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Abstract

This work presents the automation of a multiplace hyperbaric chamber. It includes the sys-

tem modeling, identification, controller calculation and system validation. With the proposed

approach a good pressure profile tracking and repeatability are achieved. Moreover, the

proposed automation includes the implementation of powerful treatment tools such as

Pause and Alleviation procedures. The control system implemented is based on a special

zero-pole cancellation regulator. Experimental results are provided to illustrate the behavior

of the automated chamber. It is important to remark that the chamber automated in this work

is being successfully used in a real hospital since 2015 treating more than 40 patients per

day, five days a week.

Introduction

Hyperbaric oxygenation is a medical treatment in which the patient is progressively subjected

to a pressure greater than the sea level atmospheric pressure, usually between 1.5 and 2.5 bar.

The patient then breathes pure oxygen during a controlled period of time. This oxygen can be

the gas used to compress the chamber or can be supplied to the patient through a mask. After

the treatment, the patient is progressively subjected to a lower pressure (decompressed) until

the atmospheric pressure is reached again.

A hyperbaric chamber (HC) is a vessel, usually made of steel, in which the pressure can be

raised by compressing the air, or sometimes by compressing oxygen. Basically, HCs can be

classified in two types depending on their size and use: monoplace HCs, which are used only

by one person; and multiplace HCs, which are used by a group of people receiving the same

treatment.

Although hyperbaric medicine has been used for decades, this medical area is gaining in

popularity [1, 2], as evidenced by the rise in the number of papers related to hyperbaric oxygen

published in journals between 1980 and 2016, see Fig 1. This information has been simply

obtained by searching in PubMed.gov using the keywords: “hyperbaric oxygen”.

Hyperbaric medicine experimented an important growth during the 1960s and 1970s [3]

and due to the long lifetime of HCs, many of them remain still working in hospitals with a low

level of automation (e.g., they are manually controlled by using mechanical sticks or

PLOS ONE | https://doi.org/10.1371/journal.pone.0200407 August 3, 2018 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Gracia L, Perez-Vidal C, de Paco JM, de

Paco LM (2018) Identification and control of a

multiplace hyperbaric chamber. PLoS ONE 13(8):

e0200407. https://doi.org/10.1371/journal.

pone.0200407

Editor: Baogui Xin, Shandong University of Science

and Technology, CHINA

Received: May 19, 2017

Accepted: June 26, 2018

Published: August 3, 2018

Copyright: © 2018 Gracia et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This research has been carried out with

the funding and promotion of “Catedra de Medicina

Hiperbarica” of the Miguel Hernandez University

and with the support of MEDIBAROX (unit of the

Perpetuo Socorro Hospital) (http://nbio.umh.es/es/

2010/12/01/catedra-de-medicina-hiperbarica-

medibarox). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

https://doi.org/10.1371/journal.pone.0200407
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200407&domain=pdf&date_stamp=2018-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200407&domain=pdf&date_stamp=2018-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200407&domain=pdf&date_stamp=2018-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200407&domain=pdf&date_stamp=2018-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200407&domain=pdf&date_stamp=2018-08-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200407&domain=pdf&date_stamp=2018-08-03
https://doi.org/10.1371/journal.pone.0200407
https://doi.org/10.1371/journal.pone.0200407
http://creativecommons.org/licenses/by/4.0/
http://nbio.umh.es/es/2010/12/01/catedra-de-medicina-hiperbarica-medibarox
http://nbio.umh.es/es/2010/12/01/catedra-de-medicina-hiperbarica-medibarox
http://nbio.umh.es/es/2010/12/01/catedra-de-medicina-hiperbarica-medibarox


potentiometers to open a valve in order to increase the pressure). This work is aimed to old

HCs that need to be automated and new ones manufactured by small or medium companies.

The accepted uses of hyperbaric oxygen therapy as defined by the European Underwater

and Baromedical Society and the Undersea and Hyperbaric Medical Society (USA) are: air or

gas embolism; carbon monoxide poisoning; cyanide poisoning; clostridial myositis and myo-

necrosis (gas gangrene); crush injury, compartment syndrome and other acute traumatic

ischemias; decompression sickness and many others [4, 5].

Automation techniques are now being used in almost all areas of daily life, from domestic

gadgets to the heaviest industries. In this sense, big manufacturers are including automation

technologies in their products. This is the case of Dragerwerk AG and Haux-Life in Europe,

Perry Baromedical Corporation, Hyperbaric Technologies Inc., Sechrist Industries and Reim-

ers Systems in USA, and Kawasaki Heavy Industries and Nakamura in Japan. But HCs manu-

factured by SMEs (Small or Medium Enterprises) are not automated yet due to their lack of

R&D resources. This paper is aimed to those companies without R&D departments and it

gives to them a guideline for HC’s automation.

It is important to remark that this work is focused on HCs’ automation. Although some

companies offer commercial solutions on this matter as mentioned above, to the best of the

authors’ knowledge there is no published literature (peer-reviewed journal papers) addressing

this issue, hence the work presented here. In particular, after a through search in relevant data-

bases like Web of Science, Scopus and Google Scholar no research paper dealing with HCs’

automation has been found. Only some patents have been reported on this issue [6–8],

although all of them present vague descriptions and give no details for the modeling, identifi-

cation and control algorithms. In contrast to these patents, this work is not only novel but also

useful since all the details required to automate an existing manual HC are provided.

