
����������
�������

Citation: Koh, H.-C.E.; Cao, C.;

Mittendorfer, B. Insulin Clearance in

Obesity and Type 2 Diabetes. Int. J.

Mol. Sci. 2022, 23, 596. https://

doi.org/10.3390/ijms23020596

Academic Editors: Sonia

Michael Najjar, Amalia Gastaldelli

and Hilda E. Ghadieh

Received: 6 December 2021

Accepted: 3 January 2022

Published: 6 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Insulin Clearance in Obesity and Type 2 Diabetes
Han-Chow E. Koh , Chao Cao and Bettina Mittendorfer *

Center for Human Nutrition, Washington University School of Medicine, 660 S Euclid Ave,
Campus Box 8031-14-0002, St. Louis, MO 63110, USA; hkoh@wustl.edu (H.-C.E.K.); caochao@wustl.edu (C.C.)
* Correspondence: mittendb@wustl.edu; Tel.: +1-314-362-8450

Abstract: Plasma insulin clearance is an important determinant of plasma insulin concentration. In
this review, we provide an overview of the factors that regulate insulin removal from plasma and dis-
cuss the interrelationships among plasma insulin clearance, excess adiposity, insulin sensitivity, and
type 2 diabetes (T2D). We conclude with the perspective that the commonly observed lower insulin
clearance rate in people with obesity, compared with lean people, is not a compensatory response to
insulin resistance but occurs because insulin sensitivity and insulin clearance are mechanistically, di-
rectly linked. Furthermore, insulin clearance decreases postprandially because of the marked increase
in insulin delivery to tissues that clear insulin. The commonly observed high postprandial insulin
clearance in people with obesity and T2D likely results from the relatively low insulin secretion rate,
not an impaired adaptation of tissues that clear insulin.
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1. Introduction
1.1. Overview

Compared with healthy lean people, people with obesity have increased basal and
postprandial plasma insulin concentrations [1–3]. People with obesity and type 2 diabetes
(T2D) have lower postprandial insulin than those without T2D, and the relative insulin
insufficiency is responsible for the marked hyperglycemia in people with T2D [1–3]. The
prevailing thought is that the increase in plasma insulin in people with obesity is a compen-
satory response to obesity-associated insulin resistance. Presumably, pancreatic β cells and
tissues that clear insulin sense the need to secrete more and clear less insulin to prevent
hyperglycemia when there is insulin resistance, and this compensatory mechanism is im-
paired in people with T2D [4–9]. Here, we provide an overview of the factors that regulate
insulin removal from plasma and discuss the interrelationships among plasma insulin
clearance, excess adiposity, insulin sensitivity, and T2D in people with obesity. Collectively,
the data in the literature we present in this review suggest that plasma insulin clearance
is reduced in people with obesity who are insulin resistant, not because of compensatory
adaptations in tissues that clear insulin, but simply because both insulin action in and
insulin clearance by tissues require insulin binding to its receptors and insulin receptors are
downregulated in people who are insulin resistant. Moreover, a marked increase in insulin
delivery to tissues that clear insulin causes a decrease in plasma insulin clearance because
insulin binding to its receptor causes endocytosis of the insulin–insulin receptor complex
and a temporary decrease in insulin receptor density on the cell surface. So, the higher
postprandial insulin clearance in people with T2D, compared to those without, is not a
maladaptation in tissues that clear insulin, but simply a consequence of β-cell dysfunction
and reduced postprandial insulin secretion, which blunts insulin delivery to tissues that
clear insulin. This has important clinical implications because it suggests that pancreatic
β cells, not tissues that clear insulin, are responsible for the higher postprandial plasma
insulin clearance in people with T2D. B cells, not tissues that clear insulin, should therefore
be the primary treatment target aimed at decreasing postprandial insulin clearance.
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1.2. Insulin Production and Delivery to Tissues That Take Up Insulin

