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To maintain homeostasis under diverse metabolic conditions, it is necessary to coordinate nutrient-sensing pathways with
the immune response. This coordination requires a complex relationship between cells, hormones, and cytokines in which
inflammatory and metabolic pathways are convergent at multiple levels. Recruitment of macrophages to metabolically
compromised tissue is a primary event in which chemokines play a crucial role. However, chemokines may also transmit cell
signals that generate multiple responses, most unrelated to chemotaxis, that are involved in different biological processes. We
have reviewed the evidence showing that monocyte chemoattractant protein-1 (MCP-1 or CCL2) may have a systemic role in the
regulation of metabolism that sometimes is not necessarily linked to the traffic of inflammatory cells to susceptible tissues. Main
topics cover the relationship between MCP-1/CCL2, insulin resistance, inflammation, obesity, and related metabolic disturbances.

1. Introduction

Metabolic syndrome is currently one of the most serious
threats to human health and chronic systemic inflammation
caused by tissue malfunction or homeostatic imbalance is
a characteristic feature. Maintenance of homeostasis under
diverse metabolic disorders is mostly associated with obesity
and requires the coordination of nutrient-sensing pathways
with the immune response.

Monocyte chemoattractant protein-1 (MCP-1 or CCL2)
is a representative of the CC chemokine group, and its
main known function is related to guiding monocytes
to leave the circulation and become tissue macrophages,
the first step in the initiation of inflammation. However,
chemokines transmit cell signals that generate multiple
responses, most unrelated to chemotaxis, that are involved
in different biological processes. It is also frequently assumed
that, in contrast to hormones, chemokines influence cellular
activities in an autocrine or paracrine fashion. However,
confinement to the well-defined environments of these

actions is unlikely, and chemokines may be relevant effectors
in chronic systemic inflammation. Specifically, alteration
of plasma CCL2 concentration in metabolic disease
states, the presence of circulating chemokines reservoirs,
the recent evidence of novel mechanisms of action and
certain unexplained responses associated with metabolic
disturbances suggest the possibility that CCL2 may play a
systemic role in the regulation of metabolism.

2. Systemic Chronic Inflammation is Related to
Metabolic Disturbances

The classical view of inflammation needs to be expanded
to fully explain the inflammatory processes induced by
adverse metabolic conditions and the accompanying dele-
terious effects in cells and tissues [1]. The sequence of
events seems to be unaltered, and as such, the search for
inducers and defining mediators remains a valid approach
(Figure 1). The exact nature of the inducers that trigger the
inflammatory response in tissues under metabolic stress is
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Figure 1: The inflammatory process and cellular metabolic control are convergent at multiple levels. Overnutrition, inactivity, old age, or
a combination of factors triggers a systemic chronic inflammation associated with immune response which consists of a complex cellular
adaptation in which chemokines play a crucial role.

presently unknown, but these inducers are known to differ
from those associated with infection and injury. Clinical
experience suggests that such inducers are tightly associated
with excess nutrients, a low level of physical activity, old age,
or a combination of factors leading to overweight, obesity,
type II diabetes, and/or metabolic syndrome. In all of these
conditions, an excess of oxidation (mainly lipid oxidation)
in cells, particularly in adipose tissue, is a common finding.
This leads to the activation of inflammatory cells that further
increase the oxidation in a vicious cycle that must be resolved
[2–11]. Therefore, to date, candidate molecules for such
inducers seem to be related to the production of reactive

oxygen species (ROS) and/or reactive nitrogen species. ROS
and the unstable balance between their production and the
naturally occurring defenses against increased oxidation, by
molecules such as paraoxonase, also have a role in converting
lipoproteins into inflammatory signals by oxidizing their
lipid and protein components [4, 5]. It is likely that
accumulation of excess lipids may have biological effects that
are signaled by unknown specific pathways. Regardless of the
nature of such hypothetical inducers, they should be suffi-
cient to trigger the production of inflammatory mediators,
which in turn alter the normal functionality of many tissues
and that can be classified into different groups according
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to their biochemical properties. Among such mediators,
inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-
α), IL-6) activate the endothelium and leukocytes and induce
acute-phase responses. Particularly, chemokines (i.e., CCL2)
control leukocyte extravasation and chemotaxis towards the
affected tissues. However, the action of chemokines and other
mediators cannot be limited to local effects; these molecules
will likely display neuroendocrine and metabolic functions
if we assume a more general role for inflammation in the
control of tissue homeostasis [6].

