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Abstract
Rice (Oryza sativa L.) cultivars show impairment of growth in response to environmental

stresses such as cold at the early seedling stage. Locally adapted weedy rice is able to sur-

vive under adverse environmental conditions, and can emerge in fields from greater soil

depth. Cold-tolerant weedy rice can be a good genetic source for developing cold-tolerant,

weed-competitive rice cultivars. An in-depth analysis is presented here of diverse indica
and japonica rice genotypes, mostly weedy rice, for cold stress response to provide an

understanding of different stress adaptive mechanisms towards improvement of the rice

crop performance in the field. We have tested a collection of weedy rice genotypes to: 1)

classify the subspecies (ssp.) grouping (japonica or indica) of 21 accessions; 2) evaluate

their sensitivity to cold stress; and 3) analyze the expression of stress-responsive genes

under cold stress and a combination of cold and depth stress. Seeds were germinated at

25°C at 1.5- and 10-cm sowing depth for 10d. Seedlings were then exposed to cold stress

at 10°C for 6, 24 and 96h, and the expression of cold-, anoxia-, and submergence-inducible

genes was analyzed. Control plants were seeded at 1.5cm depth and kept at 25°C. The

analysis revealed that cold stress signaling in indica genotypes is more complex than that

of japonica as it operates via both the CBF-dependent and CBF-independent pathways,

implicated through induction of transcription factors including OsNAC2,OsMYB46 and

OsF-BOX28. When plants were exposed to cold + sowing depth stress, a complex signaling

network was induced that involved cross talk between stresses mediated by CBF-

dependent and CBF-independent pathways to circumvent the detrimental effects of

stresses. The experiments revealed the importance of the CBF regulon for tolerance to both

stresses in japonica and indica ssp. The mechanisms for cold tolerance differed among

weedy indica genotypes and also between weedy indica and cultivated japonica ssp. as
indicated by the up/downregulation of various stress-responsive pathways identified from
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gene expression analysis. The cold-stress response is described in relation to the stress

signaling pathways, showing complex adaptive mechanisms in different genotypes.

Introduction
About two-thirds of the global land area undergo freezing cycles, or is in permafrost, and 42%
of agricultural land can experience freezing temperatures up to -20°C [1]. To survive under
these conditions, plants have developed specialized mechanisms involving adaptive morpho-
logical, physiological, and biochemical changes. Low temperature stress impairs crop growth
and development, causing crop yield losses [2]. Plants exhibit differential responses to chilling
(0–15°C) or freezing (< 0°C) temperatures. Plants in temperate regions acclimate to cold tem-
peratures [3] through various biochemical and physiological changes [4, 5], enabled by
increased expression of cold-responsive genes that eventually leads to alteration in lipid com-
position of membranes and accumulation of osmolytes [6]. In contrast, tropical and sub-
tropical plants lack cold-adaptation mechanisms and are highly sensitive to cold stress.

Survival under cold stress is a highly complex process involving various metabolic pathways
and cellular compartments [7]. Conventional breeding methods have produced some cold-
tolerant cultivars, but progress is slow owing to the complexity of stress tolerance traits, low
genetic variance of yield components under stress conditions, and absence of suitable selection
criteria. Locally adapted cold-tolerant cultivars are therefore needed. Exploring genomic
resources to develop cold-tolerant crops is necessary.

Rice (Oryza sativa L.) feeds more than half of the global population [8], second only to
wheat (http://www.idrc.ca/EN/Resources/Publications/Pages/ArticleDetails.aspx?
PublicationID=565). Rice is grown in a wide range of environments (tropical, sub-tropical,
temperate) but it is a tropical C3 crop [9], which yields best under warm temperatures and
high solar radiation while still remaining inefficient [10]. Therefore, in non-tropical environ-
ments (and in high altitudes), low temperature stress during crop establishment and reproduc-
tive stage causes significant yield losses. Cold stress around planting time impairs rice
emergence and hampers early seedling growth and development [11]. This makes rice vulnera-
ble to competition from weeds, especially weedy rice. A competitive variety is a strong compo-
nent of an integrated weed management program [12–13], and work on varietal improvement
for competitive ability needs to be pursued.

When cold temperature occurs at the reproductive stage, it causes spikelet sterility [14–15]
and reduces spikelet number and overall panicle volume [16]. In the rice-producing region of
northern Japan, rice yield can decline by up to 60% in a cold year [17]. In the USA, cold stress
is a major constraint to the establishment and growth of early-planted rice and is detrimental
to yield of late-planted rice. There is good potential for varietal improvement in cold tolerance
because of the observed genetic diversity in rice germplasm with respect to this trait [18].
About 40 quantitative trait loci (QTLs), in various combinations, impart cold tolerance in
various rice varieties [19], with the japonica ssp. generally more cold-tolerant than indica ssp.
[20–21].

Exposure of plants to cold temperatures disrupts the expression of its full genetic potential
owing to direct inhibition of cellular metabolism, or indirectly via cold-induced oxidative and
other abiotic stresses. Acclimation to cold is achieved by chronic exposure to cold temperatures
[22] through accumulation of cold-adaptive genes with time. One such gene is FRO1 (FROST-
BITE 1). The Arabidopsis fro1 (frostbite1) mutant exhibits susceptibility to chilling and freezing
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stress through impaired expression of cold responsive (COR) genes and a substantial accumu-
lation of reactive oxygen species (ROS) [23]. Thus, cold stress signaling in plants is significantly
affected by ROS accumulation and ABA, which are secondary cellular messengers. However,
some weedy rice ecotypes may have a better cold adaptation mechanism because weedy rice
seedlings grow faster than cultivated rice even during early planting in temperate climate when
cold stress often occurs (Burgos, NR pers. observation). This warrants investigation of cold tol-
erance or cold adaptation mechanisms in weedy rice.

Difference in cold tolerance is a result of centuries of adaptation in cold, rice-growing
regions [24]. Cold tolerance is a complex trait, involving many genes, and is highly genotype-
dependent. For example, the transcription factorMYBS3mediates cold stress signaling and
cold tolerance in rice via aMYBS3-dependent pathway that allows long-term cold adaptation,
and acts in conjunction with the short-term cold stress signaling pathway mediated by DREB1/
CBF [25]. The rice FATTY ACID DESATURASE 2 (OsFAD2) also enhances cold tolerance by
maintaining membrane fluidity during low temperature stress [26]. Other cold-tolerance
mechanisms have also been reported.