The structure of the paper is as follows. Next section introduces the methods used in this

work to automate a HC, while Section 3 presents the results obtained with the proposed

approach. Then, Section 4 discusses several relevant issues about the use of the automated HC.

Finally, Section 5 shows the conclusions.

Fig 1. Number of papers related to hyperbaric oxygen (PubMed.gov search with keyword ‘hyperbaric oxygen’)

between years 1980 and 2017.

https://doi.org/10.1371/journal.pone.0200407.g001
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Methods

Multiplace hyperbaric chamber

The HC used in this work is the MEDIBAROX multiplace and multi-compartment chamber,

see Fig 2. This chamber has three compartments: a main chamber, an Intensive Care Unit

(ICU), and a pre-chamber between them. The chamber has a capacity for 25 seated people and

ten gurneys or four ICU beds. The pre-chamber allows the access to the main chamber or the

ICU from outside. The aim of the pre-chamber is to make possible the movement of patients

and medical staff between compartments at different pressures, and to be able to introduce a

doctor inside the chamber to treat a patient or to take out a patient in case of emergency.

In order to automate this HC, the set-up given by the electromechanical scheme in Fig 3

has been used, where PLC stands for Programmable Logic Controller, A/O for analog output

and A/I for analog input. There are three different circuits to pressurize each compartment of

the chamber. Each circuit has a control valve and two safety valves. The air goes inside the

chamber through pneumatic silencers to reduce noise. The decompression circuit is equivalent

to the pressurization circuit. The Programmable Logic Controllers (PLCs) are the electronic

devices in charge of controlling the chamber. They read the sensors’ analog signals and control

the analog and digital actuators. The PLC communicates with a computer and a Human

Machine Interface (HMI) via Industrial Ethernet to share information of the process.

Sensors and actuators used in this work are described below. All the components have been

specially chosen to be used in oxygen enriched environments (although the chamber is pres-

surized with air, an oxygen escape could cause a hazardous situation). This equipment consists

of: 6 pressure sensors, S-11 model (0 to 10 bar in a 4-20mA range), by WIKA (2 sensors per

compartment in a redundant configuration); 3 temperature and humidity hair sensors,

SEM165 by Status, especially designed for hyperbaric atmospheres; 6 flow control valves (2”

size) manufactured by Metalwork, Skillair REG-300 model; 2 screw type air compressors,

Atlas Copco ZT/ZR 110-900 VSD model; an air lung; a UPS (uninterruptible power supply)

device; 2 Siemens PLCs ET-200S IM151-8 with distributed I/O (PLCs has been chosen

Fig 2. Structure, distribution and size of the MEDIBAROX multiplace and multi-compartment HC at Perpetuo

Socorro Hospital in Alicante (Spain). Patients sit in the blue chairs.

https://doi.org/10.1371/journal.pone.0200407.g002
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Fig 3. Multiplace chamber’s electromechanical scheme.

https://doi.org/10.1371/journal.pone.0200407.g003
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according to ATEX Directive 94/9/EC.); a HMI SIMATIC MP 377 12 inch touch panel; and a

computer with a Siemens WinCC Scada software.

Procedures during a treatment

The automation of a multiplace chamber makes it easier to manage the procedures involved

with going into and out of the chamber, which are described below [9]:

• Lock-In Operations: Personnel entering the main chamber or the ICU chamber go into the

pre-chamber and close and lock the lateral door. The pre-chamber has to be pressurized at a

rate controlled by the system to equalize, but not to exceed 2.25 bar per minute. The system

shall record the time when the pressurization begins in order to determine the decompres-

sion schedule for the occupants when they are ready to leave the chamber. When the pres-

sure levels in the pre-camber and ICU chamber are equal, door C (which was closed at the

beginning of the treatment) should be open. Note that, door D remains closed all the time.

• Lock-Out Operations: To exit the ICU chamber, the personnel enter again the pre-chamber

and they close and lock door C. When ready to ascend, the Diving Supervisor is notified and

the required decompression schedule is selected and executed. Constant communications

are maintained with the inside personnel to ensure that a seal has been made on door C.

Pre-chamber depth is controlled throughout decompression by the system.

Once the patient is placed inside a HC, he or she performs the Valsalva manoeuvre to com-

pensate the pressure at both sides of the tympanic membrane (ear drum) in order to avoid a

barotrauma injury. The Valsalva manoeuvre is performed by slightly forcing exhalation against

a closed airway, usually closing the mouth and pinching the nose. The air goes through the

eustachian tubes to pressurize the internal side of the tympanic membrane. To avoid baro-

trauma impact, patients are previously trained to perform Valsalva manoeuvre (the medical

staff uses an endoscopic camera during the training process to guarantee that the patient is

able to compensate the pressure), although the impact of pressure increase is not completely

overtaken.

The most important procedures carried out in the chamber (based on the number of times

applied) are Alleviations and Pauses. These procedures are basic but extremely important to

avoid barotrauma in patients. They are performed when the Diving Supervisor detects that a

patient feels some earache (patients have told to communicate any earache when they happen).

