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The evolutionary analysis of genetic data is an important subject of modern bioscience, with practical applica-
tions in diverse fields. Parameters of interest in this context include effective population sizes, mutation rates,
population growth rates and the times to most recent common ancestors. Studying Y-chromosomal microsatel-
lite data, in particular, has proven useful to unravel the recent patrilineal history ofHomo sapiens populations.We
compared the individual analysis options and technical details of four software tools that are widely used for this
purpose, namely BATWING, BEAST, IMa2 and LAMARC, all of which use Bayesian coalescent-basedMarkov chain
Monte Carlo (MCMC)methods for parameter estimation.More specifically, we simulated datasets for either eight
or 20 hypothetical Y-chromosomalmicrosatellites, assuming amutation rate of 0.0030 per generation and a con-
stant or exponentially increasing population size, and used these data to evaluate the parameter estimation ca-
pacity of each tool. The datasets comprised between 100 and 1000 samples. In addition to runtime, the
practical utility of the tools of interest can also be expected to depend critically upon the convergence behavior
of the actual MCMC implementation. In fact, we found that runtime increased, and convergence rate decreased,
with increasing sample size as expected. BATWING performed bestwith respect to runtime and convergence be-
havior, but only supports simple evolutionary models. As regards the spectrum of evolutionary models covered,
and also in terms of cross-platform usability, BEAST provided the greatest flexibility. Finally, IMa2 and LAMARC
turned out best to incorporate elaborate migration models in the analysis process.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction

The human Y chromosome is of special interest for evolutionary
analyses because it allows research to be focused upon male lineages,
thereby complementing mitochondrial DNA-based research into the
matrilineal history of populations. Notably, since the Y chromosome is
only present inmales, and in one copy only, the corresponding effective
population size of the Y chromosome (Y-effective population size)
equals 1/4 of that of autosomes. Furthermore, unlike for autosomes
and the X chromosome, most parts of the Y chromosome are non-
recombining [1]. These peculiarities motivated the frequent use of Y-
chromosomal genetic data to study human history [2–4]. In contrast
to single-nucleotide polymorphisms (SNPs), microsatellite DNA
markers, or ‘short tandem repeats’ (STRs), have relatively highmutation
rates facilitating the investigation of more recent population history. In
addition, microsatellites provide a higher resolution of lineages
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than SNPs due to their higher allelic diversity. Taken together,
Y-chromosomal microsatellites represent a class of DNA markers that
logically have become intensively studied in human evolutionary
genetics.

Various software exists to estimate population genetic parameters
from genotypic data [5], including Y-effective population sizes, muta-
tion rates, population growth rates and the times to most recent com-
mon ancestors, which are estimated under simple population genetic
models. Many of the tools are implementations of the coalescent
model, a mathematical concept that has become fundamental to popu-
lation genetics and statistical genetics [6–13]. The standard coalescent
model was first introduced by Kingman [14] but has undergone several
refinements ever since, including the consideration of population dy-
namics and population structure as well as of recombination, selection
and selfing. Most evolutionary software that is publicly available is
Bayesian and coalescent-based. Since coalescent trees are simulated
backwards in time and take only common ancestors into account
(Fig. 1), they are simpler to generate than forward-simulated genealo-
gies. The true coalescent tree of a given set of Y chromosomal haplo-
types is of course unknown, so that integration over all possible trees
would be required for the exact estimation of an evolutionary
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Fig. 1. Exemplary coalescent tree. The coalescent tree featured connects six Y-
chromosomal genetic profiles (g1, …, g6) and is constructed backward in time.
Coalescent events are depicted as red stars, numbered in the order of their occurrence
during the tree construction process. Small red horizontal lines mark the corresponding
coalescent times, i.e. the times until two profiles, or groups of profiles, shared a most
recent common ancestor. The earliest coalescent time is the time to the most recent
common ancestor (TMRCA) of all profiles in the tree.
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parameter. In most cases, however, this is computationally impossible.
Consequently, theMarkov chainMonte Carlo (MCMC) approach has be-
comewidely used in statistical genetics because it circumvents the need
for formal integration. Instead, MCMC-based software simulates large
numbers of trees, each time yielding tree-specific values of the parame-
ters of interest. The trees are simulated so as to properly reflect the
probability distribution underlying all possible trees. Consequently,
the entirety of the simulation-derived parameter values is taken to re-
flect the posterior distribution of the parameters of interest.