Outside of Asia, Brazil and the USA are among the highest rice-producing countries (http://
globalriceproduction.com/). Although the USA primarily grows japonica cultivars, yield
depression by cold stress still occurs periodically. The attempt to avoid cold stress narrows the
rice planting window and creates constraints on farming resources. Brazil, on the other hand,
grows primarily indica rice, which is generally cold-sensitive; and farmers thus have to contend
with problems such as reduced or variable rice emergence and reduced yield due to cold stress
[27–30]. Rice growers in regions like these need to plant rice early to synchronize the onset of
reproductive stage with the highest solar radiation period and obtain the highest possible yield.
Weedy rice may grow faster than a cold-sensitive cultivar at early planting, making the weed
even more adaptive and competitive than the crop. Thus, improving cold tolerance in rice seed-
lings could boost rice production tremendously. Cold-tolerant japonica rice lines [31] are
excellent sources of cold-tolerance genes that could be accumulated in desirable high yielding
cultivars; sourcing these traits from japonica lines to improve cold tolerance in indica varieties
has been challenging because of high sterility among indica x japonica hybrids. An alternative
is to source cold tolerance traits for indica cultivars from different indica lines. The majority
(>90%) of weedy rice in the USA are indica [32–33] and some indica weedy ecotypes may be
cold-tolerant.

Seeding depth exacerbates the effect of cold stress on rice establishment, as it affects seedling
vigor. Rice cultivars, having been selected for uniform and quick emergence, do not emerge
from deep in the soil profile. The weedy ecotypes, however, exhibit a wide diversity in ability to
emerge from a greater depth [34–35].]. The US weedy ecotypes that could emerge from deep
placement are most likely indica because of the dominance of weedy indica ssp. in the region;
such ecotypes have high seedling vigor and may be able to withstand cold stress at the seedling
stage [34]. Therefore, screening of rice germplasm for seedling cold tolerance is an important
first step in finding resources for cold tolerance improvement. The present study investigates
diverse weedy rice genotypes and rice cultivars for tolerance to cold stress, and makes a com-
parative analysis of the response mechanisms between weedy and cultivated rice in the indica
and japonica subspecies. To dissect the cold tolerance mechanisms, we conducted real time
quantitative-PCR (qPCR) analysis of gene expression in response to cold stress and a combina-
tion of cold and depth stress compared to normal temperature, of indica and japonica geno-
types differing in cold sensitivity. Data from this experiment will be a resource in improving
cold stress tolerance in rice and its competitive ability with weeds in early planting in temperate
and sub-tropical regions.

Cold Tolerance in Weedy IndicaRice

PLOS ONE | DOI:10.1371/journal.pone.0132100 July 31, 2015 3 / 22

http://globalriceproduction.com/
http://globalriceproduction.com/


Methods

Plant Materials and Subspecies Identification
Weedy rice seed samples, comprised of 21 weedy red rice accessions and rice cultivars for sub-
species (ssp.) identification, were collected from rice fields in Arkansas, the largest rice-growing
state in the southern USA, and from Rio Grande do Sul, Brazil. Weedy rice seed collection was
done primarily in collaboration with Extension Agents with permission from growers and,
occasionally, with the growers themselves. Some rice cultivars were obtained from rice breed-
ers, but the majority were requested from the US Germplasm Resources Information Network-
National Plant Germplasm System (GRIN-NPGS) (http://www.ars-grin.gov/npgs/aboutgrin.
html). No endangered species were involved nor impacted by this activity. The phenol test [32]
was conducted to determine the ssp. genotype (japonica or indica) of the materials to be used
in subsequent experiments. The phenol test is based on the color change of rice hulls or endo-
sperm upon exposure to phenol as a result of polyphenol oxidase (PPO) activity, where japon-
ica varieties show no color change (a negative response), while indica varieties and wild Oryza
species take on a dark brown or black coloration [32]. Intact grains soaked in 1.5% non-buff-
ered aqueous phenol for 48h were compared with nontreated seeds from the same seed lot. A
positive reaction to phenol is indicated by color change of the grain, from light to dark (S1 Fig).
The indica genotype has positive reaction to phenol. The experiment was conducted with one
positive control (1602) and one negative control, ‘Spring’. Samples showing negative phenol
reaction were tested twice for verification.

Plant Materials and Growth Conditions for Stress Tolerance
Phenotyping
A subset of samples used in the phenol test (31) was phenotyped for cold- and seeding-depth
stress tolerance. To overcome dormancy, the seeds were soaked in 1.5% NaOCl for 24h. Seeds
were rinsed with deionized water, surface sterilized with 0.1% HgCl2 for 20min then planted at
different depths in pots, filled with vermiculite.

For cold stress only, the seeds were planted 1.5cm deep and placed in a growth chamber in
the dark for 14d. Control plants were germinated at 25°C; cold-stressed plants were grown at
alternating temperatures of 18°C/13°C, 16/8h cycle, in the dark. For depth stress only, the seeds
were planted at 1.5-, 5-, 10-, and 15-cm depth and germinated at 25°C in the dark for 14d. For
the combined stress treatments (depth + cold), seeds were planted at different depths (5, 10, and
15cm); the cold-stressed plants were germinated at 18°C/13°C, 16/8-h cycle, in the dark, while
the controls were kept at 25°C. At 14d, the shoot lengths of five seedlings per growth condition
per accession were measured. The experiments were repeated. Shoot length reduction (%) was
then calculated relative to the control plants of each accession and used as a measure of sensitiv-
ity to cold and seeding depth stress [36–38]. Accessions showing<50% reduction in shoot
length under cold or depth stress, relative to their corresponding non-stressed plants, were
deemed cold- or depth-tolerant. The cold-tolerant and selected sensitive accessions were used in
the gene expression analysis experiment. Phenotyping was done at 18°C/13°C to allow plants to
germinate from deep seeding and identify a broader spectrum of cold stress-tolerant genotypes.
We learned in preliminary experiments that at 10°C, few accessions could germinate at normal
seeding depth and none could germinate when planted deeper.

For gene expression analysis in response to cold stress only, pregerminated seeds were
planted at 1.5-cm depth and allowed to grow for 10d at 25°C. Thereafter, cold stress was initi-
ated by transferring plants to 10°C [39–40] while the control plants were kept at 25°C. Leaves
of stressed and non-stressed plants were harvested at 6, 24, and 96h of incubation in cold
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temperature. Each treatment had three replicates. The same procedure was followed for the
cold + seeding-depth stress experiment, except that the pregerminated seeds were planted at a
depth of 10cm, grown at 25°C for 10d, then incubated at 10°C for 6, 24, and 96hr before har-
vesting leaf tissues. Control plants were kept at 25°C. Cold stress-induced gene expression was
studied at 10°C to capture genes most strongly involved in adaptation to chilling stress.