Insulin is produced by pancreatic β cells and secreted into the portal vein, which
delivers the newly produced insulin to the liver. The liver extracts approximately half
or more of the newly secreted insulin [10–12]; the remaining insulin leaves the liver via
the hepatic veins and enters the systemic arterial circulation (Figure 1). Under basal
conditions, the kidneys extract approximately 30–35% of the insulin that is delivered, and
skeletal muscles and adipose tissue extract approximately 15% [12–17]. Insulin that is not
extracted during the first pass through tissues is removed in subsequent passes. Total
insulin delivery to the liver therefore represents the sum of insulin secretion and insulin
delivery from the systemic circulation back to the liver through both the hepatic artery
and the portal vein (after passage through the gastrointestinal tract) [18]. In total (first and
subsequent passes), the liver takes up approximately 65% of the amount of insulin that has
been secreted; the kidneys take up approximately 25% of the total amount secreted and
skeletal muscles and other tissues and organs take up approximately 10%. The removal
of insulin from the circulation is very efficient, because of the high extraction of insulin
by the liver and kidneys. The mean residence time of insulin in the circulation is only a
few (<10) minutes [19–25]. Nevertheless, very small differences in insulin clearance can
have a major impact on plasma insulin concentration because the insulin secretion rate is
very high in relation to the plasma insulin pool size [26]. Assuming average basal insulin
secretion and clearance rates in people with obesity [8,27], a 10% decrease in plasma insulin
clearance would cause a ~120 pmol/L (or ~20 mU/L) increase (approximately doubling of
basal values) in plasma insulin concentration in just 10 min. Understanding the regulation
of insulin removal from plasma and how it might be altered in people with obesity and T2D
is therefore very important.
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Figure 1. Insulin appearance in and removal from the circulation. Insulin is produced by pancreatic
β cells and secreted into the portal vein, which delivers the newly produced insulin to the liver. The
liver extracts approximately half of the newly secreted insulin. The remaining insulin is delivered to
the systemic arterial circulation via the hepatic veins. Extrahepatic tissues extract some of the insulin
from the arterial circulation during the first pass; the remaining insulin is removed in subsequent
passes through the liver and extrahepatic tissues. Organ sizes in the figure are depicted according
to their importance in determining plasma insulin concentration, rather than proportional to their
actual size.

1.3. Cellular Mechanisms of Insulin Removal from Plasma

For insulin to be taken up by the liver, skeletal muscles, and adipose tissue, it must first
pass through the endothelial cell layer of capillaries into the interstitium (Figure 2). The liver
sinusoidal endothelium is fenestrated and highly permeable to insulin, allowing free flow
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of insulin towards hepatocytes [28]. In skeletal muscles and adipose tissue, insulin crosses
the tight endothelial cell layer via receptor-mediated endocytosis-exocytosis, fluid-phase
transport, and paracellular transport [29–31]. The relative importance of these pathways
for insulin entry into the interstitium depends on the blood insulin concentration; receptor-
mediated transcellular transport represents the key route of entry when blood insulin
concentration is low and fluid-phase transcellular transport and paracellular transport
take over when blood insulin concentration is high [29]. The endothelial barrier causes a
short delay in the appearance of insulin from the circulation in the interstitium [24,32,33].
Once in the interstitium, insulin binds to insulin receptors on parenchymal cells, which
quickly (within minutes) causes the translocation of the insulin–insulin receptor complex
into the cytosol via endocytosis [34–40] (Figure 2). In the liver, this process is mediated
by carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM 1). CEACAM 1
is phosphorylated by the activated insulin receptor whereupon it binds to and traps the
insulin–insulin receptor complex [34,41]. Once inside the cells, insulin is degraded within
the endosomes by insulin degrading enzyme [34,41] (Figure 2). Some of the insulin is also
degraded extracellularly while bound to insulin receptors at the plasma membrane [34]
(Figure 2). In kidneys, most of the insulin is removed from plasma by glomerular filtration
in addition to some peritubular uptake of insulin [42,43]. The filtered insulin is almost
completely reabsorbed and degraded in cells lining the proximal convoluted tubules [42,43].
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Figure 2. Insulin transport across the endothelium and cellular insulin uptake. Insulin must first
pass through the endothelial cell layer of capillaries into the interstitium. The liver sinusoidal
endothelial cell layer is fenestrated and highly permeable to insulin, allowing free flow of insulin
towards hepatocytes. In skeletal muscles and adipose tissue, insulin crosses the tight endothelial cell
layer via receptor-mediated endocytosis-exocytosis, fluid-phase transport, and paracellular transport.
Receptor-mediated transcellular transport represents the key route of entry when blood insulin
concentration is low and fluid-phase transcellular transport and paracellular transport take over
when blood insulin concentration is high. Once in the interstitium, insulin binds to insulin receptors
on parenchymal cells, which causes the translocation of the insulin–insulin receptor complex into the
cytosol via endocytosis. Insulin is degraded inside the endosomes by insulin degrading enzyme and
the receptors start to return to the cell surface.