MCMC has become widely popular for work on both Bayesian and
non-Bayesian problems in statistics, particularly biostatistics. One of
the hallmarks of MCMC is its applicability to high-dimensional complex
data and models [15]. MCMC comes in different guises (including the
well-known Metropolis-Hastings algorithm) that differ by the transi-
tion probabilities of their respective Markov chains, with Bayesian
MCMC underlying most tools for evolutionary analyses.

Inference about evolutionary processes using coalescent-based com-
putational methods is not only of scientific interest in its own right, but
has become a crucial basis of many practical applications, for example,
in developmental biology, conservation genetics, genetic epidemiology
and ancient DNA analysis [16,17]. In forensics, Y-chromosomal micro-
satellite profiles are particularly important because they allow
pinpointing of male trace donors. Y-chromosomal microsatellites are
mainly used for disentangling mixed traces with a strong female com-
ponent, such as in sexual assault cases. Onewell established application
of the coalescent in forensics is the simulation-based estimation of Y-
profile frequencies with BATWING [18].

In the present study, we compared four open source software tools
for the evolutionary analysis of Y-chromosomal microsatellite data. All
tools use MCMC-based simulation of coalescent trees for named pur-
pose. BATWING [16], which was one of the pioneer tools, is an imple-
mentation of the Metropolis-Hastings algorithm of MCMC. Another
frequently used tool is BEAST, together with related software BEAST 2
[12,13]. Both aim at a combination of user-friendliness and applicability
to a variety of research questions. The IM software is an implementation
of so-called ‘IsolationwithMigration (IM)’models. IMa2 [19] is awidely
used tool in evolutionary biology that allows for population divergence,
which is not the case for BATWING and BEAST. Finally, LAMARC and its
fork MIGRATE [20,21] focus upon migration between populations and
support an extensive variety of suchmodels. In our study, we character-
ized BATWING, BEAST, IMa2 and LAMARC with regard to their type of
implementation, modelling options, estimation accuracy, runtime be-
havior and conceptual limitations.

2. Materials and Methods

2.1. Evaluated Software

The goal of the present studywas to compare software tools that use
an MCMC coalescent framework for the evolutionary analysis of Y-
chromosomal microsatellite data. Suitable tools were initially identified
through a search on Google Scholar and PubMed. We used combina-
tions of various search terms, including ‘Bayesian’, ‘Markov chain
Monte Carlo’, ‘evolutionary’, ‘genealogical inference’, ‘coalescent’, ‘mi-
crosatellite’, ‘STR’ and ‘Y chromosome’. The results were then used to
guide additional searches in online forums (e.g. Google Groups) and
tool websites as well as the consultation of referenced publications.

The criteria for selecting a given tool for further analysis comprised
(i) an MCMC coalescent framework with Bayesian analysis of single
chains in single populations, (ii) the ability to handle Y-chromosomal
microsatellite data, and (iii) open source license. Four tools suitable
for evaluation were identified, namely BATWING, BEAST, IMa2 and
LAMARC.

• BATWING (‘Bayesian Analysis of Trees With Internal Node Genera-
tion’) was written in C by Wilson and Balding [16] and was intended
for the analysis of within-species data.

• BEAST (‘Bayesian Evolutionary Analysis Sampling Trees’) is available
in two major versions, BEAST and BEAST 2 [12,13,22], both of which
are continually developed further. At the time of evaluation, however,
only BEAST fully supported microsatellite data. Although BEAST 2
(v2.4.5) should allow microsatellite data analysis as well, the respec-
tive package BEASTvntr was found not to be fully functional. BEAST
was written in Java and is applicable to both within- and between-
species data.

