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Abstract: In this study, polyacrylonitrile (PAN) was mixed with a renewable polymer, lignin, to
produce electrospun nanofibers by using an electrospinning technique. Lignin was utilized as a
soft template that was removed from the nanofibers by using a selective dissolution technique to
create porous PAN nanofibers. These nanofibers were characterized with Fourier transform infrared
(FTIR), field emission scanning electron microscopy (FESEM), thermogravimetry analysis (TGA),
X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) to study their properties and morphology.
The results showed that lignin can be homogeneously mixed into the PAN solution and successfully
electrospun into nanofibers. FESEM results showed a strong relationship between the PAN: lignin
ratio and the diameter of the electrospun fibers. Lignin was successfully removed from electrospun
nanofibers by a selective chemical dissolution technique, which resulted in roughness and porousness
on the surface of the nanofibers. Based on the BET result, the specific surface area of the PAN/lignin
nanofibers was more than doubled following the removal of lignin compared to PAN nanofibers.
The highest specific surface area of nanofibers after selective chemical dissolution was found at an 8:2
ratio of PAN/lignin, which was 32.42 m2g−1 with an average pore diameter of 5.02 nm. The diameter
of electrospun nanofibers was also slightly reduced after selective chemical dissolution. Porous PAN
nanofibers can be seen as the precursors to the production of highly porous carbon nanofibers.

Keywords: polyacrylonitrile; lignin; electrospinning; selective chemical dissolution; porous nanofibers;
nanofibers; soft template

1. Introduction

In recent years, nanotechnology has become a promising technology for the future.
There are many types of nanomaterials, such as nanoparticles, nanofibers, nanotubes,
nanowires, and quantum dots, that have garnered extensive attention due to their unique
properties and characteristics [1]. Among these nanomaterials, nanofibers are receiving
significant attention from researchers due to their holding properties such as high porosity,
a high surface area and controllable morphology, and high chemical and thermal stabil-
ity [2,3]. Several techniques can be used to produce nanofibers, such as template-assisted
synthesis [4], chemical vapor synthesis [5], and electrospinning.

At present, electrospinning techniques have received interest as they are economical
and suited to various types of material [6], good for controlling fiber morphology [7], and
easy to operate [8]. A high-voltage power supply, a conductive collector, and a spinneret
are the important, basic forms of equipment that are needed for the electrospinning process.
Electrospinning involves an electrohydrodynamic process, during which a high voltage is
applied to a polymer droplet; this is designed to reduce the surface tension of the polymer
droplet and transform it into a pointed shape. Increasing the voltage supply will trigger the
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formation of a Taylor cone and a jet from the tip of needle. The solvent evaporates as the jet
travels to the collector, and to prevent the jet from forming into droplets (electrospraying),
sufficient entanglement of the polymer occurs [9]. An electrospinning technique is a
distinctive way to produce nanofibers from various types of polymers with a diameter
ranging from micrometer to nanometer, and to produce a higher surface area than those
obtained from conventional spinning processes [10]. Thus, electrospinning is the best tool
for the production of polymer nanofibers as it is economical and the simplest method [11].

Recently, a significant number of studies that have used nanofibers as an adsorbent
for the removal of pollutants from aqueous solutions, such as drugs [12,13] and heavy
metals [14–17], has been reported. For the application of nanofibers as adsorbent, the
adsorption process is crucial. During this process, the adsorbate molecules are transported
into the surface of the absorbent. The internal mass transfer is transported to the inner
surface of the porous structure from the outer surface of the adsorbent [18]. Targeted
contaminant removal depends on the pore size of the adsorbent [19]. The pores of the
nanofibers are made up of several categories: micropores (<2 nm), mesopores (2–50 nm),
and macropores (>50 nm). The main part of the adsorption process occurs with mesopores
and micropores [20].