Fig 4 shows a non-linear pressurization profile (Smooth Ride type), in which an Alleviation

and a Pause are online introduced by the Diving Supervisor. These two procedures modify the

moment in which the chamber achieves the bottom treatment and, for this reason, a delay

computed by the system is applied to accomplish with the initial specifications indicated by

the doctor.

The Alleviation procedure is performed during the compression process. In this case, a

decompression profile is loaded to the decompression regulator which decreases the pressure a

determined value following a determined decompression ratio. For example, if pressure is 1.45

bar at the moment of starting the Alleviation process, the alleviation value is 0.05 bar, and the

decompression ratio is 0.1 bar/minute, the regulator will decrease the chamber until 1.40 bar

in 30 seconds. When the Alleviation is finished, it is possible to carry out another alleviation or

to carry on with the treatment.

The Pause procedure consists on a steady state in the reference profile in order to keep the

pressure constant. When the pause procedure has started, the reference is stopped and the

pressure is kept constant until the pause finishes, which is based on the Diving Supervisor cri-

teria. Subsequently, the pressurization goes on from that point.
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Chamber modeling and identification

In multi-compartment chambers, it is possible to have different treatments running at the

same time, see Fig 3. This section presents the mathematical modeling of the main chamber,

but the process can be easily replicated for the ICU chamber and the pre-chamber.

Control valve modeling. The modeling of the air flow through a hole with a variable area

is a highly non linear function which mainly depends on the input and output pressures and

the size of the hole. This model is defined in different ways in technical literature [10–13]

depending on the accuracy level.

The control valves used are pneumatically actuated. When the control pressure over the

diaphragm changes, the piston rod slides and the valve opening size changes.

The equations to calculate the flow of compressible fluids through control valves are

described in [11]. The volumetric flow in normal conditions (0˚C and 1 bar) through the valve

(incompressible and choked flow without attached fittings) is given by expressions (1) to (5),

where:

• q is the volumetric flow rate (m3/h).

• Cv,max is the valve flow coefficient (m3/h). This was introduced by [14] and it is usually pro-

vided by the valve manufacturer. Cv (m3/h) depends on the opening of the valve. Cv is 0

when the valve is closed and Cv,max when it is completely open. This variation allows the

valve to regulate the flow. “a” (dimensionless) value of (1) is the valve opening (a value

between zero and one).

• T is the absolute inlet temperature (Kelvins).

• Gg is the gas specific gravity (ratio of density of flowing gas to density of air with both at stan-

dard conditions), which is considered in [11] to be equal to the ratio of the molecular weight

of gas to molecular weight of air.

• Fp is the piping geometry factor (dimensionless).

• Fγ is the specific heat ratio factor (dimensionless) and γ is the gas specific heat ratio (dimen-

sionless). Both are physical constants and can be found in [11].

• Y is the gas expansion factor (dimensionless).

Fig 4. HBO2 events and steps during a sample treatment.

https://doi.org/10.1371/journal.pone.0200407.g004
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• x is the pressure drop ratio (dimensionless). Limit x = Fγ � xT.

• xT is the pressure differential ratio factor of a control valve without attached fittings at

choked flow (dimensionless).

• Z is the gas compressibility factor (dimensionless).

• ΔPv is the differential pressure between upstream and downstream pressure taps (P2 − P3 in

kPa).

• P0 is the atmospheric pressure (kPa).

• P1 is the output pressure of the air compressors (kPa).

• P2 is the upstream pressure (kPa).

• P3 is the downstream pressure (kPa).

• P4 is the pressure inside the chamber (kPa).

• P is the incremental pressure inside the chamber (kPa), therefore ΔP = ΔP4.

Note that P1, P2, P3 and P4 are represented in the electromechanical scheme of Fig 3.

Gathering and simplifying expressions from (1) to (5) as indicated in [10], Eq (6) is

obtained, where C1 ¼ 417 � Cv max � FP �
ffiffiffiffiffi
P2

p
and C2 ¼

� 417�Cv max �FP
2:14�g�Fg�xT �

ffiffiffiffiffiffiffiffiffi
Gg �T�Z
p � 1ffiffiffiffi

P2

p .

The relationship between the control signal (diaphragm pressure) and the valve opening has

its own dynamics. The system consists of a spring and, according to technical information pro-

vided by the manufacturer and the flow tests carried out at the Department of Mechanics in

Turin Polytechnic (Italy) [15], it can be modeled as the second order system shown in Eq (7),

where K1 is the gain, ωn is the natural frequency, ξ is the absorption coefficient, ΔA(s) is the

valve opening and ΔU(s) is the control signal (diaphragm pressure), both in Laplace domain.

q ¼ 417 � Fp � P2 � Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
Gg � T � Z

s

� Cv max � a|fflfflfflfflffl{zfflfflfflfflffl}
Cv

ð1Þ

Y ¼ 1 �
x

3 � Fk � xT
ð2Þ

DPv ¼ P2 � P3 ð3Þ

x ¼
DPv

P2

ð4Þ

Fg ¼
g

1:4
ð5Þ

qðtÞ
aðtÞ
¼ C1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DPvðtÞ

p
þ C2 � ðDPvðtÞÞ

3=2
ð6Þ

DAðsÞ
DUðsÞ

¼
K1 � o

2
n

s2 þ 2xonsþ o2
n

ð7Þ

Pressure loss modeling. There are pressure losses throughout the pneumatic circuit

which are caused by pipe length, valves and accessories (tees, silencers and diameter changes).