• IMa (‘Isolation with Migration – analytic’) draws upon the Isolation
with Migration model by Nielsen and Wakeley [23], later imple-
mented in the IMa software in C++ by Hey and Nielsen [24]. IMa is
especially suited to the analysis of data from closely related species,
and its successor IMa2 can even handle multiple populations. There
is also a separate fork with parallelization through OpenMP, called
IMa2p [25]. However, since IMa2p involves multiple Markov chains,
it was not considered here. A successor version of IMa2 was released
recently (IMa3 [26]) but could not be considered because our study
started considerably earlier.

• LAMARC iswritten in C++and focuses uponmigration between pop-
ulations [21]. It combines the functionalities of the older tools Coa-
lesce, Fluctuate and Recombine, which were merged into LAMARC.
LAMARC also has a fork, MIGRATE-N, with parallel computation capa-
bilities. Since MIGRATE-N is only applicable to multiple populations,
however, it was not evaluated in our study.

2.2. Simulations

Data for use in our comparative software evaluation were simulated
with SAMPLE, a tool that is distributed alongside BATWING. SAMPLE
reads model specifications and parameter settings in the same format
as BATWING and uses a coalescentmodel as well. Three different popu-
lation growth models are available, namely (i) a constant population
size model, (ii) a purely exponential model, and (iii) a combined
model with an initial period of constant Y-effective population size
followed by a period of exponential growth for a specified number of
generations. SAMPLE uses a symmetric one-step mutation model with
a scaled mutation rate defined as θ = 2Neμ. Here, μ denotes the muta-
tion rate per microsatellite locus per generation and Ne is the Y-
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effective population size. Population substructure can be allowed for in
SAMPLE aswell, although at a rather simple level. The output of the tool
consists of genetic profiles, stored in onefile, and the coalescent tree and
some additional information about model parameters in a second file.
Only the simulated profiles were used in the present study.

Our software evaluation was carried out using 100 datasets of size
100, 500 and 1000 each. Data were simulated for a single population
under either a constant or a purely exponential growth model. Due to
limitations of IMa2 in terms of the maximum line size allowed in its
input files, the number of microsatellite loci had to be limited to eight.
All eight loci were treated as completely linked (i.e. no recombination
was allowed for during the coalescent process), and random seeds
were used. With a constant population size model, only parameter θ
has to be specified in the input file of SAMPLE. We chose θ = 60,
which corresponds to a Y-effective population size Ne of 10,000
[27,28] and amutation rate μ of 0.0030 per generation permicrosatellite
locus (typical value in the Y Chromosome Haplotype Reference Data-
base [29], Release 59). For the exponential growth model, we chose a
mutation rate of μ=0.0030, a growth rate ofα=0.0050per generation
and a final Y-effective population size of Ne = 10,000 [28,30]. These pa-
rameters correspond to realistic scenarios and still allowed the analyses
to be carried out in reasonable time. For an additional feasibility analysis
considering 20 linked loci at a time, we simulated 100 datasets of size
100, adopting the constant population size model.

2.3. Analysis of Simulated Data

The simulateddatawereanalyzedwithBATWINGv1.0, BEASTv1.8.4,
IMa2 v8.27.12 and LAMARCv2.1.10, using two different sets of prior dis-
tributions for the evolutionary parameters θ (scaled mutation rate), Ne