Polyacrylonitrile (PAN) is a polymer usually used as the precursor to the formation
of carbon fibers due to its excellent mechanical strength, low flammability, good thermal
stability and chemical resistance [21], such as PAN-based carbon fiber electrodes for energy
storage application [22,23] and for thermal materials [24]. It is a homo-polymer made up
of acrylonitrile. PAN contains a nitrile group, known as a polar group, that helps it to be
soluble in a highly polar solvent, and helps increase its melting points. The interaction
of the nitrile group and the polymeric backbone of the polymer hinder the molecules of
PAN carbon fibers to align in a particular direction. Dimethylformamide (DMF) is the
most used solvent for dissolving PAN to make nanofibers; the solvent helps to reduce
the interaction between the nitrile groups, and helps provide a better orientation of the
produced polymer chain [25].

Lignin is among the most promising biorenewable raw materials, and it is a natural
polymer that acts as a partial matrix within the structure of plants and trees. It is one of
the main elements of wood and is the second most abundant natural polymer. Lignin is a
highly branched macromolecular network structure, with an aromatic nature and complex
compositions. Furthermore, lignin has a lack of cytotoxicity, which proves that lignin is
a type of biomaterial [26]. Industries such as the pulp and paper industry are the main
sources of lignin as a by-product and of second-generation bioethanol facilities derived from
lignocellulosic sources [27]. The structure of lignin is composed of phenylpropene units
(monolignols) of the hydroxyl group, but the plant source and its isolation process impact
lignin complex configuration (Duval and Lawoko, 2014). Lignin has some advantages,
such as a high carbon content, its suitability with various chemicals, good thermal stability,
and its low cost and biodegradability [28]; however, there are some limitations, such as the
relative heterogeneity of its structure and difficulties in its processing that still hinder its
more widespread use [29]. Lignin has received interest among researchers as a potential
low-cost carbon fiber precursor because it is easy to obtain and has a high carbon content.

The selective chemical dissolution technique is one of the processes to produce a
porous structure and higher surface area in a polymer. For porous polymer nanofibers,
this can be achieved through the electrospinning of polymer blend solutions to form
a nanofiber, followed by the selective chemical dissolution process which involves the
removal of one component using an appropriate solvent that only dissolves a certain
polymer in the blend’s nanofibers. Another alternative is the addition of additives such
as salts or nanoparticles in the polymer solution that are used as a template, followed by
their removal by post-electrospinning processes; the elimination of the template is another
method to create a porous structure [30]. In a study by Chen et al. [31], silk fibroin/poly
(L-lactic acid) (SF/PLA) fibers were produced by an electrospinning technique. The silk
fibroin was removed from the fibers by dissolving the fibers in chloroform for up to 1 h.
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After the selective chemical dissolution process, the fibers showed a porous structure with
irregular shapes [31]. In another study, Kim et al. [23] used electrospinning to produce
poly(vinyl alcohol) (PVA) and PAN blend fibers. Either PVA or PAN can be removed from
the nanofibers. PVA was successfully removed from the fibers by dipping them in hot
water and acetic acid, while PAN was eliminated from the fibers using DMF treatment.
Both results showed the surface diameter of the electrospun fibers as decreasing, and the
surface of the fibers revealed grooves along the axis and appeared rougher [32].

In this study, alkali lignin, with a low sulfonate content, was incorporated with
PAN to produce nanofibers. A renewable polymer, lignin was used as a soft template
to create a porous and rougher surface for the nanofibers through the selective chemical
dissolution technique.

2. Materials and Methods
2.1. Reagents

The materials used in this experiment were alkali lignin (low sulfonate content) and
polyacrylonitrile (PAN) (average Mw = 150,000), and were purchased from Sigma-Aldrich
(Merck Group, St. Louis, MO, USA). N,N-dimethylformamide (DMF) was obtained from
R&M Chemicals (Ever Gainful ENT., Ara Damansara, Selangor, Malaysia). De-ionized
water was used throughout the experiment.