Gene Expression Analysis
Total RNA was isolated using Trizol reagent (Invitrogen) from stress-tolerant and-sensitive
genotypes identified from the phenotyping experiment. cDNA synthesis was conducted using
2μg total DNAse-treated RNA using GoScript Reverse Transcription System (Promega). The
qRT-PCR experiments were conducted using GoTaq qPCR Master Mix (Promega), gene-spe-
cific primers (Table 1 and S1 Table), and ubiquitin as standard with three biological replicates
and each replicate divided into two technical replicates in a CFX-96 Bio-Rad thermocycler
(Bio-Rad). Increasing temperature (0.5°C 10 s-1) from 55°C to 95°C was used for melt curve
analysis. Un-transcribed RNA was also run as negative control. The relative difference in
expression for each sample in individual experiments was determined by normalizing the Ct
value for each gene against the Ct value of ubiquitin and was calculated relative to the respec-
tive control samples as calibrator using the equation 2-ΔΔCt [41]. The data from qPCR analysis
was imported into TM4 microarray software suite, normalized using GC-RMA algorithm to
generate the heat map. The average of three biological replicates was used to obtain each
expression value [42].

Results and Discussion

Classification of Weedy and Cultivated Rice Subspecies
Weedy red rice has diverse phenotypic characteristics, possessing traits that are common to
both wild and cultivated rice. A diverse set of rice genetic resources was used here to examine

Table 1. Summary of genes analyzed.

Gene Trigger Result Reference

OsNAC2 Salt, Drought, Cold Abiotic Stress Tolerance [80]

OsDREB2C Salt, Mannitol and Cold Thermotolerance in Arabidopsis thaliana (AtDREB2C) [93–94]

OSMYB46 Drought Overexpression led to ectopic deposition of secondary cell wall in nonsclerenchymatous cells [95–96]

OsFBOX28 Cold None [97]

OVP1 Cold Improves Cold tolerance in rice [69]

Rab 16A Salt, Drought, Cold Improves Salt tolerance in rice [42,98]

GLP ABA, Cold, H2O2 None [99]

GDH Salt, Cold, Drought None [64,100]

APX1 Salt, Cold Overexpression in rice showed enhanced tolerance to cold stress at booting stage [101–102]

ADH1 Anoxia, Cold ADH1 overexpression in Arabidopsis had no effect on flooding tolerance but was essential for
survival under anoxic conditions

[89,92,103]

EXPA 7 Anoxia, Submergence None [88,104]

EXPA 12 Anoxia, Submergence None [89]

RAMY3D Anoxia, Cold None [90]

ERF 70 Anoxia, Salt, Drought Overexpression in Arabidopsis thaliana gives tolerance to osmotic stress [89,104,105]

ERF 68 Anoxia, Drought, Salt None [89,106,107]

SUB1b ABA, Drought,
Submergence

None [89,108]

doi:10.1371/journal.pone.0132100.t001
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the diversity of tolerance to abiotic stress, and the molecular basis of such traits, in this weedy
relative of rice. Previous research classified the US weedy rice strains as either wild- or crop-
like, but the adaptive phenotypic variation of weedy rice has not been fully characterized. Rice
is classified into two major subspecies indica and japonica, which differ in a suite of classical
diagnostic traits, i) seedling reaction to KClO3, ii) seedling survival in cold temperatures, iii)
grain apiculus hair length, and iv) phenol reaction. The phenol test used to distinguish the rice
cultivars and weedy accessions separated the 21 tested genotypes into 6 japonica and 15 indica
subspecies (Table 2). The four rice cultivars were all japonica. Of the 15 Arkansas weedy rice
accessions, 13 (87%) were indica. Previous studies also have shown that japonica weedy rice is
rare in the USA. Analysis of weedy rice accessions from the southern USA ricebelt (Arkansas,
Mississippi, Louisiana, Texas) using simple sequence length polymorphic (SSLP) markers,
showed that 19 of 21 accessions (90%) belonged to the indica ssp. group [33]. More recently,
the phenol reaction test on 108 weedy rice accessions from southern USA showed that 96%
were indica [32]. Thus, there are abundant indica genotypes that are potential sources of desir-
able traits for crop improvement, especially of indica cultivars.

Phenotyping for Cold Tolerance
The rice plants growing in cold temperatures show various symptoms of stress-induced dam-
age such as reduced leaf expansion, chlorosis, and impaired growth. Reduction in seedling
growth is a good indicator for cold tolerance during seed germination and seedling emergence.
Tolerance to cold stress at this period is invaluable in achieving faster crop establishment and
better competitive ability with weeds. The three rice japonica cultivars (Hayayuki, Spring, and
3011) had mean shoot lengths of 105, 98, and 41mm, respectively, when planted at normal
depth (1.5cm) under normal temperature (25°C) for 14d (Table 3). ‘Hayayuki’ from Japan

Table 2. Weedy and cultivated rice (Oryza sativa L.) genotypes subspecies grouping by phenol test following the method of Gross et al., 2009.

Accession code Hull color Origin Rice type Subspecies GPS Coordinates

ARK-5-SH Strawhull Arkansas, AR, USA weedy red rice Indica 91°22.246' W, 34°07.220' N

CHI08-C-SH Strawhull Chicot, AR, USA weedy red rice Indica 91°03.680' W 35°25.958' N

CON-1-BH Blackhull Conway, AR, USA weedy red rice Indica 92°11.326' W, 34°71.388' N

CRA08-D-SH Strawhull Craighead, AR, USA weedy red rice Indica 90°58.976' W, 35°45.791' N

DES-1-SH Strawhull Desha, AR, USA weedy red rice Indica 91°27.695' W, 33°46.151' N

GRE08-D-SH Strawhull Greene, AR, USA weedy red rice Indica 90°46.677' W, 36°01.764' N

LEE08-C-SH Strawhull Lee, AR, USA weedy red rice Indica 90°02.237' W, 34°45.791' N

LIN08-B-BH Blackhull Lincoln, AR, USA weedy red rice Indica 91°42.018' W, 33°54.839' N

LIN08-B-SH Strawhull Lincoln, AR, USA weedy red rice Indica 91°42.008' W, 33°54.854' N