Cells are normally in a basal state. A first and necessary
step to induce a sequence of events is to stress these cells for
which excessive availability of nutrients (a relatively modern
alteration in humans) is a sufficient condition. The stress
response consists of a complex, and not completely under-
stood, cellular adaptation that is probably monitored by
tissue-resident macrophages. Their basic functions include
the removal of dead cells when necessary and maintenance of
tissue homeostasis by a variety of tissue-specific mechanisms
[7]. When cellular adaptation fails and malfunction becomes
extreme, additional macrophages are recruited to help the
tissues to adapt to these particular conditions of stress. The
recruitment of macrophages in response to malfunctioning
cells has been documented in adipocytes and hepatocytes,
and increased production of CCL2 has been identified
as a probable mediator [8, 9]. Obviously, if adaptation
is no longer possible, the cells die. When macrophages
recognize necrotic cells, a further inflammatory response
will be induced, but alternatively, there may be a silent
removal of dead cells if they are recognized as apoptotic. The
consequence is that there is a net loss of cells; this likely needs
to be compensated for by the generation of new cells of the
same type. Such a process requires a subtle change in the role
of macrophages and other cells to produce growth factors
that promote cell proliferation in a tissue-repair response.
The outcome is probably determined by additional unknown
signals with intense effects on the overall metabolic control of
the affected tissue and/or cells [10, 11].

3. How Does Obesity Initiate
an Inflammatory Response? The Role of
Macrophages, Endoplasmic Reticulum
Stress, and Autophagy

There are a number of events associated with obesity that
may result in the development of systemic inflammation,
but how and when obesity might initiate an inflammatory
response remains incompletely understood. It has been
argued that large adipocytes completely consume the local
oxygen supply, leading to hypoxia. This may activate cellular
stress pathways, causing cell autonomous inflammation and
the release of cytokines. Locally secreted chemokines attract
macrophages into the adipose tissue located mainly around
dead or dying adipocytes, forming characteristic crown-
like structures. These macrophages release cytokines that
further activate the inflammatory reaction in neighboring
adipocytes, exacerbating local inflammation and expanding
insulin resistance to other susceptible organs.

The underlying mechanism inside cells probably depends
on c-Jun N-terminal kinase (JNK) activation in insulin-
sensitive tissues, that it is probably the principal mechanism
by which the inflammatory signals interfere with insulin
activity [12, 13]. The endoplasmic reticulum (ER) is a
principal contributor to the various ways that cells sense
stress because it plays a central role in integrating multiple
metabolic signals critical for cellular homeostasis (Figure 2).
In particular, the increased synthetic demand for energy
availability challenges ER function, and alterations in cellular
ER stress increase serine phosphorylation of IRS-1 in a
JNK-dependent manner; a common finding in obesity,
insulin action, and type 2 diabetes [14–16]. Regardless of
the signals and sensors involved in this relationship, the
role of the ER-protective response, known as the unfolded
protein response (UPR), may be considered additive and
complementary to the response of macrophages. Under
mild conditions, the upregulation of chaperone proteins
may re-establish ER homeostasis. If stimuli persist or the
insult is intense, cell apoptosis is unavoidable [17]. The
UPR is initiated by pancreatic ER kinase (PERK), inositol-
requiring kinase (IRE1), and activating transcription factor
6 (ATF6) [18], three transmembrane proteins that mediate
three different stress-sensing pathways; such pathways may
lead to an inflammatory response. ER stress also elicits the
production of ROS [19] (with consequent oxidative damage
and activation of inflammatory signals), as well as the
activation of the transcription factor cyclic-AMP-responsive-
element-binding protein H (CREBH), which induces the
production of acute-phase proteins [20]. Mitochondrial
dysfunction may add further deleterious effects.