Identification and control of a multiplace hyperbaric chamber

PLOS ONE | https://doi.org/10.1371/journal.pone.0200407 August 3, 2018 7 / 23

https://doi.org/10.1371/journal.pone.0200407


In fluid dynamics, the Darcy-Weisbach Eq (8), see [16], relates the pressure loss caused by fric-

tion along a given length of pipe to the average velocity of the fluid flow, where L/D is the ratio

of the length to the diameter of the pipe, ρ is the density of the fluid, v is the mean velocity of

the flow, and f is the dimensionless Darcy friction factor. The velocity v can be expressed as in

Eq (9), and the air volume flow q can therefore be related to the pressure loss.

Pressure losses in valves and accessories are usually calculated by using the Darcy-Weisbach

equation and taking an equivalent pipe length (L/D)eq. Eq (10) is used to obtain the pressure

loss between the compressor and the pneumatic silencers inside the HC, which is the sum of

the pipe losses, valve losses and accessory losses. Since the other terms in the equation are con-

stant, the pressure loss is equal to a constant K2 multiplied by q2, where it is assumed that a

pressure change is proportional to the square flow [17].

P ¼ f �
L
D
�
rv2

2
ð8Þ

v ¼
4

pD2
� q ð9Þ

P1 � P3 ¼
X

DPp þ
X

DPv þ
X

DPa ¼ K2 � q
2 ð10Þ

where ΔPp belong to pipes, ΔPv belong to valves and ΔPa belong to other accessories.

Chamber pressurization modeling. If the air lost by the chamber is considered to be null,

because it is not significant in comparison with the pressurization flow, the volumetric mate-

rial balance is expressed by (11), where ΔQ is the mass flow (kg/s), V is the volume of the

chamber (m3), and ρ is the air density (kg/m3). Due to the range of pressures during the treat-

ments, the air inside the chamber can be considered as ideal air. The gas state equation is

therefore shown in (12), where RS is the specific gas constant m3 �kPa
K�mol

� �
, T0 is the temperature of

the air (Kelvins), and ΔP is the increase in pressure inside the chamber (kPa). By combining

Eqs (11) and (12), Eq (13) is obtained.

DQ ¼ V
dr

dt
ð11Þ

dr

dt
¼

1

RST0

�
dDP
dt

ð12Þ

DQ ¼
V

RST0

�
dDP
dt

ð13Þ

Linearization of the chamber model. Next, the linearization of the main chamber is car-

ried out and the structure of the transfer function (number of zeros, poles and integrators) is

obtained. The highly non linear equations presented in the mathematical modeling above will

be used only to know the structure of the linear system that better fits to the real behavior.

The term ΔPv(t) shown in Eq (6) is variant with time, because P2 and P3 are not constant.

Eq (6) shows the relation between the opening of the valve and the volumetric fluid. If P3 is

considered zero and P2 is considered constant, the equation would be a gain:
qðtÞ
aðtÞ ¼ K3.

Although Eq (6) is a non-linear equation, it has been linearized in order to obtain a transfer

function. The equilibrium point is q0 = 0 (q(t) = q0 + Δq(t)), a0 = 0 (a(t) = a0 + Δa(t)) and

ΔPv = P2 = 10 bar (constants). The linearized expression of Eq (6) is shown in Eq (15).
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The linearization leads to a lack of information because the P2 and P3 changing effects are

now missing, but this approximation is necessary to obtain a linear model that will be validated

in next sections. The Laplace transformation is used to obtain the transfer function shown in

Eq (16). This equation shows a linear approximation of the behavior between the valve open-

ing ΔA(s) and the fluid flow ΔQ(s). Since this expression is a gain, it is possible to merge it with

Eq (7) in a single transfer function that represents the model of the control valve (17), which is

a second order system where K4 = K3 � K1.

Eq (18) is obtained by linearizing Eq (10), while Eq (19) is obtained by applying the Laplace

transformation to Eq (18). Similarly, applying the Laplace transformation to Eq (13) and con-

sidering T0 constant (isothermal process), the transfer function shown in Eq (20) is obtained.

Using Eqs (17), (19) and (20), the global transfer function in Eq (21) is obtained, which

relates the pressure inside the chamber ΔP(s) with the valve control signal ΔU(s). Note that, the

linear approximation of the system consists of one zero and three poles, one of which is an

integrator.