LIN08-C-SH Strawhull Lincoln, AR, USA weedy red rice Indica 91°42.529' W, 33°57.653' N

LON-3-SH Strawhull Lonoke, AR, USA weedy red rice Indica 91°52.475' W, 34°52.258' N

1200 Strawhull Pelotas, RS-Brazil weedy red rice Indica 52°26.483' W, 31°49.024' S

1602 Strawhull Pelotas, RS-Brazil weedy red rice Indica 52°25.761' W, 31°48.758' S

RAN-2-SH Strawhull Randolph, AR, USA weedy red rice Indica 90°56.703' W, 36°12.510' N

LAW08-B-SH Strawhull Lawrence, AR, USA weedy red rice Indica 90°54.981' W, 35°58.380' N

PRA08-D-BH Blackhull Prairie, AR, USA weedy red rice Japonica 91°26.955' W, 34°44.770' N

WOO-5-BH Strawhull Woodruff, AR, USA weedy red rice Japonica 91°17.156' W, 35°00.315' N

3011(Diamante) Strawhull Chile rice cultivar Japonica Not available

Oro Strawhull Chile rice cultivar Japonica Not available

Hayayuki Strawhull Japan rice cultivar Japonica Not available

Spring Strawhull USA rice cultivar Japonica 91°25.134' W, 37°28.567' N

doi:10.1371/journal.pone.0132100.t002
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[43], has been used as cold-tolerant reference in other experiments and so was included here
together with the more recently commercialized cold-tolerant, tropical japonica ‘Spring’ from
Arkansas and another putative cold-tolerant japonica cultivar from Chile ‘3011’. The 10 weedy
rice accessions tested had shoot lengths ranging from 55 to 191mm, with PRA08-D-BH as the
fastest growing ecotype under normal temperature. When subjected to cold stress, at the nor-
mal 1.5-cm seeding depth, shoot length was reduced 30% to 95% relative to the non-stressed
controls (Table 3). The cultivars and weedy rice accessions showing<50% reduction in shoot
length under cold stress were classified as cold-tolerant. With this criterion, only two indica
weedy rice (GRE08-D-SH and 1602) and one japonica cultivar (Spring) were deemed tolerant
to cold stress at the seedling stage. The cold-tolerant 3011 (from Chile) turned out to be sensi-
tive to the level of cold stress implemented (18°C/13°C day/night) at this growth stage. It
should be noted that rice can be tolerant to cold stress at later growth stages, but sensitive at
the seedling stage. It should also be noted that the tolerant genotypes were not totally immune
to cold, showing 29% to 37% shoot length reduction relative to the non-stressed plants, with
Spring (reference cold-tolerant genotype) showing 37% shoot growth reduction. The most
cold-sensitive ones, such as PRA08-D-BH, had 95% reduction in shoot length. This indicates
that the cold tolerance trait is not common among indica genotypes, which makes the discov-
ery of tolerant indica genotypes of greater importance for the development of cold-tolerant
indica cultivars.

Tolerance to Seeding Depth
Planting depth is a key factor that influences seedling vigor, and eventually crop yield [44].
Rapid and uniform emergence of seedlings provides crops with temporal and spatial

Table 3. Seedling growth of weedy and cultivated rice (Oryza sativa L.) genotypes in response to cold stress under normal seeding depth of
1.5cm.

Accession code Origin Rice type Subspecies Shoot length at
25°C (mm)a

Shoot length reduction
under cold stress (%)b

Cold tolerancec

CHI08-C-SH Chicot, AR, USA weedy red rice Indica 122 b 94 sensitive

CRA08-D-SH Craighead, AR, USA weedy red rice Indica 162 a 95 sensitive

GRE08-D-SH Greene, AR, USA weedy red rice Indica 103 b 29 tolerant

LEE08-C-SH Lee, AR, USA weedy red rice Indica 173 a 92 sensitive

LIN08-B-BH Lincoln, AR, USA weedy red rice Indica 55 c 92 sensitive

LIN08-B-SH Lincoln, AR, USA weedy red rice Indica 94 b 91 sensitive

LIN08-C-SH Lincoln, AR, USA weedy red rice Indica 138 a 95 sensitive

1200 Pelotas, RS-Brazil weedy red rice Indica 186 a 95 sensitive

1602 Pelotas, RS-Brazil weedy red rice Indica 76 b 31 tolerant

PRA08-D-BH Prairie, AR, USA weedy red rice Japonica 191 a 95 sensitive

3011(Diamante) Chile rice cultivar Japonica 41 c 82 sensitive

Hayayuki Japan rice cultivar Japonica 105 b 30 tolerant

Spring USA rice cultivar Japonica 98 b 37 tolerant

a Means followed by the same letter differ by Scoot-Knott test at 5% level, using square root data transformation in the form: y + 0.5-sqrt (y + 0.5). Shoot

length was the average of five seedlings measured per replication per genotype, at 14d of incubation.
b Seeds were germinated in the dark at 18/13°C, 16/8h cycle temperature fluctuation. Shoot length reduction was calculated relative to control seedlings

grown at 25°C; reduction = [(control—cold stress)/control]*100.
cAccessions showing <50% reduction in shoot length under cold stress were deemed cold-tolerant. Means were compared using t-test at P�0.05

doi:10.1371/journal.pone.0132100.t003
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advantages to compete with weeds, and is therefore necessary for maximizing yield [45]. It has
been shown that sowing depth influences the ability of soybean to emerge from the soil and
establish a uniform stand [46]. Weedy rice has the versatility to emerge from greater depth,
over a prolonged period than the crop, and thus becomes a big problem. Under normal tem-
perature, the weedy rice accessions and cultivars generally were not affected by seeding at 5-cm
depth (S2 Fig). However, 60% (6 of 10) of the accessions tested showed at least 50% reduction
in shoot length when planted at 10-cm depth. In general, shoot growth declined further when
seeds were planted at 15-cm depth. Altogether, 7 of 10 genotypes tested were classified tolerant
to deep sowing; of these, the most depth-tolerant were the weedy rice accessions LEE08-C,
CRA08-D, and LIN08-B3. However, when planted deep (10cm) and subjected to cold stress
(18°C/13°C, 16/8-h temperature fluctuation cycle, dark-incubated), all accessions lost any tol-
erance to deep sowing (S3 Fig).