2.2. Preparation of Electrospun Nanofibers

PAN nanofibers were prepared from a PAN solution dissolved in DMF with a concen-
tration of 7.5%. A 5 mL syringe was loaded with the PAN solution, and a 0.8 mm inner
diameter needle was attached with the syringe. The distance between the tip of the needle
and the aluminum foil collector was fixed at 10 cm. The electrospinning was conducted
using 18 kV voltage with a 2 mL/h flow rate. The nanofibers produced were collected
on the aluminum foil and characterized. Following this, the PAN/lignin nanofibers were
prepared in the same way as the PAN nanofibers. The ratios of PAN/lignin were varied:
9:1, 8:2, 7:3, and 6:4.

2.3. Selective Chemical Dissolution Technique

Lignin is a water-soluble polymer, while PAN is insoluble in water. Thus, PAN/lignin
nanofibers were immersed in de-ionized water at 60 ◦C for 30 min to eliminate lignin from
the electrospun nanofibers, and then the nanofibers were dried in a convection oven for 3 h
at 60 ◦C and sent for characterization. This procedure was repeated for the PAN nanofibers
for comparison purposes.

2.4. Characterizations

FTIR analyses of the samples were conducted to determine the functional groups
using an attenuated total reflectance-Fourier transform infrared spectroscopy (ATR–FTIR)
spectrometer (Perkin Elmer Spectrum RXI, Waltham, MA, USA). The wavelength used
to examine the functional groups ranged from 280 to 4000 cm−1. The thermal proper-
ties of the samples were determined using thermal gravimetric analysis (TGA) (Mettler
Toledo Thermogravimetric Model TGA/SDTA, Columbus, OH, USA). The samples were
heated from 50 ◦C to 600 ◦C, with a heating rate of 10 ◦C/min under a nitrogen atmo-
sphere. Field emission scanning electron microscopy (FESEM) (FEI NOVA NANOSEM
230, Hillsboro, OR, USA) was used to examine the morphologies of the nanofibers. A stub
was taped with carbon tape and the samples were placed onto it. The samples were then
sputtered with a thin layer of gold. The average fiber diameter was determined by using
ImageJ Software, with 200 diameter readings taken. X-ray diffraction (XRD) (Shimadzu
Model XRD-6000, Kyoto, Japan) analyses of the samples occurred to identify the crystalline
phase, where the scan started from 2θ range and from 2◦ to 60◦, with a scanning rate of
2◦/min. The surface area and porosity of the prepared nanofiber were determined by
N2 adsorption measurements at 77K using BELSORP Mini II. The surface characteriza-
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tion of the nanofibers was obtained using the Brunauer-Emmet-Teller (BET Micromeritics
Instrument Corporation, Model-3Flex, Norcross, GA, USA) method.

3. Results and Discussion
3.1. Fourier Transform Infrared Spectra (FTIR) Analysis

ATR-FTIR technique was used to analyze the PAN, lignin, and PAN/lignin nanofibers
before and after selective chemical dissolution. Figure 1 shows the FTIR spectra of PAN,
lignin, and PAN/lignin nanofibers. The ratio of PAN: lignin was varied at 9:1, 8:2, 7:3, and
6:4 to study the effect of different ratios on the fabricated PAN/lignin nanofibers. The IR
spectrum of lignin shows the major lignin bands at 3400 cm−1 (O–H stretching), 1595 cm−1

(aromatic skeletal vibration), 1430 cm−1 (C–C stretching with C–H deformation), 1134 cm−1

(C–H deformation), and 1040 cm−1 (C–O deformation) [33]. In Figure 1, it can be seen that
the higher the lignin content in the fiber, the higher the intensity of the lignin peaks at
1595 cm−1, 1134 cm−1, and 1040 cm−1. A small peak at 2920 cm−1 indicates a stretching of
the alkyl C–H bond and a stretching of the intermolecular hydrogen bonding of the O–H
group, which is associated with the hydroxyl group in the lignin [34]. A strong peak at
2240 cm−1 indicates the C≡N group of PAN; the intensity of the peak was decreased as the
ratio of PAN decreased. A peak at around 1450 cm−1 corresponds to the bending of the
CH2 scissoring of PAN [35]. The intensity of the peak at 1450 cm−1 was reduced when the
ratio of lignin increased. As can be seen in Figure 1, the main peak position of PAN did not
shift for all the nanofibers, demonstrates that the blending of PAN and lignin only involves
physical blending.