The rate and extent of insulin receptor endocytosis is directly related to the insulin
concentration; the higher the insulin dose, the faster the internalization process and the
greater the number of receptors that are trapped inside cells [38]. Once insulin has been
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removed from the receptor inside the cell, the “empty” receptors start to return to the
cell surface and this recycling process takes upwards of 30 min [37,38,40,44]. Some of the
receptors, however, are degraded in the cell and they can be replaced with newly synthe-
sized receptors [40,45,46]. An acute increase in insulin exposure of cells therefore leads
to a dose-dependent temporary loss of insulin receptors on the plasma membrane [47,48].
Insulin degradation in endosomes is primarily responsible for the dissociation of insulin
from the insulin receptor; although, intact insulin is also released from receptors, and the
rate of release of insulin from the receptor (via simple dissociation or degradation) is the
key determinant of the rate of receptor recycling back to the plasma membrane [41,49–52].
In addition, the insulin–insulin receptor interaction itself depends on the dose and duration
of exposure to insulin. The insulin receptor exists in two isoforms that are distinguished by
the inclusion or exclusion of exon 11 in the mRNA [53–55]. The homologous insulin-like
growth factor receptor also binds insulin [53–55]. The insulin and insulin-like growth factor
receptors can form heterodimers that have different insulin binding affinities and exhibit
negative cooperativity (i.e., reduced insulin binding at high compared with low doses of
insulin) [53–55]. Some studies found pretreatment of cells with insulin in vitro can increase
the affinity of the receptors for insulin [45,56–59]. However, it can also reduce insulin
receptor signaling transduction [60,61]. Moderate experimental hyperinsulinemia in vivo,
induced by insulin infusion, did not alter insulin binding or reduced it [62–64]. Insulin
action, like insulin uptake, requires insulin binding to insulin receptors on the cell surface,
and in some cases also endocytosis [41,65–68]. Insulin uptake into cells (plasma insulin
clearance) and insulin action are therefore directly linked. The lower the receptor density
and receptor affinity, the higher the dose of insulin that is required to bind to and activate a
certain number of receptors.

1.4. Assessment of Insulin Removal from Plasma In Vivo: Units of Measurement

The removal of insulin from plasma in vivo is quantitated in multiple ways that pro-
vide unique and complementary insights into the insulin removal process. Plasma insulin
clearance rate refers to the amount of plasma that is cleared of insulin per unit of time and
is expressed as liters/minute. Insulin extraction or uptake rate refers to the molar amount
of insulin that is removed from plasma per unit of time; it represents the product of insulin
clearance rate and plasma insulin concentration and is expressed as pmol/minute. There-
fore, the insulin extraction or uptake rate can be high even if the plasma insulin clearance
rate is low, or vice versa, the extraction or uptake rate can be low even if the clearance rate
is high [8]. Insulin fractional extraction refers to the fraction (typically expressed as percent)
of the amount of insulin delivered that is taken up by a specific tissue or organ. Lastly, the
insulin fractional catabolic rate provides an assessment of the turnover rate of the plasma
insulin pool and is expressed as pools/minute, where pools refers to the total amount of
insulin in the circulation (plasma insulin concentration × volume) [20,24,32]. The inverse
of the fractional catabolic rate represents the mean residence time of insulin molecules in
the circulation. These values can be used to derive the half-life of insulin in the circulation.

1.5. Effect of Insulin Dose on Insulin Removal by Tissues In Vivo

Highly sophisticated studies that included arterio-venous blood sampling across
various tissues and organs after administering insulin, or after stimulating endogenous
insulin secretion, have demonstrated that the fractional extraction of insulin by tissues
varies among tissues and is dependent on the insulin delivery rate [12–16,69–71] (Figure 3).
During basal conditions, liver extracts >50% of the insulin that is delivered, kidneys extract
~30% and skeletal muscles extract approximately 15–35% [12,13,15,16]. When insulin
delivery to the liver and muscles increases, insulin uptake (pmol/min) increases, but the
fractional extraction of insulin by these tissues (percent delivered that is taken up) and
plasma insulin clearance rate decrease [12,13]. Insulin clearance in the kidneys on the other
hand is unaffected by increased insulin delivery or even increases with increasing insulin
delivery [12,16], presumably because the bulk of insulin in the kidneys is removed by
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glomerular filtration and reabsorption via simple diffusion [42,43]. Increased renal insulin
clearance can therefore compensate to some extent for the decrease in insulin clearance in
liver and muscles.
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Figure 3. Relationship between insulin delivery and tissue insulin uptake and plasma clearance rate
(adapted from references [12–16,72]). As insulin delivery to tissue increases, the fractional extraction
of insulin (proportion of the amount delivered that is taken up) and plasma clearance of insulin
decrease in the liver and skeletal muscles but increase in the kidneys. Furthermore, liver insulin
uptake becomes saturated at approximately 1800 pmol/min whereas extra-hepatic insulin uptake
is not saturable within the physiological range of insulin delivery to tissues. Note: arterial plasma
insulin concentration in these experiments ranged from approximately 50 pM during basal conditions
to approximately 9000 pM during the highest dose insulin infusion. Endogenous insulin secretion
was inhibited by somatostatin infusion and insulin was infused into a peripheral vein. So, hepatic
insulin delivery occurred almost exclusively via the arterial circulation, and hepatic insulin delivery
at any arterial insulin concentration was, therefore, much less than during postprandial conditions
when endogenous insulin secretion occurs into the portal vein. Abbreviations: Basal, overnight fasted
condition; FE, fractional extraction.