Genetic Mechanisms for Cold Stress Acclimation in Cultivated and
Weedy rice
Low temperature causes cell dehydration, resulting in damage to the plasma membrane, which
is the most detrimental effect of chilling stress [47]. Low temperature induces secondary stress
messengers like abscisic acid and ROS that in turn induce calcium signatures, effecting cold
stress signaling in plants. The existence of some cold-tolerant ecotypes here and elsewhere
[48], suggests some diversity in stress adaptation mechanism among weedy genotypes, which
might be useful to incorporate in rice cultivars.

The exposure of plants to harsh environmental conditions triggers a wide variety of genes
that are responsible for modulation of stress-induced signal transduction cascade. The stress-
induced genes are classified into two groups [49–51]: i) those that encode proteins that endow
stress tolerance including antifreeze proteins, detoxification enzymes, heat-shock proteins or
osmotins, among others; and ii) transcription factors that regulate the expression of other
genes and induce tolerance. A genetic-based approach uses natural variation among rice culti-
vars and weedy rice, and the analysis of differentially expressed genes in response to stress. The
greatest challenge in post-genomic research is to determine the function of candidate genes
that are identified by analysis of their expression profiles upon exposure to cold stress.

When temperature approaches freezing, osmotically active water typically moves out of the
cells, and the osmotic potential of the remaining unfrozen intracellular and intercellular fluid
increases. Severe chilling stress causes multiple forms of membrane damage as a consequence
of freeze-induced cellular dehydration including expansion-induced lysis and cross talk
between stresses [47]. To gain insight into the stress tolerance mechanism in indica and japon-
ica rice genotypes we studied the expression of key stress-regulated genes RAB16A (Lea group
of proteins),H+PYROPHOSPHATASE (OVP1), GERMIN-like proteins (GLPs), GLUTAMATE
DEHYDROGENASE (GDH) and ASCORBATE PEROXIDASE (APX1) (Figs 1B and 2B). GLPs
have been reported previously to be activated by abiotic stresses like salinity and high tempera-
ture [52–54]. GLPs are stress-responsive genes that are known to encode proteins with SOD
activity, thereby helping in scavenging superoxide radicals [53–54]. In barley, six subfamilies of
GLPs have been well characterized and are found to encode proteins with oxalate oxidase or
superoxide dismutase activity [53–54]. Moreover, GLPs have also been reported to build a
defensive barrier during barley emergence [55]. Among the plant materials studied, the toler-
ant japonica cultivar Spring showed induction of GLPs at 6h, induced maximally at 24h and
reduced completely at 96h, while the sensitive japonica weedy genotype from the USA
[PRA08-D-BH] showed induction only at 24h and maintained its level at 96h (Fig 1B). The
cold-sensitive and tolerant weedy indica CHI08-C-SH and GRE08-D-SH showed induction at
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6h and maximizing at 24h and 96h, respectively. Another tolerant weedy indica rice (1602)
showed induction only at 24h (Fig 2B).

The immediate response of plants to stress is accumulation of ROS, which creates ionic
imbalance within the cell. To characterize the involvement of ROS scavenging enzymes we
studied the expression of APX1. The expression of this cytosolic enzyme is governed by H2O2

accumulation, ABA level, and leaf water status. APX1 is highly upregulated in roots and shoots
in response to salinity, osmotic, and heat stress [56]. Ascorbate peroxidases are involved in
stress tolerance, being central components of the hydrogen peroxide scavenging networks in
plants. Arabidopsis plants deficient in APX1 are highly susceptible to oxidative stress [57–58],
suggesting that APX1 is linked to ROS signaling or scavenging. Our research showed that the
cold-sensitive japonica (PRA08-D-BH) has early induction of APX1 (Fig 1B) which declined at
24h and increased again at 96h. On the other hand, the tolerant japonica (Spring) had a barely
perceptible induction of APX1 at 6h of cold stress, and disappeared at 24h, suggesting the pres-
ence of a strong defense mechanism. The sensitive indica (CHI08-C-SH) showed the same
expression pattern of APX1 under cold stress as the sensitive japonica PRA08-D-BH (Fig 2B).
The tolerant indica genotypes from Brazil and the USA showed different expression patterns of
APX1. The tolerant indica weedy rice from USA, GRE08-D-SH, showed high induction of
APX1 at 6h, with no detectable expression at 24h and induced maximally again at 96h. On the
contrary, the tolerant indica weedy rice from Brazil (1602) had no detectable expression. The
maximal induction of APX1 at 96h suggests that cold stress also induces secondary stress
responses such as anoxia and cold-induced dehydration due to ROS generation. The role of
APX1 in cold stress tolerance differed between japonica and indica and between indica

Fig 1. Relative gene expression under cold stress (10°C) in 10-d-old seedlings of sensitive (PRA08-D-BH) and tolerant (Spring) japonica rice. The
data are means of three replicates ± SE. A) Response of transcription factors:OsNAC2,OsDREB2C,OsMYB46 andOsF-BOX28. B) Transcript accumulation
of defense- and metabolism-related genes:OVP1, Rab16A, APX1, GLP,GDH. C) Genes related to cell expansion and carbohydrate metabolism: ADH1,
EXPA7, EXPA12 and RAMY3D. D) Pattern of expression of ERFs: ERF70, ERF68 and SUB1B.

doi:10.1371/journal.pone.0132100.g001
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genotypes from Brazil and the USA suggesting the presence of different ROS scavenging
machinery involving APX1 and other antioxidant enzymes that reflects localized adaptations.

The role of phytohormone ABA-responsive gene expression in response to cold stress was
studied through the expression of the RAB16A gene, a well-characterized member of the LEA
gene family [59]. RAB16A is induced by abiotic stresses such as salinity and ABA treatment
[60–61], which cause dehydration, and plays a crucial role in stabilizing the cell membrane and
preventing denaturation of proteins; thus, endowing stress tolerance [62]. RAB16A also binds
to iron and acts as antioxidant under abiotic stress [61]. The tolerant indica genotype;
GRE08-D-SH showed early induction of RAB16A (6h) with maximum transcript accumulation
at 96h of cold incubation while another tolerant genotype, 1602, showed induction at 24h and
increased maximally at 96h (Fig 2B). The sensitive indica genotype had lower level of RAB16A
transcript than the tolerant ones, which was downregulated at 96h. The expression of RAB16A
was not induced in the tolerant japonica genotype until 96h of incubation and had no detect-
able expression, at any time, in cold-sensitive japonica (Fig 1B). These results suggest the activ-
ity of an ABA-dependent tolerance pathway in the indica genotypes, which might not be
functional in the japonica ssp.