P ¼ P4 � P0 ð14Þ

DqðtÞ
DaðtÞ

¼ C1 �
ffiffiffiffiffi
P2

p
� C2 � ðP2Þ

3=2
¼ K3 ð15Þ

DQðsÞ
DAðsÞ

¼ K3 ð16Þ

DQðsÞ
DUðsÞ

¼
K4 � o

2
n

s2 þ 2xonsþ o2
n

ð17Þ

DP1 � DP3 ¼ K2 � 2 � q0|fflfflfflfflffl{zfflfflfflfflffl}
constant

� Dq ¼ K5 � Dq ð18Þ

DP1ðsÞ � DP3ðsÞ ¼ K5 � DQðsÞ ð19Þ

DPðsÞ
DQðsÞ

¼

R0T0

V

s
¼

K6

s
ð20Þ

DPðsÞ
DUðsÞ

¼
K5 � K4 � o

2
n � sþ K6 � K4 � o

2
n

s � ðs2 þ 2xonsþ o2
nÞ

ð21Þ

Experimental identification of the chamber model. The multiplace chamber considered

in this work has three compartments and the volume of the HC in use is a combination

between them depending on the doors open/closed, see Fig 3. Hence, the chamber volume can

be either the volume of: the main chamber; the main chamber and pre-chamber; the main

chamber, pre-chamber and ICU chamber; pre-chamber and ICU chambe; etc. In this section,

the main chamber identification is shown, but the process has been performed to all combina-

tions to obtain all possible models. A non-linear and a linear method are used for the

identification.

Non-linear identification. The most significant non-linearities of the system are given by

(6), (10) and (13). A Hammerstein-Wiener Model [18] is considered for the non-linear
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identification. This model uses a linear dynamic transfer function and captures the non-linear-

ities by using input and output non-linear static functions, see Fig 5, where: ‘f’ and ‘h’ are the

input and output non-linear static functions, resepectively and ‘Fn/Fd’ is the linear dynamic

transfer function, where ‘Fn’ and ‘Fd’ are polynomials of the linear output-error model. On

the one hand, the linear transfer function is set to one zero and three poles (one integrator),

see (21). On the other hand, both the input and output non-linear estimators are set with a

piecewise linear function that is parameterized by 8 breakpoint locations, using a trial and

error procedure. The number and location of those 8 breakpoints are decided due to the non

linearity of the system, whereas the trial and error procedure is based on adjusting those

parameters until the error is lower than the desired value of 0.05 bar.

Linear identification. The transfer function (21) is considered for the Linear Time-Invariant

(LTI) Model.

Controller for the chamber pressure

Description of the RST controller. In this work, a RST controller [19] has been designed

and implemented to perform pressurization and depressurization profiles. This combination

of feedforward and feedback digital controller is becoming a standard for computer control in

industry [20]. Its general structure for linear single-input single-output systems is represented

in Fig 6 where R, S and T polynomials have to be determined by zero-pole placement. The con-

trol command is calculated as can be seen below:

UðzÞ ¼
Tðz� 1Þ

Sðz� 1Þ
� Yref ðzÞ �

Rðz� 1Þ

Sðz� 1Þ
� YðzÞ ð22Þ

The RST control law is obtained following the next steps [21]:

1. Selection of the desired closed-loop transfer function as it is shown below:

z� d � Bðz� 1Þ � Tðz� 1Þ

Aðz� 1Þ � Sðz� 1Þ þ z� d � Bðz� 1Þ � Rðz� 1Þ
¼

Bmðz� 1Þ

Amðz� 1Þ
ð23Þ

Fig 5. Structure of a Hammerstein-Wiener Model.

https://doi.org/10.1371/journal.pone.0200407.g005

Fig 6. RST-controller structure.

https://doi.org/10.1371/journal.pone.0200407.g006
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The structure of Am(z−1) is chosen as follows:

Amðz� 1Þ ¼ Pdomðz� 1Þ � Pauxðz� 1Þ ð24Þ

where a group of dominant poles and auxiliary poles are selected.

2. Cancellation of stable poles and zeros of the process:

The transfer function of the plant H(z−1) can be expanded to represent stable and unstable

poles and zeros as it can be seen below:

Hðz� 1Þ ¼
z� d � Bðz� 1Þ

Aðz� 1Þ

¼
z� d � B� ðz� 1Þ � Bþðz� 1Þ

A� ðz� 1Þ � Aþðz� 1Þ

ð25Þ

where A−(z−1) and B−(z−1) contain the poles and zeros that cannot be cancelled [21]. For

this reason, B−(z−1) cannot be a factor of A(z−1) � S(z−1) + B(z−1) � R(z−1). Thus Bm(z−1) must

be of the form Bm(z−1) = B−(z−1) � Bm1(z−1). The pole-zero cancellation yields:

Rðz� 1Þ ¼ Aþðz� 1Þ � R1ðz
� 1Þ ð26Þ

Sðz� 1Þ ¼ Bþðz� 1Þ � S1ðz
� 1Þ ð27Þ

Tðz� 1Þ ¼ Aþðz� 1Þ � Bm1ðz
� 1Þ ð28Þ

3. Perturbation rejection in steady state: an appropriate number of integral terms are intro-

duced in the control loop through polynomial S(z−1) as follows:

S1ðz� 1Þ ¼ ð1 � z� 1Þ
n� l
� S2ðz� 1Þ ð29Þ

where n is the perturbation order and l is the plant order.

4. Computation of polynomials R(z−1) and S(z−1):

A� ðz� 1Þ � ð1 � z� 1Þ
n� l
� S2ðz� 1Þþ

þB� ðz� 1Þ � R1ðz� 1Þ ¼
Amðz� 1Þ

Aþðz� 1Þ � Bþðz� 1Þ

ð30Þ

where R(z−1) and S(z−1) are given by Eqs (26), (27) and (29).

5. Computation of T(z−1) using Eq (28). To obtain unit gain in the closed loop, condition

T(1) = R(1) must be satisfied.