The dose-dependent decrease in hepatic and muscle insulin clearance occurs within the
postprandial insulin concentration range, but requires at least approximately a doubling
or tripling of the basal insulin load. When arterial plasma insulin concentration was
increased from approximately 50 pM to 300 pM by infusing insulin, insulin uptake (in
pmol/min) by the forearm (muscle) increased, but the fractional extraction of insulin
decreased from ~15% to ~5% [13]. Additionally, when insulin was administered into the
portal vein as a slow bolus over 2.5 min, whole-body insulin clearance decreased markedly
(up to 50%) as the dose of insulin increased from 5 mU/kg (~900 pmol/min) to 50 mU/kg
(~9000 pmol/min) [69]. However, when increasing doses of insulin from 5 mU/kg to only
30 mU/kg were administered into a peripheral vein, resulting in lower maximal arterial
insulin concentration and much lower hepatic insulin delivery rates (≤1500 pmol/min)
than after portal insulin administration, whole-body plasma insulin clearance did not
change [69]. When insulin was infused continuously into a peripheral vein, hepatic insulin
clearance decreased when hepatic delivery of insulin increased by approximately >5-fold
from basal values (to approximately 1800 pmol/min or more) [12]. Some studies that
compared splanchnic insulin fractional extraction during basal conditions, when the liver
receives newly secreted insulin from the pancreas and insulin from the arterial circulation,
and during peripheral insulin infusion while endogenous insulin secretion was blocked
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by somatostatin infusion [14,72], found insulin extraction was unaffected by the insulin
infusion [14,72]. The lack of suppression presumably occurred because hepatic delivery
of insulin (<600 pmol/min) was not sufficiently increased. An acute, dose-dependent
decrease in whole-body insulin clearance has also been observed when endogenous insulin
secretion was stimulated by administering different doses of glucose intravenously [70] or
orally [70,71,73] and insulin secretion rate at least doubled compared to basal values. In
addition, prolonged (several hours) of exposure to high circulating insulin concentration
(several-fold above basal values) reduced plasma insulin clearance [74,75].

Collectively, the results from the available studies [12–16,69–75] suggest that small
increases (≤double) in whole-body and tissue insulin delivery above basal values have
no effect on hepatic insulin extraction. However, large (several-fold) increases—in the
order of magnitude observed postprandially [76,77]—reduce the fractional extraction
of insulin in liver and skeletal muscles and regional and whole-body plasma insulin
clearance (Figure 3). Furthermore, it was found that insulin uptake by the liver becomes
saturated at approximately 1800 pmol/min (within the upper postprandial range) whereas
extrahepatic tissues in totality can take up even more than 2500 pmol/min without signs of
saturation [12]. The finite capacity for insulin removal by the liver can be explained by its
size whereas the cellular mass of extrahepatic tissues is too large to become rate limiting.
There are approximately 100 million hepatocytes per gram liver tissue [78] and results from
radio-labeled insulin binding studies suggest that each of them can bind approximately
10,000–100,000 insulin molecules [79–81]. Assuming a liver weight of 1500 g [82], there are
a total of 1.5 × 1015 to 1.0 × 1016 insulin binding sites per liver. If all of the binding sites
were on the cell surface and occupied, we estimate the liver could bind at most upwards of
2500 pmol of insulin at once.

1.6. Study Protocols to Evaluate Plasma Insulin Clearance and Their Clinical Relevance

The paramount importance of the liver for the removal of endogenously produced insulin
in combination with the complex regulation of cellular insulin uptake that is dependent on
the insulin delivery rate has important implications for the interpretation of the results from
studies that evaluated plasma insulin clearance in people with obesity and T2D. Plasma insulin
clearance in people with obesity and T2D has been assessed by using an intravenous glucose
tolerance test, an insulin-modified intravenous glucose tolerance test, an insulin suppression
test, a hyperinsulinemic or hyperglycemic clamp procedure, an oral glucose tolerance test, and
mixed meal tests [3,8,27,83–96]. The amounts and temporal dynamics of insulin appearance
in the circulation differ markedly during these tests and are not always well suited to evaluate
the normal diurnal regulation of insulin clearance (Figure 4).