Figure 1. FTIR spectra of the PAN/lignin nanofibers after selective chemical dissolution compared to PAN and lignin.

The FTIR spectra of the PAN/lignin nanofibers after the selective chemical dissolution
process when compared to PAN and lignin is shown in Figure 2. The IR spectrum of PAN
shows peaks at around 2920, 2240, 1664, and 1450 cm−1. These peaks indicate the alkyl C–H
bond stretching, C≡N stretching, C≡N stretching, and CH2 bending, respectively [36–38].
Selective chemical dissolution was performed to remove the lignin from the nanofibers.
The results showed that, for the nanofibers after treatment, most IR peaks in PAN/lignin
nanofibers exhibited mainly belong to PAN. In comparison, the peaks that belong to lignin,
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such as the peaks at around 1595 cm−1 and 1040 cm−1, were reduced significantly. This is
because the lignin content in the nanofibers was successfully removed through the selective
chemical dissolution process.

Figure 2. FTIR spectra of pure PAN and PAN/lignin nanofibers after selective chemical dissolution process.

3.2. Field Emission Scanning Electron Microscope (FESEM) Analysis

The morphology of the nanofibers was investigated using the FESEM technique.
Figures 3 and 4 show FESEM images and the average diameter of the PAN/lignin
nanofibers against the various ratios of PAN: lignin nanofibers, respectively. The PAN
nanofibers did not contain lignin, but underwent a selective chemical dissolution process
for comparison purposes. From the FESEM images in Figure 3, it can be observed that be-
fore selective chemical dissolution, the nanofibers’ surface is smoother than after selective
chemical dissolution. However, it can be seen that some pores and rough surfaces appear
on the nanofibers before selective chemical dissolution, possibly due to the effect of rapid
solvent evaporation during electrospinning and drying proses. After selective chemical
dissolution, the surface nanofibers become rougher and more porous due to the removal
of lignin during hot de-ionized water treatment. The average diameter of nanofibers
before and after selective chemical dissolution decreased when the content of lignin in-
creased from a ratio of 9:1 to 6:4. The average diameter of PAN and PAN/lignin nanofibers
at ratios of 9:1, 8:2, 7:3, and 6:4 before selective chemical dissolution was 419 ± 49 nm,
409 ± 35 nm, 371 ± 31 nm, 362 ± 52 nm, and 358 ± 31 nm, respectively. When the content
of lignin increased, the average diameter of nanofibers decreased. This is due to a decrease
in the viscosity of the polymer solution that produces a lower fiber diameter, as mentioned
earlier. This is due to the lower molecular weight and higher polydispersity index of lignin
compared to PAN [39]. The average diameter of PAN and PAN/lignin nanofibers after
dissolution was slightly decreased compared with before selective chemical dissolution;
412 ± 55 nm, 386 ± 29 nm, 349 ± 44 nm, 340 ± 40 nm, and 327 ± 35 nm for PAN and
PAN/lignin with ratios of 9:1, 8:2, 7:3, and 6:4, respectively. The FESEM images show
that all the nanofibers before and after dissolution were bead-free, and that the nanofibers
had a non-uniform, porous, and rough surface. This proves that, by using the selective
chemical dissolution technique, lignin could be successfully removed from nanofibers
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and could produce a rough surface and cause a high porosity of PAN/lignin nanofibers,
providing a higher surface area. However, FESEM images only are insufficient to prove
the higher surface area of nanofibers after selective chemical dissolution. These results can
be supported by Brunauer-Emmett-Teller (BET) analysis, which will be discussed later in
Section 3.5.

Figure 3. Cont.
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Figure 3. FESEM micrograph of nanofibers with various PAN: lignin ratios (a) PAN, (b) 9:1, (c) 8:2,
(d) 7:3, (e) 6:4 ratio before selective chemical dissolution, and (a’) PAN, (b’) 9:1, (c’) 8:2, (d’) 7:3, and
(e’) 6:4 ratio after selective chemical dissolution.