Glutamate dehydrogenase (GDH) (EC 1.4.1.2) is a key enzyme involved in amino acid bio-
synthesis catalyzing the reductive amination of 2-oxoglutarate (2OG) and the oxidative deami-
nation of Glu in vitro under nitrogen-limiting conditions and is upregulated under abiotic
stresses [63–64]. ROS plays a critical role in the signaling pathway for GDH expression and
protease activation that also contributes to intracellular hyper-ammonia. GDH also has a

Fig 2. Relative expression of genes under cold stress (10°C) in 10-d-old seedlings of sensitive (CHI08-C-SH) and tolerant (1602 and GRE08-D-SH)
indica rice. The data are means of three replicates ± SE. A. Response of transcription factors:OsNAC2,OsDREB2C,OsMYB46 andOsF-BOX28. B.
Transcript accumulation of defense- and metabolism-related genes:OVP1, RAB16A, APX1,GLP,GDH. C. Genes related to cell expansion and carbohydrate
metabolism: ADH1, EXPA7, EXPA12 and RAMY3D. D. Expression patterns of ERFs: ERF70, ERF68 and SUB1B.

doi:10.1371/journal.pone.0132100.g002
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crucial role in germinating seeds and senescing leaves, converting amino acids into transport
compounds with a low C/N ratio [65]. The expression of GDH is induced upon exposure to
salinity stress; it is likely involved in ammonia detoxification and protease inhibition by activat-
ing protein synthesis [66]. The GDH gene was strongly induced at 6h of cold stress in the cold-
tolerant japonica cultivar (Spring) with a slight decrease at 96h, while the sensitive weedy
japonica (PRA08-D-BH) showed induction only at 24h. The sensitive weedy indica
(CHI08-C-SH) showed lower transcript accumulation of GDH at 6 and 24h compared with the
tolerant weedy indica (GRE08-D-SH), which maintained higher transcript accumulation and
reaching maximum at 24h. However, the cold-tolerant weedy indica rice (1602) from Brazil
had barely detectable transcript accumulation at 6h, which then subsided at 24h. Our observa-
tion supports a stress-protective role of GDH along with its physiological role and the aminat-
ing activity of the anionic isozymes of GDH. Our data also indicate that the involvement of
GDH in cold stress adaptation differs between genotypes and between regions.

Plants have two distinct proton pump systems in the vacuolar membrane H+-ATPase
(V-ATPase, EC 3.6.1.3) and H+- translocating inorganic pyrophosphatase (V-PPase EC
3.6.1.1) [67]. The proton pump creates an electrochemical potential gradient across the mem-
brane, thereby helping in translocation of solutes across the membrane. Earlier it has been
shown that overexpression of H+-TRANSLOCATING INORGANIC PYROPHOSPHATASE
(OVP1) in rice imparts tolerance to cold stress [67–69]. Here, we observed that the induction
of OVP1 expression under cold stress occurred only in indica weedy rice, with stronger expres-
sion in tolerant genotypes (Fig 2B). The maximum expression was observed at 24h with slight
reduction at 96h in GRE08-D-SH; in 1602, the maximum induction was observed at 24h and
was completely downregulated at 96h. The sensitive weedy japonica (PRA08-D-BH) showed
late induction at 24h with no detectable transcript accumulation in the tolerant japonica culti-
var (Spring). These observations suggest a role for OVP1 in maintaining the integrity of the
proton pump machinery and oxidative phosphorylation. Our observations suggest the pres-
ence of a different cold tolerance mechanism in japonica than in indica rice.

Role of Transcription Factors in Stress Tolerance
Cold stress-activated ROS accumulation induces several transcription factors (TFs) that oper-
ate via the ABA-dependent and ABA-independent pathways, eliciting cold tolerance. Cold
stress induces the accumulation of CBFs (C-repeat binding factors, also known as DEHYDRA-
TION-RESPONSIVE ELEMENT-BINDING protein or DREBs), which bind to the cis-ele-
ments in the promoters of cold responsive genes and activate their expression [68,70],
consequently inducing the expression of genes involved in ROS detoxification, membrane
transport, osmolyte biosynthesis, phosphoinositide metabolism [49,71–72]. The DREB2C pro-
tein binds to the C-repeat/dehydration response element (CRE) in vitro and possesses tran-
scriptional activity. It has also been shown that Arabidopsis plants overexpressing DREB2C are
cold- or thermo- tolerant [73]. The expression of DREB2C gene in tolerant indica US weedy
rice was induced early and at high levels in a time-dependent manner, but no detectable expres-
sion was observed in the other tolerant indica rice (1602) nor in the sensitive weedy indica
wherein a low transcript accumulation was observed only at 6h and then disappeared (Fig 2A).
DREB2C also was not detected in cold-stressed japonica genotypes (Fig 1A). Thus, our data
support previous research, which showed that DREB2C overexpression endowed tolerance to
freezing and heat stress [74] with only transient induction by other abiotic stresses [75].

Another important class of TFs that play a role in cold-induced gene expression are mem-
bers of the MYB family. Previous reports have shown that hos10-1 (R2R3-type MYB) mutant
Arabidopsis plants are susceptible to cold stress, even though they have induced expression of

Cold Tolerance in Weedy IndicaRice

PLOS ONE | DOI:10.1371/journal.pone.0132100 July 31, 2015 11 / 22



CBFs. Moreover, abiotic stresses like cold, salinity and drought induce OsMYB3R-2 (an
R1R2R3 MYB) that positively regulates stress tolerance via a CBF-independent pathway [76].
A characteristic feature of cold stress tolerance is the maintenance of cell wall integrity, as cells
lose water owing to freezing-induced dehydration. Previously it has been shown that plants
reduce the expression of cell wall-modifying enzymes like XTHs (Xyloglucan Endotransgluco-
sylase/Hydrolases) in Vigna radiata, deduced from reduced hypocotyl elongation [77].
OsMYB46 is a unique TF directly regulating the biosynthetic genes for major components of
the secondary wall, as well as TFs in the biosynthesis pathway [78]. Both the tolerant weedy
indica genotypes showed early and high OsMYB46 transcript accumulation up to 24h with a
slight reduction observed at 96h in GRE08-D-SH in comparison to the sensitive one (Fig 2A).
The tolerant japonica cultivar showed early induction of OsMYB46 and sustained expression
for 96h of cold stress, while no induction was observed in the sensitive weedy japonica geno-
type (Fig 1A). The elevated level of OsMYB46 upon stress imposition suggests that the tolerant
genotypes attempt to alleviate the stress and minimize stress impact by fortifying the cell wall.