Throughout the day, the insulin secretion rate from pancreatic β cells into the portal
vein ranges from <200 pmol/min after an overnight fast in lean people to peak values
of approximately 800 pmol/min postprandially in people with obesity and insulin resis-
tance [76,77]. Arterial plasma insulin concentration is as low as <60 pmol/L in lean people
after an overnight fast and can reach values of up to ~1000 pmol/L in people with obesity
postprandially [76,77,97]. Total hepatic insulin delivery (insulin secretion rate plus insulin
that is returned to the liver from the systemic circulation) ranges from <300 pmol/min to
peak values of approximately 2000 pmol/min [18,95]. During oral glucose tolerance and
meal tests, insulin secretion rate rises gradually during the first one to two hours and then
starts to decrease towards basal values [3,8,95,98]. Insulin secretion and total hepatic insulin
delivery rates during oral glucose challenge tests with up to 75 g of glucose [3,70,98,99]
are similar to those observed after meal intake [76,77]. During an intravenous glucose
tolerance test, on the other hand, the insulin secretion rate increases almost instantaneously
to peak values (≥2000 pmol/min) [98–101] that far exceeds peak postprandial insulin
secretion [76,77] and reaches or exceeds the hepatic capacity for insulin uptake [12] (see
Section 1.5. Effect of insulin dose on insulin removal by tissues in vivo). The amount of
glucose infused during a hyperglycemic clamp procedure can also elicit an insulin secre-
tion rate and total hepatic insulin delivery rate (insulin secretion rate plus insulin that is
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returned to the liver from the systemic circulation) that well exceeds the hepatic capacity
for insulin uptake [12,74,102].
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The intravenous route of insulin delivery during some of the tests (hyperinsulinemic
clamp procedure, insulin suppression test, insulin-modified intravenous glucose toler-
ance test), compared with the stimulation of endogenous insulin secretion, also requires
consideration. Whole-body clearance of insulin that is administered into a peripheral
vein is lower than whole-body clearance of the same amount of insulin appearing in
the portal vein after intraportal insulin infusion or glucose-stimulated insulin secretion,
because peripherally administered insulin is not subjected to hepatic first pass insulin
extraction [18,103] (Figure 1). In addition, the relationship between arterial plasma in-
sulin concentration and hepatic insulin delivery differs when insulin is delivered intra-
venously compared with being secreted by β cells. Although arterial insulin concentrations
during hyperinsulinemic-euglycemic clamps are typically within the postprandial range
(~600 pM), hepatic insulin delivery rates during hyperinsulinemic clamps are well below
those observed postprandially [14,88–90,92,95,98,104–106] (Figure 3). Additionally, during
an insulin-modified glucose tolerance test, the insulin dose that is administered intra-
venously results in arterial insulin concentrations that are similar to those after the initial
glucose injection, so the insulin delivery to extrahepatic tissues is similar after glucose and
insulin injection [98,100]. However, the hepatic insulin delivery rate (insulin secretion rate
plus insulin that is returned to the liver from the systemic circulation) is markedly less
after insulin injection than after glucose injection and does not quite reach the capacity for
hepatic insulin uptake after insulin injection [98,100]. It has been proposed that incretins
reduce plasma insulin clearance, because plasma insulin clearance is greater in glucagon-
like peptide 1 (GLP-1) deficient and lower in GLP-1-overexpressing mice and lower after
glucose ingestion than during isoglycemic intravenous glucose infusion in people [107–111].
However, these assessments did not take into account the differences in insulin secretion rates
in the GLP-1-modified mice and after oral and intravenous glucose administration [112,113],
which itself could explain the observed differences in insulin clearance.
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2. Effects of Obesity and Type 2 Diabetes on Insulin Clearance
2.1. Effects of Obesity and T2D on Insulin Receptors and CEACAM 1

Obesity is associated with reduced cell surface insulin receptors in key tissues that
are the primary sites of insulin clearance and are also involved in regulating glucose
metabolism (including liver, skeletal muscles, and adipocytes) [114–122]. In people with
obesity and mild insulin resistance, reduced cell surface insulin receptor expression is
considered the primary cellular abnormality responsible for insulin resistance whereas in
people with severe insulin resistance, post-receptor defects (i.e., defects in insulin signaling
and downstream events) also occur [6,117,123,124]. Insulin receptor binding affinity is not
reduced in obesity and was sometimes found to be even greater in cells from obese than
lean people [115,120–122,125]. The decreased cell surface insulin receptor number in people
with obesity is thought to be at least in part due to the obesity-associated increase in insulin
secretion and concomitant chronic hyperinsulinemia, because receptor number is inversely
related to plasma insulin concentration and lowering insulin by administering diazoxide
or fasting increased the number of receptors [119,126–129]. In addition, accelerated net
insulin receptor degradation (due to both decreased synthesis and increased breakdown)
may also be involved [44,130,131]. The effect of T2D on insulin receptor expression in liver
and skeletal muscles has not been extensively studied but the available evidence suggests
that there is no cell surface receptor deficit in people with obesity and T2D compared with
obese control participants [120,121,132]. Furthermore, studies on fibroblasts demonstrated
that the ability of insulin to bind, internalize, and regulate its own receptor is not altered in
T2D [133]. This is not unexpected because T2D is primarily due to severe β-cell dysfunction
whereas insulin sensitivity is no worse than in people with obesity without T2D [1,3].