Figure 4. Graph of the diameter of nanofibers before (pure nanofibers) and after (modified nanofibers)
selective chemical dissolution.

3.3. Thermal Analysis

The derivative thermogravimetry (DTG) and TGA analyses of the PAN: lignin
nanofibers before and after selective chemical dissolution was carried out to study the ther-
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mal stability of the samples. Figures 5 and 6 show the DTG thermogram at different ratios
of PAN: lignin nanofibers, from 50 ◦C to 600 ◦C. TGA thermograms of nanofibers before
and after selective dissolution are shown in Supplementary Materials (Figures S1 and S2).
The DTG and TGA thermograms of nanofibers both before and after selective chemical
dissolution show a similar trend. The first weight loss can be observed at 50–120 ◦C and is
due to the loss of water molecules that are bound to the nanofibers. TGA thermograms of
the nanofibers (Figures S1 and S2) show that all the nanofibers gradually decomposed at a
higher temperature range. From DTG and TGA thermograms, the main degradation began
at 275 ◦C for PAN nanofibers, attributed to the pyrolysis of the nanofibers [40]. The addition
of lignin to the nanofibers (PAN/lignin nanofibers) lowered the onset degradation tempera-
ture of the fibers (~260 ◦C) compared to PAN nanofibers; however, there was no significant
difference between the various ratios of lignin in the fibers. The addition of lignin slightly
reduced the thermal stability of the nanofibers. When comparing the results before and
after selective chemical dissolution, the onset degradation temperature of the PAN/lignin
nanofibers was slightly higher than before selective chemical dissolution, possibly due
to the removal of lignin and because the nanofibers are mostly composed of PAN, which
has a higher thermal stability than lignin. However, after selective dissolution, the onset
temperature of the PAN/lignin nanofibers was still slightly lower than PAN nanofibers
(Figure 6). It is noticeable that the PAN/lignin (8:2) in Figure S1 and the PAN/lignin (6:4)
in Figure S2 show that weight loss exceeded 100%. The possible explanation for this is
that the PAN fiber can have a reaction with nitrogen under thermal treatment [41] with a
resulting weight increase of over 100%.

Figure 5. DTG curve of nanofibers before selective chemical dissolution.

From DTG thermograms, a sharp peak corresponding to a maximum decomposition
temperature of PAN nanofibers is observed at 296 ◦C (Figure 5) and 299 ◦C (Figure 6) for
before and after selective chemical dissolution, respectively. The maximum degradation
temperature of the PAN/lignin nanofibers before selective chemical dissolution occurred
at a temperature lower than PAN, which is 282 ◦C, and after the removal of lignin, the max-
imum degradation temperature shifted to a higher temperature in the range of 287–295 ◦C.
This is because the removal of lignin caused the nanofibers to be composed of more PAN,
and provided the nanofiber with higher thermal stability. These results also prove that
the removal of lignin after de-ionized water treatment successfully occurred. It is further
confirmed that the incorporation of lignin reduces the thermal stability of nanofibers.
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Figure 6. DTG curve of nanofibers after selective chemical dissolution.

3.4. X-ray Diffractometer (XRD) Analysis

Figure 7 shows the sample result of XRD analyses carried out to study the crystallinity
of nanofibers before (pure 7:3 PAN/lignin nanofibers) and after (modified 7:3 PAN/lignin
nanofibers) selective chemical dissolution. The XRD diffraction pattern of the nanofibers
before and after selective chemical dissolution shows a broad peak at around 17◦, which can
be ascribed to (100) crystallographic planes of PAN due to their amorphous nature [14,42].
Nevertheless, the intensities of peaks at 17◦ were increased with the removal of lignin
content in PAN-based nanofibers after selective chemical dissolution. Crystallinity de-
creased with the higher lignin content as lignin is a biopolymer consisting of amorphous
phenyl propylene [43]. The XRD patterns of the pure 7:3 PAN/lignin nanofibers show
characteristic peaks of 2 theta located at 42◦, 44◦,49◦, and 51◦ that may be due to the blend
of PAN with lignin. Once modified, intensity of all these peaks were reduced due to
lignin removal.