NAC transcription factors are an important group of transcriptional regulators in plants
whose members play diverse roles in stress tolerance [79]. In previous reports SNAC1, SNAC2,
OsNAC45 genes were shown to be induced by salinity, drought, and cold stress, and overex-
pression of these conferred stress tolerance [80–82]. In this study, although the tolerant indica
weedy rice (GRE08-D-SH) showed a progressive increase in OsNAC2 transcript accumulation
and reaching maximum at 96h (at 24h for 1602), the transcripts generally were at lower levels
than the sensitive indica weedy rice (CHI08-C-SH) (Fig 2A). The sensitive weedy japonica
(PRA08-D-BH) also maintained a high transcript level up to 24h of cold treatment. In contrast,
the tolerant japonica cultivar (Spring) showed low accumulation of OsNAC2 transcripts at 6h
that disappeared thereafter (Fig 1A).

Overexpression of F-box proteins confers cold tolerance to plants. The tolerant and sensitive
USA indica weedy rice maintained a high OsFBOX28 transcript level over the stress period (Fig
2A), while no detectable transcript accumulation was observed in the japonica subspecies or
the tolerant indica weedy rice from Brazil (Fig 1A). This suggests that genes like OsNAC2 and
OsFBOX28 are responsive to cold stress in some genotypes, but such response is not always
observed in a cold-tolerant phenotype.

Overall, we observed that tolerance to cold stress in indica rice occurs via the ABA-depen-
dent as well as the ABA-independent pathway (CBF-mediated) while cold tolerance in japonica
occurs primarily via the ABA-dependent pathway. The cold stress tolerance mechanisms are
different between the weedy rice ecotypes from Brazil and USA origins and between japonica
and indica genotypes.

Cross-talk Between Stresses
Cold stress induces accumulation of reactive oxygen species represented by peroxide, peroxyl
radicals, and others. Due to the lack of efficient ROS scavenging machinery in the cell, plants
continue accumulating the negatively charged radicals that consequently leads to oxygen defi-
ciency, giving rise to an anoxic condition. Expansins are proteins that are responsible for shoot
elongation under anoxic conditions [83–84]. Previously it has been shown that the rice
EXPANSIN genes EXPA7 and EXPA12 are transiently upregulated under anoxia, presumably
facilitating shoot elongation [85]. The japonica ssp. genotypes (PRA08-D-BH, Spring) showed
high transcript accumulation of EXPA7, which declined with time (Fig 1C). Transcript accu-
mulation of EXPA12 was higher earlier in the sensitive than the tolerant japonica and declined
with time. The indica ssp. genotypes (CHI08-C-SH, sensitive; 1602, tolerant) showed high
transcript accumulation of EXPA7 at 24h and declining at 96h of cold stress, whereas
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GRE08-D-SH (tolerant) showed high transcript accumulation at 6h then declining thereafter
(Fig 2C). Thus, EXPA12 was highly induced early and downregulated at 24h or later in tolerant
weedy indica rice, while upregulation was delayed (at 24h) in the sensitive weedy indica rice.
These data show that transient upregulation of EXPANSINS also occur in cold stress (as in
anoxia) and that the cold-tolerant genotypes have a different mechanism of controlling the
expression of cell wall-modifying proteins than the sensitive ones.

Anoxia induces the level of several AP2/ERF genes in Arabidopsis [85]. Anoxic condition
induced by submergence also triggers the expression of SUB1A, SUB1B, and SUB1C, respec-
tively belonging to the B-2 subgroup of the ERF proteins [86]. To elucidate the role of ERFs in
cold stress-induced anoxia we analyzed the expression of ERF70, ERF68 and SUB1B. ERF70
was generally highly induced in all genotypes while ERF68 showed the opposite pattern of
expression. (Figs 1D and 2D). In the sensitive indica genotype ERF70 and ERF68 were induced
maximally at 6h and 24h, respectively. In the tolerant genotype (1602) both TFs were induced
with time while the tolerant GRE08-D-SH, showed maximum induction of ERF70 and ERF68
at 24h and 6h, respectively. SUB1B was induced early in the sensitive and tolerant japonica eco-
types then declined with time (Fig 1D). The same pattern was observed in both tolerant indica
weedy rice, but induction was sustained with time in the sensitive indica (Fig 2D). This group
of genes does not seem to contribute to cold tolerance in japonica cultivar, but may contribute
to cold tolerance in indica weedy rice.

Fig 3. Relative expression of genes in response to combined cold stress (10°C) and seeding depth stress (10cm) in 10-d-old seedlings of sensitive
(PRA08-D-BH) and tolerant (Spring) japonica rice. The data are means of three replicates ± SE. A. Response of transcription factors:OsNAC2,
OsDREB2C,OsMYB46 andOsF-BOX28. B. Transcript accumulation of defense- and metabolism-related genes:OVP1, RAB16A, APX1, GLP,GDH. C.
Genes related to cell expansion and carbohydrate metabolism: ADH1, EXPA7, EXPA12 and RAMY3D. D. Expression patterns of ERFs: ERF70, ERF68 and
SUB1B.

doi:10.1371/journal.pone.0132100.g003
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Role of Alpha Amylase and Alcohol Dehydrogenase
Alpha amylase (RAMY3D) is a key enzyme involved in the hydrolysis of starch into metaboliz-
able sugars, providing energy for shoot elongation [87] and is known to be a gene induced by
starvation [85,88]. RAMY3D has been reported to be induced by cold stress as well as anoxia
in hyacinth and rice shoots [89–90]. Rapid degradation of starch in the anoxic rice shoots sug-
gests a significant role for this gene in starch metabolism [89]. RAMY3D was induced early at
6h of cold stress in both sensitive and tolerant japonica and approached basal level at 96h
(Fig 1C). RAMY3D was induced at all time-points in the sensitive indica, but generally was
down-regulated in tolerant indica genotypes (Fig 2C). This gene does not contribute to cold
tolerance in the japonica cultivar, but suppression of amylase activity may contribute to cold
tolerance in indica weedy rice by conserving energy. ADH is a key enzyme triggered under low
oxygen conditions, involved in redirecting the switch from aerobic to anaerobic fermentation
[91]. Previous reports have shown that ADH is highly induced by cold stress and anoxia in
maize and rice seedlings [89, 92]. The increased expression of ADH probably helps in the
regeneration of NAD+ by reducing acetaldehyde to ethanol thereby providing an alternative
pathway to glycolysis and in turn preventing cellular acidosis. We observed that ADH expres-
sion follows a similar pattern as that of RAMY3D. This suggests that cold stress induces an
anoxic condition where plants respond by increasing sugar metabolism and switching to anaer-
obic respiration.