(Y-effective population size), μ (mutation rate) and α (growth rate).
The sets of priors comprised different distribution types and different
variance values (for details, see below), and the set with large variance
values will henceforth be referred to as ‘less informative’ whereas the
set with small variance values will be termed ‘more informative’.
BEAST and BATWING offer a variety of prior distribution types whilst
IMa2 and LAMARC only support uniform distributions. Thus, we chose
a log-normal distribution for themore informative set and a gammadis-
tribution for the less informative set for BEAST and BATWING. The log-
normal distribution was specified by its mean m = exp(μ + (σ2/2))
and standard deviation s = (exp(σ2)−1)exp(2μ+ σ2), where μ and σ
denote themean and standard deviation of the corresponding (non-log-
arithmic) normal distribution. The gammadistributionwas specified ei-
ther by its shape and scale parameter kg and θg, respectively (BEAST), or
by its shape and rate parameterαg andβg, respectively (BATWING).We
setαg= 1. Note thatm=kgθg and θg=αg/βg for a gamma distribution
so that settingkg=αg=1 implies that the remainingparameters θg and
βg result directly from a given value of m. For IMa2 and LAMARC, which
only support uniform distributions, the 2.5% and 97.5% quantiles of the
respective prior distributions of BATWING and BEAST were used as
boundaries for the uniform distributions. Priors were centered on the
correct value, i.e. m was equated to the value used in the simulations
whereas swas chosen so as to ensure sufficient difference in information
content between the two sets of prior distributions. For further details
on the prior distributions used in our study, see Supplementary
Table S1. To investigate the robustness of the estimates against
misspecification of the prior distribution,we performed additional anal-
yses setting the prior means to 1/2 or 1/10 of the correct values.

A symmetric single-step mutation model was used in all analyses.
Scaledmutation rate θ=kNeμ (not to be confusedwith scale parameter
θg of the gamma distribution) is the central parameter characterizing
the genetic heterogeneity at the leaves of the coalescent tree. Unfortu-
nately, the four tools studied use different values of k in their definition
of θ for Y-chromosomal markers, and these settings had to be adopted
because they cannot be altered by the user (see Supplementary
Table S1). Prior distributions were placed on θ, Ne or μ, or combinations
thereof. The exponential growth model additionally requires specifica-
tion of a prior distribution for growth rate α. With BEAST, IMa2 and
LAMARC, the analysis had to be restricted to completely linked loci
whereas BATWING is designed for haplotypes anyway.We used the de-
fault ‘classic operator mix’ for BEAST which models transition of the
MCMC invoking the four procedures ‘subtreeSlide’, ‘narrowExchange’,
‘wideExchange’ and ‘wilsonBalding’. IMa2 uses an inheritance scalar
c = 0.25 for Y-chromosomal data. Note that all analyses were carried
out adopting the correct population growth model as employed in the
simulations of the respective datasets.

The total length, lMCMC, of the Markov chain was chosen equal to
22,000,000 and the output number was set equal to 100,000. In
BATWING, this was achieved by setting Nbetsamp = 10 and treebetN
= 22. Here, Nbetsamp is the number of attempts by the Markov
chain, between output, to change the model parameters whereas
treebetN is the number of attempted changes of the tree architecture
between attempted changes of the model parameters. This implies
lMCMC=Nbetsamp*treebetN*(number of output). For the other three
tools, the interval between MCMC output was chosen equal to 220
steps accordingly. In LAMARC, the number of attempted changes of
model parameters and of tree architecture was set similar to BATWING.
Running LAMARC turned out to be time-consuming. Therefore, lMCMC

had to be reduced to 220,000 for this tool and, hence, the output num-
ber to 1000. A burn-in of 10% initiated all chain runs to reduce the im-
pact of the start values which were chosen equal to the correct values.