The sequence of events leading to the link between
the UPR and the inflammatory response remains to be
determined. UPR signaling is extremely sensitive to nutrients
and plays a central role in the maintenance of glucose
homeostasis and in the regulation of energy fluctuations in
cells [21]. Moreover, recent findings demonstrated a central
role for lipid chaperones (fatty acid-binding proteins) in the
regulation of ER homeostasis in macrophages, and the ER
responses can be modified to protect the organism against
the deleterious effects of hyperlipidemia [22]. The ER stress
responses are also linked to the mTOR pathway, which is
essential for the regulation of numerous processes, including
the cell cycle, energy metabolism, the immune response,
and autophagy [23]. Recent findings have identified a
critical function for autophagy in lipid metabolism that
could have important implications for human diseases with
lipid overaccumulation [24]. Although further research is
necessary to firmly establish this paradigm, the regulatory
and functional similarities between autophagy and lipolysis,
along with the capability of lysosomes to degrade lipids,
suggest that autophagy may contribute to breakdown of
both lipid droplets and triglycerides [24, 25]. Unexpectedly,
the effects of a loss of autophagy on hepatocytes differ
from those reported for adipose tissue. In this tissue,
autophagy functions to regulate body lipid accumulation
by controlling adipocyte differentiation and determining the
balance between white and brown fat [25]. In the liver (or
other nonadipose organs) autophagy is protective preventing
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Figure 2: Inflammatory and metabolic responses may be interpreted as a response to cellular stress. Cells detect and react to stress in their
environment. The endoplasmic reticulum is a principal contributor due to its central role in integrating multiple metabolic signals critical
for cellular homeostasis.

lipotoxicity via decreased hepatic lipid accumulation and
promoting safer storage in adipose tissue.

4. The Contribution of Other Immune Cells to
the Complications of Obesity

Macrophages recruited to adipose tissue in subjects receiving
a high-fat diet have unique inflammatory properties that
are not observed in resident tissue macrophages [26]. Com-
parative analysis of gene expression between those recruited
macrophages and the resident macrophages identified a total
of 46 unique genes differentially expressed between the
two populations. CCR2, which is required for recruitment
of inflammatory macrophages, and genes important for
macrophage activation, cellular adhesion, and migration are
overexpressed in recruited macrophages. In lean mice, resi-
dent macrophages have low inflammatory activity; with obe-
sity, newly recruited macrophages secrete pro-inflammatory
cytokines. Although largely defined in vitro, it is generally
accepted that macrophages can be classified in two different
states: M1 and M2 [27, 28]. M1, or “classically activated”
macrophages, are induced by proinflammatory mediators,
show enhanced pro-inflammatory cytokine production, and
generate ROS. At least in mice, diet-induced obesity leads