The transfer function of the whole system results in:

YðzÞ
Y ref ðzÞ

¼
z� d � Bðz� 1Þ � Tðz� 1Þ

Aðz� 1Þ � Sðz� 1Þ þ z� d � Bðz� 1Þ � Rðz� 1Þ

¼
z� d � B� � Bm1

A� � S1 þ z� d � B� � R1

ð31Þ

For more details about the RST controller theory see [21].

Calculation of the RST controller. The RST theory described in previous subsection can

be adapted and applied to HCs, where smoothness is the most important factor to be
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considered from the patient comfort point of view. Based on the knowledge of process dynam-

ics and after a set of trials, a rising time of 6 seconds and a maximum overshoot of 0.05% have

been chosen. Parameters ωn and z of the continuous second order system are then obtained.

Finally, the model is discretized using a sample time of 0.1 seconds.

To ensure the stability of the controller, the following robustness specifications are chosen

for the gain and phase margins: ΔM� 0.5 (−3dB) and Δτ� TS. In addition, a null or very low

steady-state error must be guaranteed for ramp and parabolic inputs. Although in this case,

three integrators would be required to get null steady-state error (parabolic input), a first cal-

culation introducing only two integrators is performed to check the order of magnitude of the

resulting error.

Regulation requirements and robustness specifications are summarized below:

• Dominant poles corresponding to the discretization of a second order continuous system

with a rise time of 6 seconds and maximum overshooting of 0.05% (ωn = 0.49 rad/s and z =

0.9):

Pdomðz� 1Þ ¼ 1 � 1:9125z� 1 þ 0:9148z� 2

• Gain margin: ΔM� 0.5 (−3dB) and phase margin: Δτ� TS.

• Introduction of two integrators (see (29)): S1(z−1) = (1−z−1)2 � S2(z−1)

• Controller sample time T = 0.1 seconds.

After establishing the dynamic requirements, the controller can be calculated following the

steps described above. Solving Bezout’s identity using Matlab function bezout.m, the following

equations are considered:

Aðz� 1Þ �Bþðz� 1Þ � S1ðz� 1Þþ

þz� d � Bðz� 1Þ � Aþðz� 1Þ � R1ðz� 1Þ

¼ Pdomðz� 1Þ � Pauxðz� 1Þ

ð32Þ

Tð1Þ ¼ Rð1Þ ð33Þ

where S1(z−1) contains two integrators and the polynomials A(z−1) and B(z−1) are given by (39)

and (38), respectively.

Now, the auxiliary poles Paux(z−1) = (1 − 0.6z−1)2 are added to the controller in order to

accomplish the robustness requirements. The output sensitivity function for this controller is

shown in Fig 7, where it can be seen that the robustness specifications are met.

In this work, the HC uses a parabolic pressurizing profile as suggested in [22]. Fig 8 shows a

simulation with this treatment profile. The steady-state error is not null because the controller

has been designed for a ramp-type input (two integrators). Anyway, the error is really small:

the absolute error is less than 2 � 10−4 bar at all samples and the average percentage error is

around 0.01%.

Even tough the integration process has major benefits to control systems by eliminating

steady state and even dynamic errors, there are stability issues that must be dealt with in the

control system design process [23]. For this reason and due to the very low error obtained by

the two integrators control law, this is the option implemented in this work.

In addition to the analysis of the output sensitivity function, which guarantees the robust-

ness of the designed controller, the gain margin and the phase margin are analyzed by the

Identification and control of a multiplace hyperbaric chamber

PLOS ONE | https://doi.org/10.1371/journal.pone.0200407 August 3, 2018 12 / 23

https://doi.org/10.1371/journal.pone.0200407


Nyquist diagram in Fig 9. The Nyquist diagram yields a gain margin of 16.1 dB and a phase

margin of 70.7 degrees. These values are within the typical robustness values. Moreover, there

is a delay of 3.36 seconds, fulfilling the expression Δτ� TS required in the controller design.

Finally, using Eqs (26)–(28), the controller is calculated giving the following polynomials:

Rðz� 1Þ ¼ 31:71 � 74:32z� 1 þ 55:09z� 2 � 12:44z� 3 ð34Þ

Sðz� 1Þ ¼ 1 � 2z� 1 þ 1z� 2 ð35Þ

Tðz� 1Þ ¼ 0:0367 ð36Þ

Fig 7. Output sensitivity function for the controller with two integrators and with auxiliary poles at z = 0.6.

https://doi.org/10.1371/journal.pone.0200407.g007
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Fig 8. System response for a parabolic-type input and a two integrators controller with auxiliary poles in z = 0.6.

https://doi.org/10.1371/journal.pone.0200407.g008
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Conditions for the real experimentation

The input and output of the controlled system are the input current to the control valve (mA)

and the pressure inside the chamber (bar), respectively. The sampling period for the experi-

ments is set to one second. Moreover, prior to use, the system was adapted to meet the medical

device regulations as described in the Discussion section.

Conditions for the identification tests. The Matlab System Identification Toolbox will be

used for the identification process.

