shows that cell cycle
synchronization changes the pattern of chromatin remod-
eling. By avoiding PCC, which may induce chromosomal
abnormalities, metaphase donor cells are able to achieve
a higher in vitro development rate. However, although pre-
implantation development improved significantly in our
research, post-implantation and full-term development
were similar in every cell cycle stage analyzed. These data
indicate that restoration of the nuclear totipotency
depends more on the nature of the donor nucleus than its
initial cell cycle stage.

Embryonic and Adult Nuclei – Which Is Easier to 
Reprogram?
Before Dolly was born, only embryonic nuclei could be
transferred and could reach full-term development; now,
somatic nuclear transfer is a routine procedure. Various
differentiated cell types have been used as sources of
nuclei for cloning domestic and laboratory animals.
Almost all cell types tested have resulted in live offspring,
although with great differences in efficiency. Usually, the
development of cloned embryos receiving a well-differen-
tiated donor nuclei is less successful than for those trans-
ferred with low-differentiated donors. The survival until
birth and adulthood of blastocysts that are derived from
ES-cell, donor nuclei is much higher than for clones from
somatic donor nuclei [34,35]. We have also found that ES
cells seem to provide 20 times better development than
cumulus cells [33,36]. Many developmentally important
genes have also been detected in cloned embryos. Bortivin
et al. [37] analyzed expression of Oct4 and 10 Oct4-related
genes in individual, cumulus, cell-derived, cloned blasto-
cysts. They found that only 62% correctly expressed all
tested genes. In contrast to this incomplete reactivation of
Oct4-related genes in somatic clones, ES cell-derived,
cloned blastocysts and normal control embryos expressed
these genes normally. These authors postulated that
clones derived from differentiated cell nuclei might fail to
establish a population of truly pluripotent embryonic
cells due to faulty reactivation of key embryonic genes.

It can be difficult to explain the development of cloned
embryos solely by their differentiated states. Therefore, we
tested ES cells and fibroblast cells with the same genotype
(129/SvPas), synchronizing the donor nuclei from ES
cells and somatic cells in metaphase. Pre-implantation
and postimplantation development was checked at the
blastocyst stage and at day 7.5 of pregnancy. We found
that although there was an approximate 10-fold difference
at the blastocyst stage between ES cells and fibroblast

cells, the implantation rate between the two groups was
only an approximate two-fold difference. Surprisingly, the
fetus rate (implantation with embryos from blastocyst
transferring) at day 7.5 was three-fold lower (Table 2). The
level of methylation is likely implicated in this result. ES
cells have a high methylation activity compared to that of
somatic cells [38]. To what extent the extensive demethyl-
ation of chromatin during pre-implantation development
interferes with the remethylation of the genome during
postimplantation stages remains to be determined.

Similar epigenetic phenomena have also frequently been
observed between subcultures (batches) derived from the
same biopsy (thus from the same genotype and same dif-
ferentiated state) for the bovine species [3] and for clonal
cell lines of fibroblasts derived from the same pig fetus
[39]. Daniels et al. [19,40] studied the expression of FGF4,
FGFr2, and IL6 in the bovine nuclear transfer embryos
reconstructed from granulosa and fetal epithelial cells.
The authors detected aberrant expression of all three genes
in bovine, granulosa, cell-derived, nuclear transfer
embryos, but only the expression of FGF4 was observed to
be aberrant in the fetal epithelial cell. Their results dem-
onstrate the effects that different donor cell lines and dif-
ferent nuclear transfer procedures may have on the
expression of developmentally important genes in nuclear
transfer embryos.

In addition to epigenetic change, the nuclear transfer pro-
cedure and in vitro cultures of the reconstructed embryos
also contribute to aberrant gene expression. Cox G.F. et al.
[41] suggested that intracytoplasmic sperm injections
might increase the risk of imprinting defects. Wrenzycki et
al. [20] detected eight specific mRNAs in single blastocysts
employing a semiquantitative, reverse transcription-
polymerase chain-reaction assay using different nuclear
transfer procedures. Their results showed that depending
on the steps of the cloning procedure, nuclear transfer-
derived embryos might display marked differences from
their in vitro-produced, in vivo-derived counterparts.

Table 2: Developmental Abilities of Embryos Reconstructed from 
ES cells and Somatic Cells with the Same Genetic Background 
(129/Svpas)

Development of cloned embryos at 
different stages (%)

ES cell Fibroblast cell

Blastocyst formation 50.0 6.0
Implantation 16.0 8.7

Fetus /embryo transferred 3.4 1.5
Fetus / implantation 29.0 17.1
Fetus / blastocyst 7.2 22.6
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Future Prospects
Despite the increasing number of cloned animals pro-
duced, the nuclear transfer technique itself has changed
little in the last ten years. Modification of the present pro-
cedure is required to improve efficiency. As a field, NT
cloning must strive to better understand the mechanisms
responsible for the currently variable somatic reprogram-
ming to an embryonic or totipotent state. Through a sys-
tematic analysis of the molecular events controlling
reprogramming of a donor genome will emerge highly
efficient methods for NT cloning. Such advances will
undoubtedly benefit the field of animal modeling using
this technology.
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