Obesity is also associated with reduced hepatic CEACAM 1 expression, and T2D does
not alter the relationship between adiposity and CEACAM 1 expression [134,135]. The
clinical significance of the decrease in CEACAM 1 on plasma insulin clearance is unclear
because of conflicting results from studies that evaluated the functional consequence of
altered CEACAM 1 expression. Studies conducted in mice demonstrate reduced CEACAM
1 expression can impair plasma insulin clearance [136,137]. However, the adverse effect of
reduced CEACAM 1 expression was only observed in homozygous, but not heterozygous
mice [136,137], suggesting only severe CEACAM 1 deficiency, but not more moderate
reductions in CEACAM 1 has functional consequences. Furthermore, homozygous mice
were much heavier and fatter than heterozygous and wild-type mice and secreted more
insulin, consistent with obesity-associated insulin hypersecretion [27]. Overexpression
of CEACAM 1 did not alter plasma insulin clearance in chow-fed mice, but blunted the
reduction in plasma insulin clearance after high fat diet feeding [138]. It also prevented
the high fat diet-induced increase in β-cell mass and insulin secretion, so it is difficult to
determine the independent effect of CEACAM 1 overexpression on insulin clearance in
high fat diet fed mice.

2.2. Effects of Obesity and T2D on Plasma Insulin Clearance

It is well established that people with obesity have higher basal and postprandial
plasma insulin concentrations than lean people [4–6,9,139]. The mechanisms responsible
for the obesity-associated increase in plasma insulin have been a matter of interest for a long
time and it has been debated whether hyperinsulinemia is due to insulin hypersecretion
or reduced insulin clearance or both, whether the alterations in insulin kinetics are due to
excess adiposity per se or secondary to insulin resistance, whether alterations in insulin ki-
netics are indeed a consequence and not a cause of insulin resistance, and whether increased
insulin clearance is a primary cause for the insulin deficiency of T2D [4,7,41,140–143]. Re-
sults from many studies that compared plasma insulin clearance in lean people and people
with obesity and those with T2D are inconclusive [76,86,94,144–151]. The discrepancy
in results could be due to differences in participant metabolic status. Differences in the
methods used to assess insulin clearance may also contribute to the inconsistency in results.
Some studies evaluated insulin clearance after intravenous insulin infusion whereas oth-
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ers evaluated insulin clearance during glucose ingestion or during an entire 24 h period.
Many of these studies used the C-peptide to insulin concentration ratio as an index of
insulin clearance, which has significant limitations [152]. In addition, some studies assessed
hepatic insulin extraction without taking into account the contribution of arterial insulin
(in addition to insulin secretion) to hepatic insulin delivery whereas others did not take
into account the contribution of endogenous insulin secretion during insulin infusion,
which can be substantial [14,104–106]. In the following sections, we first review the ef-
fects of obesity, insulin resistance, and T2D on transendothelial transport (Section 2.2.1).
Then (Sections 2.2.2–2.2.5), we critically review the results from studies that evaluated the
complex relationships among adiposity, insulin sensitivity, insulin secretion, and insulin
clearance by using different experimental protocols. We purposely focus on plasma insulin
clearance rate, not insulin extraction or uptake rates or other metrics of insulin removal
from plasma (unless specifically noted), because insulin clearance rate is the most com-
monly used metric in these studies. Moreover, we discuss the observed plasma insulin
clearance rates in the context of the observed plasma insulin concentrations to provide
insight into the dose-dependent and independent effects of obesity and T2D on plasma
insulin clearance. We end with a clear perspective based on the findings from several recent
studies that simultaneously assessed the effects of obesity, insulin sensitivity, and T2D on
plasma insulin clearance and help explain the data from smaller earlier studies.