to a shift in the activation state of macrophages from an
M2-polarised state in lean animals (which may protect
adipocytes from inflammation) to an M1 pro-inflammatory
state (which contributes to insulin resistance) [29]. This
obesity-induced switch of activation state seems to be
coupled to the recruitment of a characteristic inflammatory
subtype cells from the circulation [30], similar to what has
been previously described for atherosclerotic lesions [31]. At
least two major conclusions can be drawn from the above
evidence. First, an intact CCL2/CCR2 axis, the principal
chemotactic pathway, is necessary for understanding the
mechanistic links between adipose tissue inflammation and
the effects of obesity. Second, T cells may play a significant
role as the plausible source of signals to initiate T helper-1
(TH1) responses through phagocyte activation, or humoral
TH2 responses through stimulation of B cell activity. A recent
array of studies substantially clarifies this issue [32–35].
Results from Nishimura et al. [32] support the notion that
CD8+ T cells have an essential role in the initiation and
propagation of adipose tissue inflammation in obesity. It was
shown in diet-induced obesity that CD8+ T cells infiltrate
into the epididymal fat pads before macrophage infiltra-
tion. Additionally, treatment with CD8+-specific antibodies,
resulting in CD8+ T cell depletion, reduced M1 macrophage
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infiltration and ameliorated systemic insulin resistance in
ob/ob mice. It can then be hypothesized that obese adipose
tissue activates CD8+ T cells, which in turn recruit and
activate macrophages. Winer et al. [33] performed a study
based on the fact that some obese individuals progress to
metabolic syndrome but others only have mild metabolic
abnormalities [36, 37] and found that the progression
of obesity-associated metabolic abnormalities is under the
pathophysiological control of CD4+ T cells. Reconstitution
of CD4+T cells, but not CD8+T cells, in lymphocyte-free
obese Rag1-null mice improved glucose tolerance, enhanced
insulin sensitivity, and lessened weight gain. Winer et al. [33]
and Feuerer et al. [34] explored the ability of regulatory T
cells (Treg) in adipose tissue to provide anti-inflammatory
signals that block adipose tissue inflammation. Treg cells
normally account for 5%–20% of the CD4+ compartment
but are thought to be one of the body’s most crucial
defenses against inappropriate immune responses [38, 39].
Visceral and subcutaneous adipose tissues have similarly
low fractions of Treg cells at birth, with a progressive accu-
mulation over time in the visceral, but not subcutaneous,
tissue [34]. This difference may be important given the
association of visceral, but not subcutaneous, fat with insulin
resistance [40, 41]. Visceral fat-derived Treg cells overexpress
a large number of genes that are not expressed in cells
from the spleen, lymph nodes, and subcutaneous adipose
tissue; these genes are mostly involved in leukocyte migration
(e.g., CCR2) [34]. Extremely high levels of IL-10 transcripts
were found that may block the production of inflammatory
mediators. When most of the Treg cells were ablated, pro-
inflammatory transcripts (e.g., RANTES and CCL2) were
strongly induced in the fat tissue, suggesting that the anti-
inflammatory properties of Treg cells may have therapeutic
potential to inhibit elements of the metabolic syndrome [34].
In conclusion [32–34], obesity seems to alter the balance
between TH1 and TH2 stimuli in fat, probably through
depletion of TH2 cells and adipose tissue Treg cells, increase
in CD8+ and TH1 cells, or a combination of both effects,
leading to the infiltration of macrophages that promote
inflammation. At the same time, resident macrophages may
communicate with adipose tissue Treg cells to maintain
homeostasis (Figure 3), and other inflammatory cells may be
also contributors. For instance, mast cells are increased in the
adipose tissue from obese subjects as compared to that from
lean donors [35]. Furthermore, in mice receiving a high-fat,
high-cholesterol diet, genetically induced deficiency of mast
cells or their pharmacological stabilization (via disodium
cromoglycate or ketotifen) reduces body weight gain and
concentrations of inflammatory cytokines and chemokines
in serum and in adipose tissue [35]. The crucial role of CCL2
in the migration of immune cells remains to be determined,
but it should be highlighted that recruited macrophages
originate from monocytes produced in the bone marrow.
These monocytes give rise to two subsets of peripheral blood
monocytes. One subset (GR-1−, CX3CR1high, CCR2−, and
CCL62L− monocytes) produces resident tissue macrophages,
and the second subset (GR-1+, CX3CR1low, CCR2+, and
CD62L+ monocytes) is preferentially recruited to inflamed
tissues and gives rise to macrophages and dendritic cells [42].

5. The Role of CCL2 Regulating Inflammation
and Metabolic Disorders

The crucial question of what initiates the activation and
infiltration of relevant cells in adipose tissue and whether this
constitutes an absolute requirement remains unanswered.
Hypoxia, adipocyte death, or both [43, 44] (as a response to
a metabolic overload) may be responsible for the fat infil-
tration of inflammatory cells but secretion of chemokines,
mainly CCL2, is a necessary condition.

The absence of CCL2 or CCR2 in LDLR−/− and ApoE−/−

backgrounds protects these mice from developing atheroscle-
rotic lesions, a condition in which macrophage recruitment
and lipid overload play a crucial role. In these and other more
complicated models, the CCL2/CCR2 axis may represent a
common pathway for many proatherogenic factors [45–49]
and plays a central role in monocyte recruitment, lesion
formation, and vascular repair. However, data may vary
under different experimental conditions and seem to be
dependent on the metabolic status of the mice. In partic-
ular, the putative role of CCL2 appears to differ between
normo- and hyperlipidemic models. The interpretation of
data in these models is difficult because the expression of
other chemokine genes, with redundant actions, is highly
influenced by both the absence of CCL2 and the presence of
dietary fat and cholesterol [50].