Fig 4. Relative expression of genes in response to combined cold stress (10°C) and depth stress (10cm) of sensitive (CHI08-C-SH) and tolerant
(GRE08-D-SH and 1602) indica rice A. Response of transcription factors:OsNAC2,OsDREB2C, OsMYB46 andOsF-BOX28. B. Response of defense- and
metabolism-related genes: OVP1, RAB16A, APX1,GLP,GDH. C. Genes related to cell expansion and carbohydrate metabolism: ADH1, EXPA7, EXPA12
and RAMY3D. D. Expression patterns of ERFs: ERF70, ERF68 and SUB1B. The data are means of three replicates ± SE.

doi:10.1371/journal.pone.0132100.g004
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Combined Effects of Cold and Deep Sowing Stress on Stress-
Responsive Gene Expression
Rice genotypes are not known to emerge well from greater soil depth, but weedy rice ecotypes
primarily belonging to the indica ssp. can [33–34]. Planting, or being covered, at a greater
depth in the soil allows seeds to avoid temperature extremes, but there is an optimum seedling
emergence depth beyond which the seedling will incur loss of vigor or perish. We studied the
effect of combined stress of sowing depth (10cm) and cold, on the expression of the stress
responsive genes in the rice genotypes. The cold-tolerant japonica cultivar Spring showed an
early and generally higher transcript accumulation of all TFs (OsDREB2C, OsMYB46, OsNAC2
and OsF-BOX28) than the sensitive weedy japonica (Fig 3A). Similarly, all TFs were highly
induced in the tolerant USA weedy indica GRE08-D-SH whereas only OsNAC2 and OsF-
BOX28 were highly upregulated in sensitive indica CHI08-C-SH (Fig 4A). Only OsMYB46
appeared to play a role in cold + sowing depth response of the tolerant Brazilian weedy indica
1602.

The severity of stress was also marked by increased transcript accumulation of ROS scav-
enging genes APX1 and GLPS. In addition, both the indica and japonica weedy rice showed
enhanced transcript levels of RAB16A and GDH in contrast toH+PYROPHOSPHATASE
(OVP1), which was not detectable in the japonica ssp. (Figs 3B and 4B). These results suggest
that the stress-tolerant indica and japonica genotypes activated a tolerance mechanism operat-
ing via the CBF-dependent and-independent pathways. Moreover, this indicates that the

Fig 5. Heat Map showing the differential expression of genes in response to cold stress and combined cold + seeding depth stress in rice.
Expression profile of genes in response to cold stress in: A. susceptible (PRA08-D-BH) and tolerant (Spring) japonica rice and B. sensitive (CHI08-C-SH) and
tolerant (1602 and GRE08-D-SH) indica rice. Expression profile of genes in response to combinatorial stress in: C. sensitive (PRA08-D-BH) and tolerant
(Spring) japonica rice and D. sensitive (CHI08-C-SH) and tolerant (1602 and GRE08-D-SH) indica rice.

doi:10.1371/journal.pone.0132100.g005
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combined cold and depth stress triggered the simultaneous activation of a network of multiple
physiological stresses, which eventually overcame the cold tolerance mechanism of these
genotypes.

The tolerant japonica cultivar Spring showed higher accumulation of ADH and alpha amy-
lase at 6h and 24h of stress treatment; the tolerant indica ssp., showed a different expression
pattern (Figs 3C and 4C). EXPA7 was generally induced equally in both ssp. while EXPA12 was
detectable in all indica genotypes and in the sensitive japonica genotype. ERF70 and ERF68
were highly induced in the japonica ssp. but only ERF70 was detectable in the indica ssp. (Figs
3D and 4D). SUB1B was induced early at 6h in both ssp., peaked at 24h, and then declined at
96h. This suggests that the tolerant japonica genotypes are more vulnerable to sowing depth
+ cold stress than indica, indicating the presence of a stronger, innate tolerance mechanism in
the indica genotypes. However, upon exposure to cold + sowing depth stress both the indica
and japonica accessions showed an elevated level of all these genes suggesting that the com-
bined stress elicited a complex network of multiple stress-response pathways. These defense/
adaptive processes, however, were not sufficient to overcome the impact of the combined cold
and depth stress. The overall stress responsive gene expression and pathway in weedy rice is
summarized in Figs 5A–5D and 6.

Conclusion
This research showed that there are cold-tolerant and depth-tolerant indica weedy rice that
could be a more suitable genetic resource for the development of weed-competitive indica culti-
vars adapted to sub-tropical and temperate environments. No rice genotype tested (weedy or
cultivated) can withstand cold stress if placed deep in the soil profile. The cold stress responsive
gene expression of different rice and weedy rice genotypes has been summarized and

Fig 6. Overview of the regulatory pathway of cold stress and combination of cold and sowing depth stress response in weedy rice (Oryza sativa
L.). The data represent the core figure drawn according to Systems Biology Graphical Notation (SBGN) Activity Flow Specifications (Level 1 Version 1) using
Beacon Software76. The relationships, or arcs, express the nature of influence (positive, negative or unknown) between the glyphs and summarize this
paper’s findings along with support from literature described in the text.

doi:10.1371/journal.pone.0132100.g006
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represented as heat map (Fig 5A–5D). Our research also revealed that cold stress signaling in
indica spp. is more complex than that of japonica as it operates via both the CBF-dependent
and CBF-independent pathways implicated through increased transcript accumulation of
OsNAC2, OsMYB46 and OsF-BOX28. The indica weedy rice appears to have a different cold
tolerance mechanism than japonica rice. Furthermore, cold tolerance in the USA indica weedy
rice is by a different mechanism from the Brazilian weedy rice. These warrant further investiga-
tion. Thus, our research provided a background to identify genes responsible for cold stress tol-
erance in weeds. Cold-tolerant weedy rice can be tapped for rice improvement, for example by
marker-assisted breeding methods. More cold-tolerant weedy rice can be discovered with a
wide-scale screening of weedy rice germplasm, using molecular markers derived from this
study, for developing weed-competitive rice cultivars.
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