The four tools evaluated in our study are open source and could
therefore be optimized, for example, in terms of their runtime behavior.
The default configurations were modified so as to achieve maximum
performance, but with ‘correct’ behavior. Additional compiler flags
were set to fit the executables to the hardware used. Optimization
flags were left unchanged when pre-assigned by the respective tool.
BATWING was compiled with the following settings: 64 bits, high
level optimization, aggressive optimization of arithmetic calculations,
link time optimization, loop unrolling and native architecture optimiza-
tion. BEAST was started with an initial memory allocation of 4 GB and a
maximum memory allocation of 16 GB, using BEAGLE library v3.1.2
[31]. IMa2 was compiled with 64 bits, moderate level optimization
(pre-assigned by the software), link time optimization, loop unrolling
and native architecture optimization. The configuration was rebuilt for
the native architecture with GNU Autoconf v2.69 and automake
v1.15.1. IMa2 has a lower threshold of three for the number ofmicrosat-
ellite repeats. To avoid falling below this limit during themutation pro-
cess, the simulated repeat numbers were increased by 100. For
LAMARC, input-output (IO) of special-case divergence code was dis-
abled because this IO was unnecessary and would have greatly in-
creased runtime. For further performance improvement, LAMARC was
compiledwith 64bits, high level optimization (pre-assigned by the soft-
ware), link time optimization, loop unrolling (pre-assigned by the soft-
ware) and native architecture optimization. Like with IMa2, the
configurationwas rebuilt for the native architecturewith GNUAutoconf
v2.69 and automake v1.15.1. Except for BEAST, all tools were compiled
with gcc v7.3.0 for a 16-cores (2x Intel(R) Xeon(R) E5-2620 v4/
2.1 GHz) system with 64 GB DRAM and Ubuntu 18.04.1 LTS (Linux),
which was also used for analysis. BEAST was run with Java RE 1.6.

All analyses were carried out using custom batch scripts in a round
robin distribution. The number of threads was set to automatic in the
parallel version of BEAST. Output was processed, summarized and ana-
lyzed with custom scripts using statistics software R v3.5.1 [32] and
exported with R package xlsx [33]. Except for IMa2, which provides
graphical and other analysis options itself, output was evaluated by
Tracer [34] to test parameter settings and visualize convergence behav-
ior. BATWING output had to be converted into Tracer readable format
first, using C programs.

To analyze the impact of lMCMC onparameter estimation accuracy,we
also re-ran each tool on 10 randomly chosen datasets, butwith a 10-fold
increased lMCMC value (i.e. 220million instead of 22million), adopting a
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constant population size and less informative priors. Owing to the poor
runtime behavior of LAMARC, we had to limit lMCMC by 4.4 million for
this tool (instead of 220,000 as in the former evaluation of LAMARC).
For each dataset and each analysis, parameter estimates were derived
at different points of the chain, namely after 110,000, 220,000, 880,000,
2.2 million, 4.4 million, 8.8 million, 22 million, 44 million, 88 million,
110million,154millionand220million iterations. Sincenointermediate
parameter values were provided by IMa2 during chain runs, multiple
runs of theMarkov chain had to be carried out for this tool.

3. Results

3.1. Population Genetic Models and Other Functionalities

The four tools evaluated in our study support different population
genetics models and provide different data analysis options (Table 1).
BEAST offers the greatest variety in terms of evolutionary models, espe-
cially with respect to population growth and mutation. The standard
constant population size model is implemented in all tools and, with
the exception of IMa2, the tools also support exponential population
growth. Some additional growth models are implemented in BEAST.
The standard single-step mutation model is available in all tools.
BATWING provides only one additional mutation model, namely the
K-allele model, whereas LAMARC and IMa2 offer a multitude of alterna-
tivemutationmodels. BEAST even allows customization of themutation
model by XML specification. The tools varymarkedly regarding the han-
dling ofmultiple populations andmigration. IMa2 and LAMARC support
themost flexiblemigrationmodels through the consideration of uncon-
strained migration parameters. BEAST and BATWING, in contrast, allow
no migration after splitting events. Only basic evolutionary models are
implemented in BATWING, which is also the only tool limited to haplo-
types and incapable of handling DNA sequence data. Some tools have
specialized evolutionary models incorporated, such as molecular clocks
(BEAST) or meiotic recombination (LAMARC).

All tools use a BayesianMCMCmethod, and LAMARC additionally in-
cludes a maximum likelihood approach based upon importance sam-
pling. LAMARC and IMa2 also implemented more advanced MCMC
models by including heating (also called ‘Metropolis-coupled’ MCMC).
BEAST allows modification of the transition probabilities of the Markov
chain by the use of so-called ‘MCMC operators’. IMa2 and LAMARC sup-
port only a uniform prior distribution for the evolutionary parameters,
which may be too simplistic a choice if external information on param-
eters is available. BATWING and BEAST, in turn, are more flexible in
Table 1
Functionalities of investigated tools.