2.2.1. Transendothelial Insulin Transport

The effects of obesity, insulin resistance, and T2D on transendothelial insulin transport
are unclear because few studies have addressed this topic in people. It has been proposed
that insulin transport into the interstitium of muscle tissue is slower in people with obesity
and insulin resistance compared with lean people, because the rise in muscle microdialysate
insulin after intravenous insulin infusion was slower in obese compared with lean par-
ticipants [153,154]. However, it is not clear whether the slower rise in interstitial insulin
was due to impaired transendothelial transport or reduced muscle perfusion, or possibly
(though unlikely) even faster interstitial insulin removal. Reduced muscle perfusion during
a hyperinsulinemic clamp is often observed in people with obesity, and is due to both capil-
lary rarefaction and impaired insulin-mediated vasodilation [155–158]. In addition, results
from studies conducted in mice suggest that obesity results in ultrastructural alterations to
the muscle capillary endothelium which delay endothelial insulin transport [159]. However,
these alterations in perfusion and endothelial structure do not affect insulin delivery to
myocytes under normal physiological conditions, because the hyperinsulinemia associated
with obesity compensates for this defect [159–161]. In people with T2D, vascular permeability
is increased [162,163] and insulin exchange with the interstitium is enhanced [32].

2.2.2. Plasma Insulin Clearance during Constant Intravenous Insulin Infusion Protocols

Several studies evaluated the relationships among adiposity, insulin sensitivity, and
plasma insulin clearance in people with and without T2D by using intravenous insulin infusion
protocols (hyperinsulinemic-euglycemic clamp and insulin suppression test) [8,85–87,90–94].
In these studies, whole-body insulin clearance was reduced in people with obesity who
were insulin resistant compared with both lean people and people with obesity who were
insulin sensitive [8,85,87,90–93]. Furthermore, insulin clearance was not different between
lean people and people with obesity who were as insulin sensitive as lean people [93].
Glycemic status and T2D did not affect the relationship between insulin sensitivity and
insulin clearance [8]. The results from these studies unanimously demonstrate insulin
sensitivity, but not adiposity or dysglycemia, is a determinant of whole-body insulin clear-
ance. The insulin infusion rates during these studies (~30 to 40 mU insulin per m2 of body
surface area) resulted in arterial insulin concentrations that ranged from approximately
300 pmol/L to <1000 pmol/L [85,91–93], which is within the postprandial range [76,77].
However, because of the peripheral administration of insulin, hepatic insulin delivery at
any arterial insulin concentration was much lower than at corresponding postprandial
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arterial insulin concentrations (see Section 1.6. Study protocols to evaluate plasma insulin
clearance and their clinical relevance). In addition, peripheral administration of insulin
excludes hepatic first pass insulin extraction (see Section 1.6. Study protocols to evaluate
plasma insulin clearance and their clinical relevance and Figure 1). One of these studies
estimated hepatic insulin clearance and found it was not different between healthy lean
participants and participants with T2D who were lean or obese [87]. However, hepatic
insulin clearance in this study was calculated by dividing the insulin infusion rate during
the hyperinsulinemic clamp procedure by the peripheral plasma insulin concentration
during the clamp procedure. This approach erroneously assumes that all of the infused
insulin is cleared by the liver; in addition, it does not take into account the delivery of
endogenously produced insulin to the liver through the portal vein, which we estimate
could contribute as much as 30% to total insulin delivery during the hyperinsulinemic
clamp procedure and differ markedly among lean and obese groups [14,104–106].

2.2.3. Plasma Insulin Clearance during Glucose Infusion Protocols

Although the assessment of insulin clearance during glucose infusion represents
the clearance of endogenously produced insulin, and therefore includes an assessment
of hepatic first pass insulin extraction, it is not a good substitute for the assessment of
postprandial insulin clearance. Intravenously infused glucose does not stimulate the release
of incretins, which potentiate the effect of glucose on β cells [112,113]. Insulin secretion
in response to intravenously administered glucose is therefore much less than insulin
secretion after glucose ingestion [112,113]. Furthermore. both the incretin response and the
incretin effect differ between lean people and people with obesity, insulin resistance, and
T2D [112,113,164]. Results from studies that evaluated the relationships among adiposity,
insulin sensitivity and plasma insulin clearance by using intravenous glucose infusion
protocols suggest that reduced insulin clearance in people with obesity is related to insulin
resistance, and is not due to increased body fat per se. Among both lean and obese
participants, the overall (area under the curve) insulin clearance rate during constant
hyperglycemia or sequential graded glucose infusion with glucose infusion rates ranging
from zero to 8 mg/kg body mass/min was less in participants who were insulin resistant
compared to those who were insulin sensitive; in addition, insulin clearance correlated
positively with insulin sensitivity [76,88–90,92]. To our knowledge, the effect of T2D on
insulin clearance during glucose infusion has not been evaluated in people. However,
results from a study that evaluated insulin clearance during graded glucose infusion in
cynomolgus monkeys suggest that T2D is associated with increased insulin clearance [165].
Whether the higher insulin clearance associated with T2D was due to T2D per se or the
markedly lower insulin secretion rate in those with T2D is unclear.