The input signal used for the identification (training data) consists of a white noise signal

(i.e., a random signal with a constant distribution in the specified interval) since it allows to fit

the model parameters accurately and within a wider frequency range than using steps as input,

see [24]. Furthermore, for completeness, two different input signals are considered to validate

the identified model (validation data): a white noise signal different to that used as training

data and the classical step signal. The interval used for the white noise signals is [0 mA, 3 mA],

whereas the step size used for the step signal is 7 mA.

For comparison purposes, the identification and validation results are expresed in terms of

the Best Fit rate [25], which is defined as a percentage in Eq (37), where y is the measured

Fig 9. Nyquist diagram for the two integrators controller with auxiliary poles in z = 0.6.

https://doi.org/10.1371/journal.pone.0200407.g009
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output, ŷ is the simulated model output, and �y is the mean of y.

Best Fit ¼ 1� ky � ŷk
2

ky� �yk2

� �

� 100 ð37Þ

Conditions for the control tests. In order to show the ability of the designed chamber

controller to accurately track complex pressure profiles, a real hyperbaric therapy will be car-

ried out and the following quantitative measures of fit will be analyzed: maximum and root-

mean-square (RMS) control errors. Moreover, the smoothness of the control signal is also an

important factor, because the noise and air flows inside the chamber are minimized. For this

purpose, the repeatability of the control experiment is analyzed by means of the standard devi-

ation of the output pressure for ten experiments under the same conditions.

Furthermore, an illustrative clinical case will be considered to show the ability of the cham-

ber controller to perform Pause and Alleviation procedures during the treatment.

Results

Identification results

For the identification test it has been obtained that the LTI model fits the training data by

96.81%, while the Hammerstein-Wiener model fits it by 99.52%. For the validation test using

the white noise input signal, the LTI model fits by 93.93% and the Hammerstein-Wiener

model fits by 95.79%. Furthermore, for the validation test using the step input signal, the LTI

model fits by 98.35% and the Hammerstein-Wiener model fits by 98.48%.

Figs 10 and 11 show a comparison of the training and validation results, respectively, for

the Hammerstein-Wiener and LTI models. The zoom image in Fig 10 (bottom) shows that the

Hammerstein-Wiener Model is able to model the non-linearities better than the LTI model.

Fig 11 shows the results using a different input signal (white noise signal and step) in order to

validate the identified models.

It is worth mentioning that the process model includes an integrator, see Eqs (20) and (21),

and hence the output pressure obtained for both the white noise input and the step input looks

like a ramp, see Figs 10 and 11. That is, the positive value of the input signal, either the white

noise or the step, is integrated and, thus, the output pressure is constantly increasing.

Although the Hammerstein-Wiener Model has obtained better results in the validation pro-

cess, the identified LTI transfer function is accurate enough and is used to design the RST con-

troller. The numerator and denominator polynomials for this transfer function are given by:

BðzÞ ¼ � 0:0001879þ 0:01025z� 1 ð38Þ

AðzÞ ¼ 1 � 1:431z� 1 þ 0:4542z� 2 ð39Þ

Experimental results for the chamber controller

Fig 12 shows a real hyperbaric therapy carried out with 25 patients. As can be seen, the pres-

sure inside the chamber follows the profile accurately. In particular, the maximum and RMS

control errors are around 0.05 bar (2.03%) and 0.006 bar (0.35%), respectively. Furthermore,

the repeatability obtained with the automated chamber is good: the standard deviation of the

output pressure for ten experiments under the same conditions was 0.01 bar (0.58%).
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To illustrate how the system works, a clinical case is explained below. Fig 13 shows the

chamber pressures during a real treatment in which the proposed control system is used. One

of the patients had difficulties to compensate the pressure changes because of Eustachian tube

obstructions (the patient was cold few days ago). Firstly, a Pause was performed in order to

decide whether the patient could continue his treatment or not (the patient was suffering ear-

ache). Once the patient felt fine again, the pressure profile kept on pressurizing until the

patient required to alleviate the pressure twice, so he could compensate the ear volume change.

Fig 10. Training data results.

https://doi.org/10.1371/journal.pone.0200407.g010
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After both pressure reductions the treatment continued, but the patient continued complain-

ing about earache so the clinical staff decided to take him out of the chamber. In that moment,

the patient was placed inside the pre-chamber and its doors closed. When the control program

detected the doors closing, a depressurization profile was loaded to the pre-chamber controller

and as it can be seen in Fig 13 (orange line), the pre-chamber pressure was reduced to atmo-

spheric pressure. While the pre-chamber procedure, the ICU and main chamber were sepa-

rated and each regulator tracked the previously planned pressure profile. The patient was

evacuated and a new pressurization profile loaded to take the pre-chamber to the ICU and

main chamber pressure. When the pre-chamber reached 2 bar, its doors were opened and the

Fig 11. Validating data results. A: White noise. B: 7 mA Step.

https://doi.org/10.1371/journal.pone.0200407.g011
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whole chamber controller continued with the pressure profile. When the treatment was fin-

ished, the depressurization step took the pressure to the atmospheric level.

Discussion

Improvement obtained with the proposed approach

This work is focused on the automation of a HC. Although an automatic controlled machine

presents obvious advantages, no clinical data collection has been rigorously conducted for

comparison before and after the automation and, hence, the advantages listed below are kept

as hypothetical only.