5.1. CCL2 Tissue Expression and Its General Impact in
Metabolism. CCL2 is produced either constitutively or after
selective induction (via oxidative stress, cytokines, or growth
factors) by many cell types, including fibroblasts as well
as endothelial, epithelial, smooth muscle, mesangial, astro-
cytic, monocytic, and microglial cells. It is also found in
hepatocytes, adipocytes, and islet cells, and some authors
consider that it is present in virtually every tissue [8, 9, 51–
54] (Figure 4). Such ubiquity suggests an endocrine rather
than paracrine function, as well as an important function in
several biological processes. Thus, CCL2 has been implicated
as a potential target in many disease states [55], including
liver diseases [56] and insulin-resistant states [57]. However,
it should be noted that knockout mice for CCL2 and its
receptor are viable, although with minor defects, [58]; thus
CCL2 may have effective surrogates. It is plausible that in the
absence of CCL2, other chemokines may function effectively,
but the data suggest important and pleiotropic functions. In
particular, CCL2 may contribute to pathologies associated
with hyperinsulinemia [57], given that ccl2 is an insulin-
responsive gene that may alter adipocyte function. Both the
adipose tissue expression and circulating concentrations of
CCL2 increase in obesity and decrease following treatment
with thiazolidinediones [58, 59]. In a mouse model of diet-
induced obesity, CCR2 deficiency attenuated the develop-
ment of obesity, adipose tissue macrophage accumulation,
adipose tissue inflammation, and systemic insulin resis-
tance. Also, in mice with pre-existing obesity, short-term
pharmacologic antagonism of CCR2 reduces adipose tissue
macrophage content and improves in vivo insulin sensitivity
[60]. However, the absence of CCR2 has no measurable
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Figure 3: In obesity, immune cells other than macrophages may play a crucial role. To understand the heterogeneous inflammatory
properties of adipose tissue macrophages, it is necessary to study the contribution of other immune cells to specific cellular response to
metabolic stress.

metabolic effect in lean animals. Subsequent studies in
CCL2-deficient mice suggest that CCL2 plays a minimal role
in glucose metabolism and insulin sensitivity in mice fed a
normal diet, but is important for pathogenic macrophage

infiltration into adipose tissue, insulin resistance, and hepatic
steatosis induced by a high-fat diet [61]. Moreover, studies in
transgenic mice that over-express ccl2 under the control of
the adipose tissue-specific AP2 promoter indicate that CCL2
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Figure 4: CCL2 is ubiquitously expressed and may be found in
multiple cell types. It is easily detected via immunohistochemistry
in tissues related to metabolism, including the liver (a), where it is
also located in the periphery of lipid droplets (b), brown (c) and
white (d) adipose tissues, pancreas (e), spleen (f), muscle (g) and
aorta (h).

in adipose tissue, per se, induces macrophage recruitment
and insulin resistance [62, 63].

5.2. CCL2/CCR2 Pathway and Insulin Resistance in Obesity.
The CCL2/CCR2 axis is a major component of insulin
resistance in obese mice. Lipid peroxidation and the
consequent oxidative stress and oversecretion of CCL2 have
been recently implicated in early stages of adipose tissue
inflammation [64–66]. Lysophosphatidylcholine (LPC) is a
prominent component of oxidized low-density lipoproteins
(LDL). During oxidation, 40% of LDL phosphatidylcholine
can be converted to LPC by LDL-associated phospholipase
A2 [64]. LPC stimulates the production of CCL2 by cells at
the transcription level through a mechanism that involves

MEK/ERK, tyrosine kinase, and (to a lesser extent) protein
kinase C (PKC) activities [65]. More recent data suggest
that 12/15-lipoxygenase (12/15 LO) is required for the early
onset of high fat diet-induced adipose tissue inflammation
and insulin resistance in mice [66]. Cells overexpressing
12/15LO secreted higher amounts of CCL2. Accordingly,
adipose tissue from 12/15LO KO mice fed a high-fat diet was
not infiltrated by macrophages, did not show any increase
in inflammatory markers, and did not exhibit changes in the
insulin-stimulated glucose disposal rate or hepatic glucose
output.