2.2.4. Plasma Insulin Clearance during an Oral Glucose Tolerance or Meal Test

Results from studies that included lean participants and participants with obesity
with different glycemic status, ranging from normal fasting glucose combined with normal
glucose tolerance to those with impaired fasting glucose and/or impaired glucose tolerance
and T2D, demonstrate plasma insulin clearance correlates with insulin sensitivity [3,8,166].
They also demonstrate that in people without T2D, plasma insulin clearance and forearm
(muscle) insulin fractional extraction decrease rapidly during the first 30 min after glucose
ingestion and remain below basal values during the entire two- to three-hour postprandial
testing period [8,27,96]. Furthermore, at any insulin secretion rate and plasma insulin
concentration, plasma insulin clearance is less in people who are insulin resistant than those
who are insulin sensitive [3]. The early decrease in insulin clearance after glucose ingestion
is blunted in participants with T2D compared with the respective lean or obese non-
diabetic control groups [3,8,96]. However, the postprandial decrease in insulin clearance
rate is appropriate for the reduced postprandial insulin secretion and plasma insulin
concentration [3] (Figure 5). Plasma insulin clearance remains below basal values even
after peak insulin secretion rates have been achieved and insulin secretion rate returns to
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basal values, presumably because it takes at least 30 min for internalized cell surface insulin
receptor recycling (see Section 1.3. Cellular mechanisms of insulin removal from plasma).
Furthermore, it was found that intentional weight gain in lean participants until body
mass index increased by 2 points caused insulin resistance and decreased plasma insulin
clearance during basal conditions and after glucose ingestion, whereas insulin secretion
was unchanged [167].
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2.2.5. Integrated Multi-Modal Modelling Assessment of Plasma Insulin Clearance

Data obtained from a complex mathematical modelling analysis of plasma insulin
clearance rates obtained during a series of different glucose ingestion and intravenous
glucose and insulin infusion protocols conducted in 2000 lean and obese men and women
suggest that there is an inverse relationship between insulin clearance and insulin secretion
rate and insulin sensitivity is by far the most important determinant of plasma insulin
clearance at any insulin secretion rate [83]. Plasma insulin clearance decreases as the
delivery rate of insulin increases and at any insulin secretion rate, plasma insulin clearance
is less in people who are insulin resistant than those who are insulin sensitive [83] (Figure 5).

2.3. Non-Alcoholic Fatty Liver Disease and Insulin Clearance in People with Obesity

Non-alcoholic fatty liver disease (NAFLD) is common in people with obesity [139] and
associated with insulin resistance [168]. It has been proposed that NAFLD contributes to
impaired plasma insulin clearance in people with insulin resistance [169–171], presumably
because NAFLD impairs hepatic functioning. However, the results from studies that
provided a comprehensive analysis of the relationships among insulin secretion in response
to glucose ingestion and hepatic, extrahepatic, and whole-body insulin plasma clearance
and tissue extraction rates suggest that NAFLD does not impair hepatic insulin extraction
per se, but rather the lower hepatic and whole-body insulin clearance in people with
NAFLD are due to insulin resistance and insulin hypersecretion [84,95]. A study that
used Mendelian Randomization analysis to evaluate the relationship between NAFLD and
plasma insulin clearance based on genetics, also found no support for a causal link between
hepatic steatosis and hepatic insulin clearance [172].
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3. Summary and Conclusions

Plasma insulin clearance is a highly dynamic, receptor-mediated process and an im-
portant determinant of plasma insulin concentration. Basal insulin receptor expression
and insulin delivery to tissues that clear insulin are key determinants of insulin clearance.
Insulin sensitivity correlates with plasma insulin clearance, presumably because both in-
sulin action in and insulin clearance by tissues require insulin binding to its receptors and
insulin receptor expression is downregulated in people with insulin resistance. Moreover,
insulin clearance is inversely related to the insulin delivery rate to tissues, so the postpran-
dial increase in insulin secretion itself causes a decrease in insulin clearance and chronic
hyperinsulinemia is at least in part responsible for reduced cell surface insulin receptor
expression in people with obesity. The higher postprandial insulin clearance in people with
T2D, compared to those without, is a consequence of β-cell dysfunction and reduced insulin
secretion, which blunts the postprandial insulin delivery rate to tissues that clear insulin.
The greater insulin clearance in people with T2D is due to impaired β-cell function, which
blunts the postprandial downregulation of insulin clearance caused by insulin receptor
internalization after insulin binding.
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