Figure 7. XRD spectra of (a) 7:3 PAN/lignin nanofiber and (b) 7:3 PAN/lignin nanofibers after
selective chemical dissolution.
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3.5. BET Analysis

The most frequent approach to the determination of specific surface areas of porous
materials is the Brunauer-Emmett-Teller (BET) approach. The pore information of the
porous nanofibers, including the BET-specific surface area and the microporous and meso-
porous volumes, is summarized in Table 1. As seen in Table 1, the specific surface area of
PAN: lignin nanofibers after selective chemical dissolution are 16.17 m2g−1, 20.94 m2g−1,
32.42 m2g−1, 29.13 m2g−1, and 28.15 m2g−1 for PAN, with 9:1, 8:2, 7:3, and 6:4 ratios,
respectively. The PAN: lignin nanofibers of 8:2 ratio showed the highest BET surface area
(32.42 m2g−1), followed by 7:3, 6:4, 9:1, and PAN. This shows an increase in specific surface
area of up to 50% compared to PAN nanofibers after the removal of lignin. The specific
surface area ratio from 7:3 to 6:3 is a slight decrease from 8:2, possibly due to the excess
lignin addition to the nanofibers, which creates a bigger pore diameter and consequently
reduces the specific surface area. In this study, the increase in the specific surface area
is greater than reported elsewhere in the literature. For example, Ji and co-workers [44]
studied the effect of PAN and silica nanoparticles using a selective chemical dissolution
process. The silica component was removed from silica/PAN composite fibers, and the
surface area of the nanofibers was increased by only 20%.

Table 1. Specific surface areas (SBET), pore parameters of PAN/lignin nanofibers after selective chemical dissolution with
different PAN: lignin ratios.

PAN 9:1 8:2 7:3 6:4

Specific surface area, SBET/m2g−1 16.17 20.94 32.42 29.13 28.15

Pore volume, Vtotal/m3g−1 0.2360 0.2371 0.1974 0.1800 0.2970

Average pore diameter/nm 5.16 5.13 5.02 5.34 5.08

The interrelationship between the average diameter and the BET-specific surface area
of nanofibers as a function of a ratio of PAN/lignin nanofibers after selective chemical
dissolution is shown in Figure 8. From the graph, it can be seen that the higher the
composition of lignin in the nanofibers, the lower the average diameter of the fiber and the
higher the BET-specific surface area. The optimum surface area of the porous nanofibers
can be obtained by only a 20% incorporation of lignin fibers with a very small pore diameter
(5.02 nm) and pore volume (0.1974 m3g−1).

Figure 8. Graph of various ratios of PAN/lignin nanofibers, with BET surface area and average diameter.
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4. Conclusions

The highly porous and specific surface area of PAN/lignin electrospun nanofibers was
successfully prepared by using lignin as a soft template and through a selective chemical
dissolution technique. The morphology showed a significant change in the surface of
the nanofibers before and after selective chemical dissolution technique. After selective
chemical dissolution, the nanofibers’ surface appeared to be rougher and slightly smaller in
average fiber diameter than before selective chemical dissolution. The BET analysis showed
a significant increase in specific surface area after the addition of lignin to the PAN/lignin
nanofibers, and the pore diameter was varied with the various ratios of lignin in the
nanofibers. The optimum specific surface area of PAN/lignin nanofibers was 8:2 ratio,
which is 32.42 m2g−1 with a pore diameter of 5.02 nm. Additional lignin not only impacts
the morphology of the nanofibers, but also the fiber diameter. The higher the ratio of
lignin added, the smaller the average fiber diameter. This study showed that lignin and
PAN can be homogenously blended and utilized to produce the high surface area and
porosity of PAN nanofibers using a selective chemical dissolution technique. This can be
used in an extensive variety of applications, for instance, as a precursor to highly porous
carbon nanofibers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13223938/s1, Figure S1: TGA curve of nanofibers before selective chemical dissolu-
tion, Figure S2: TGA curve of nanofibers after selective chemical dissolution.
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