5.3. CCL2 and Obesity-Associated Macrophage Recruitment
Are Not Clearly Associated: Independent Effects on Metabolism.
A note of caution has been recently introduced by Inouye et
al. [67], who reported that the absence of CCL2 does not
attenuate obesity-associated macrophage recruitment and
appears to cause metabolic derangements, even in mice fed
low-fat diets. Although the lack of macrophage recruitment
may be masked by different experimental conditions, these
results clearly indicate that CCL2 may have independent
effects on metabolism that should be ascertained in future
studies. Moreover, we recently described that CCL2-deficient
mice, when rendered hyperlipemic by the concomitant abla-
tion of the LDL receptor, demonstrate decreased lipoprotein
clearance, derangements in free fatty acid delivery, and less
glucose tolerance when fed regular chow [68]. These mice
also show a partial resistance to alterations in glucose and
lipid metabolism induced by dietary fat and cholesterol.
LDLr−/− and CCL2−/−LDLr−/− mice have identical apparent
phenotypes and similar body weight at 11-12 weeks of age.
Both strains are hyperlipemic, but the CCL2−/−LDLr−/−

mice show higher plasma cholesterol and triglycerides,
indicating a possible role for CCL2 in lipid metabolism.
Further, we found similar but lower plasma cholesterol and
triglyceride concentrations in CCL2−/− mice as compared to
wild type mice. Also, we found that CCL2−/−LDLr−/−mice
show decreased in vivo [3H] VLDL catabolism as compared
to LDLr−/− mice. Interestingly, double KO mice also show a
significant increase in plasma FFA concentration that is not
observed in mice with only CCL2 deficiency. It is already
documented that high plasma FFA concentration may cause
peripheral insulin resistance, and that insulin resistance may
also elicit decreased uptake of fatty acids by adipose tissue,
promoting increased levels of circulating plasma FFAs [68]
in a poorly investigated cycle. We therefore predicted a link
between lipoprotein derangements and glucose metabolism
that was confirmed with the observation of higher fasting
plasma glucose concentration in CCL2−/−LDLr−/− mice than
in LDLr−/− mice as well as a less intense and slower response
to glucose overload in the double knockout mice. Taken
together, these results suggest that hyperlipidemia, which
is common in obesity and metabolic syndrome, may be
a confounding factor, and that the absence of CCL2 may
be as metabolically deleterious as overexpression of CCL2 in
certain conditions. Under these circumstances, it is therefore
possible that CCL2 may act as hormone rather than as
a cytokine, although it remains to be ascertained whether
CCL2 and LDLr sharea common metabolic pathway.
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5.4. CCL2 Mediates Biological Effects Other Than Leukocyte
Chemotaxis. Chemotaxis is not the only known function for
CCL2 [69]. For instance, CCL2-mediated angiogenesis has
been demonstrated in vivo and appears to be independent of
its induction of leucocyte recruitment [70]. Elevated CCL2
levels induce highly elevated expression of ER stress chap-
erones (mainly GRP78) that may protect against cell death.
This has been established in postinfarct remodeling studies in
transgenic mice with cardiomyocyte-targeted expression of
CCL2 [71, 72], although apparently contradictory data have
been found in CCL2-deficient mice [73]. Other evidence
suggests that CCL2 is also involved in the cell expression of
metalloproteinases, in the recruitment of cells active in the
fibrotic process, and in protection against accumulation of
oxidative stress proteins [69]. Moreover, signaling initiated
by CCL2 binding to CCR2 triggers the induction of a novel
zinc finger protein transcription factor that can induce
cell death [74]. This factor, which has been called MCP-1-
induced protein (MCPIP), causes the production of reactive
oxygen and nitrogen species via the induction of NADPH
oxidase and inducible NO synthase [75]. This oxidative
stress causes ER stress that leads to autophagy and cell death.
Interestingly, the interaction between CCL2, survival, and
autophagy in the complex program of tumor progression
has been previously suggested [76]. Whether other processes
induced by CCL2 are also mediated via MCPIP remains to be
ascertained.

5.5. CCR2 Is Not the Only Receptor for CCL2: Influence
of Genetic Variation in Blood Concentrations of CCL2.
Although CCR2 is the known receptor for CCL2 in tissues
[77], another molecule, the Duffy antigen receptor for
chemokines (DARCs) mediates the interactions of CCL2,
with erythrocytes and endothelial cells [78]. Because DARC
lacks completely the Asp-Arg-Tyr consensus motif in its
second cytoplasmic loop, it cannot couple to G proteins
and subsequent signaling pathways. Consequently, it has
been grouped with two other heptahelical molecules,
D6 and CCX-CKR, to form a family of atypical silent
chemokine receptors [79]. However, it has been recently
demonstrated that DARC does not act as a decoy but instead
supports chemokine activity and is required for optimal
chemokine-induced leukocyte migration in vitro and
in vivo [80].