The control system presented in this work could help to reduce ear barotraumas as dis-

cussed below. Some technical reports [22] and chamber manufacturers [26] highlight the

advantages of pressuring using a parabolic profile, namely smooth ride, in order to reduce the

middle ear barotrauma. Although these data have not been published in peer review journals,

if they are correct the best procedure to accurately generate this parabolic profile, or any other

to be considered, is using a closed loop control system like the one presented in this work.

Fig 12. Real experiment for a treatment pressure profile using the designed controller.

https://doi.org/10.1371/journal.pone.0200407.g012
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In general, the good repeatability achieved by the automated chamber, see the Results sec-

tion, will allow the medical staff an accurate use of the chamber in the treatments without or

with little experience.

Another advantage obtained with the developed automated chamber with respect to the

same chamber manually controlled prior to automation could be the patient’s perception of

comfort in terms of smoothness and low noise during the pressurization process.

Furthermore, a key advantage of the proposed automated control system with respect to

the same chamber manually controlled prior to automation is the possibility to carry out auto-

mated complex procedures (see the illustrative clinical case in the Results section) without

compromising the robustness and smoothness of the chamber pressure control and, hence,

guaranteeing patients safety.

Generalization of the procedure used for chamber automation

The mathematical model presented in this research applies to any HC regardless of its size and

configuration (monoplace/multiplace and mono-chamber/multi-chamber), i.e., the modeling

process remains the same and can be easily extrapolated. In addition, the identification proce-

dure used in this work can be used as guideline to perform the identification of other HCs.

Regarding the electromechanical scheme used for the automation, which is shown in Fig 3,

the configuration of the controller would remain as it is presented in this work regardless of

the number of compartments, i.e., two programmable logic controllers (PLCs) working redun-

dantly and a human machine interface (HMI). In addition, two pressure sensors and a temper-

ature and humidity hair sensors are required per each compartment. To pressurize and

depressurize each compartment, two sets of three valves in bypass configuration are also

Fig 13. Real experiment for alleviate the chamber pressure and the pre-chamber procedure.

https://doi.org/10.1371/journal.pone.0200407.g013
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required. Each set of three valves is formed by an electrically actuated two inches valve, a man-

ually actuated valve in parallel with the automatic one and another manually actuated valve in

series with both.

Medical device regulations

HCs in use are subjected to strict Medical Device (MD) regulations. In order to bring to mar-

ket sanitary products in Europe, CE marking must be placed on the device. CE Marking on a

product is a manufacturer’s declaration that the product complies with the essential require-

ments of the relevant European health, safety and environmental protection legislation. This

conformity assessment is carried out by certification entities (e.g., SGS or TUV, amongst oth-

ers) or sanitary authorities (e.g., European Medicines Agency). For this work, the regulation

EN 14931:2007 about pressure vessels for human occupancy, Multi-place pressure chamber

systems for hyperbaric therapy and performance, safety requirements and testing has been

considered. However, further regulations have been taken into account, as discussed below.

The directives 90/385/EEC and 93/42/EEC are intended to harmonise the laws relating to

MDs within the European Union. Manufacturers’ products meeting harmonised standards

[27, 28] have a presumption of conformity to the directive and include the mentioned CE

mark. The MD directive was reviewed and amended by the directive 2007/47/EC, which

became mandatory on March 2010.

The list of MD premarket requirements can be found in [29]. In addition, the regulation

RD-1591/2009 was followed during the design, implementation and validation of the auto-

matic system presented in this work.

For those cases in which medical electrical equipment is used or a development of physio-

logic closed-loop controller is implemented, the regulation IEC 60601-1-10:2007 must be con-

sidered as well. This regulation includes the requirements for the development (analysis,

design, verification and validation) of a physiologic closed-loop regulator in medical electrical

equipment to control a physiologic variable. That is, the regulator modifies the controller out-

put variable in order to adjust (i.e., change or maintain) the measured physiologic variable in

order to track a reference value. However, the automatic control of a HC does not fit this case

since its regulator controls an environmental variable, not a physiological variable of the

patient.

Conclusion

The hyperbaric chamber automated in this work is being used in a real hospital since 2015.

From then, more than three thousand treatments have been successfully carried out. The con-

trol system has been also tested with special patients (e.g., patients with esophagus balloon or

autistic) before publishing this work. The system automation has provided the following

benefits:

• A good pressure profile tracking (average error equal to 0.35%) and repeatability (standard

deviation equal to 0.58%) are obtained.

• Stability in pressurization during bottom treatment independently of disturbances, air

escapes or use of medical locks are now compensated by the controller.

• Implementation of complex procedures during the chamber pressurization like Alleviation

and Pause are now automatically performed by the system only pressing a button.

• Automatic procedures for pre-chamber depressurization and pressurization are now very

simple.
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• Calculation of treatment end is now automatically and accurately performed by the system.

A treatment delay is computed by the system to accomplish initial specifications indicated

by the doctor depending on Alleviations and Pauses introduced during the pressurization

procedure.

Moreover, a clear procedure for monoplace and multiplace chamber modeling, identifica-

tion, controller calculation and system implementation has been provided. Furthermore, the

medical device regulations considered to automate the chamber have been also detailed. All

this information can be useful to automate other types of hyperbaric chambers in order to get

the listed advantages either for medical treatments or research activities.
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