Several single nucleotide polymorphisms (SNPs) in
the CCL2 gene have been reported to be related to blood
concentrations of CCL2, but only rs1024611 (−2518 A/G)
has been clinically replicated [81]. To identify the genetic
basis of circulating CCL2 concentrations, a recent genome-
wide association analysis has been conducted in three inde-
pendent cohorts and the strongest association was for serum
CCL2 with a nonsynonymous polymorphism, rs12075
(Asp42Gly) in DARC, indicating a possible role of vascular
reservoir of pro-inflammatory cytokines. This association
was supported by family-based genetic linkage at a locus
encompassing the DARC gene underscoring the relevance
of CCL2 pathophysiology for a broad spectrum of diseases
[82].

5.6. CCL2 as a Therapeutic Target. A recent report has
examined the effects of an increase in the plasma con-
centration of CCL2 resulting from short-term (acute) or
long-term (chronic) administration of recombinant CCL2
in mice [83]. They found that a chronic increase in
the circulating level of CCL2 induced insulin resistance,
macrophage infiltration into adipose tissue, and an increase
in hepatic triacylglycerol content, but an acute increase in the
circulating CCL2 concentration also induced insulin resis-
tance without macrophage infiltration into adipose tissue.
In addition, the administration of a novel CCR2 antagonist
ameliorated insulin resistance in mice fed a high-fat diet
without affecting macrophage infiltration into adipose tissue.
Taken together, their results indicate that an increase in
the concentration of CCL2 in the circulation is sufficient
to induce systemic insulin resistance irrespective of adipose
tissue inflammation and suggest that CCL2 may be a direct
effector in regulating metabolism. It is therefore conceivable
that new therapeutic opportunities may arise from blocking
of chemokine/receptor interactions with specific antagonists
or blocking antibodies. Animal models have demonstrated
effective reduction of lesion formation in coronary arteries
and experimental in-stent restenosis [84, 85]. Surprisingly,
such blockers have not been tested as antiobesity agents or
as modulators of metabolic derangements, despite published
promising results [86]. Whether such agents can be used in
humans remains questionable because the effect of CCL2
suppression, as mentioned above, may not be absolutely safe.
However, it may be possibly safer to transitorily decrease the
expression of CCL2 with plant-derived flavonoids or inter-
fere with CCL2-CCR2 interactions using small molecules
currently under investigation for safety and effectiveness
[87, 88]. Current studies are also being performed to test
the hypothesis that metabolic disturbances may be alleviated
through the modulation of CCL2 expression.

6. Concluding Remarks and Future Perspectives

Metabolic syndrome involving obesity, insulin resistance,
type 2 diabetes, liver steatosis, and cardiovascular diseases
is a critically important health issue associated with over-
nutrition, inactivity, old age, or a combination of factors.
Growing evidence supports the presence of a systemic
chronic inflammation associated with immune imbalance
in all of these disorders, where chemokines play a crucial
role. Chemokines act as inflammatory mediators that trigger
the cell stress response in tissues and produce a general
response that is not limited to local effects but instead may be
associated with the generation of multiple responses. There-
fore, crosstalk between cells, hormones, and chemokines
is fundamental for maintaining metabolic homeostasis.
Specifically, CCL2 is a multifunctional chemokine implicated
as a potential target in many disease states. CCL2 was first
identified by its ability to regulate monocytes, macrophages,
and other inflammatory cells at sites of inflammation, but
it has recently been shown to be a major component of
insulin resistance in obese mice. Moreover, ccl2 is an insulin-
responsive gene that decreases insulin-stimulated glucose
uptake and increases the expression of adipogenic genes.
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Indeed, available data show ubiquitous expression of CCL2
that in turn may suggest an endocrine function similar to
the action of hormones, which may explain its importance
in several biological processes and its role in inflammation.

Future studies will need to address the possibility of new
therapeutic treatments that reduce inflammatory recruit-
ment and modulate chronic inflammatory processes but also
improve metabolic disturbances through the modulation
of CCL2 expression. The possibility of therapeutically and
transiently modulating CCL2 with safe-plant flavonoids
could offer clinical benefit.
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