Functionality Tool

BATWING BEAST

Data type STR, SNP, K-Allele DNA, STR, SNP
Linkage Completely linked

(haplotypes)
Mix of linked and unlinked markers

Population
size model

Constant, exponential Coalescent: constant, expansion, exponen
other: Yule, birth and death

Mutation
model

Stepwise, K-allele Various standard substitution models, cu
specification

Migration
model

No migration after splitting
events

No migration after splitting events

Inference
framework

MCMC MCMC

Prior
distributions

Constant, uniform, normal,
lognormal, gamma

Constant, CTMC, (infinite) uniform, norm
(inverse) gamma, exponential, 1/x

Output
parameters

μ, Ne, α, β, TMRCA,
likelihoods

Ne, α, μ, TMRCA, branch rates, likelihoods

Special
features

Molecular clock models, MCMC operators

STR, short tandem repeat ormicrosatellite; SNP, single-nucleotide polymorphism;XML, extensib
GTR, general time-reversible model; MCMC, Markov chain Monte Carlo; MLE, maximum likeli
common ancestor.
terms of prior distributions. The standard, constant population size coa-
lescentmodel has only one parameter, namely the scaled mutation rate
θ=kNeμ. Here, μ denotes themutation rate permicrosatellite locus per
generation and Ne is the Y-effective population size. LAMARC is the only
tool for which θ is the sole parameter and estimation is also restricted to
this parameter. The other three tools allow input of two of the three pa-
rameters θ, Ne and μ, and the third parameter has to be calculated from
the other two, if required. Only θ is directly estimated from the data. For
the estimation of Ne and μ, the prior distributions are taken into account.

3.2. Technical Characteristics

All tools are open source under GNU Public License or compatible,
but are implemented using different programming languages. Thus
BEAST was written in Java whereas the other tools were written in
C or C++. Further technical characteristics include (i) the support of
parallel computation, (ii) the user interface and (iii) the availability of
special options such as batch mode or GPU usage (Table 2).

• Only BEAST supports parallel mode. A fork and a successor with paral-
lel mode are available for IMa2, and a fork is available for LAMARC, but
these versions require either multiple populations or multiple chains.

• GPU support was announced possible for BEAST alone, but such sup-
port was not available for microsatellite data in the BEAST version
tested.

• Batch scripts are explicitly incorporated by LAMARC only whereas, for
the other tools, they may be used but have to be adapted manually.

• As regards user interface, BATWING and IMa2 are command-line only
while BEAST is operated via a graphical user interface (GUI) but also
offers a command-line mode. Input files are most easily created in
the GUI using the BEAUTI software, which is part of BEAST. Additional
technical parameters, such asmaximum heap size, can be customized
in the executable scripts of BEAST. LAMARC offers a GUI via compiler
option but can also be used in command-line mode and through a
text-based user interface (TUI).

• The quality of the documentation of the tools varies considerably. The
best documentation regarding the theoretical basis of the software,
the definition of input parameters and the interpretation of output is
provided by the BATWING manual, which is available online. The
most important documentation for BEAST is available on its website
and its well-supported online user forum. Moreover, BEAST comes
with a manual and a book, even though the latter is mainly on BEAST
2. Despite the comprehensive documentation, however, it was difficult
IMa2 LAMARC

DNA, STR, SNP DNA, STR, SNP, K-Allele
Mix of linked and unlinked
markers

Mix of linked and unlinked
markers

tial, logistic; Constant Constant, exponential

stom XML Infinite sites, HKY, stepwise,
compound locus

Stepwise, K-allele, F84, GTR,
brownian motion

Gene flow: unconstrained Gen flow: constant, symmetric,
unconstrained

MCMC MCMC, MLE

al, lognormal, Uniform Uniform, original or logarithmic
values

θ, μ, migration rates θ, α, migration rates,
recombination rates, likelihoods

Heating Recombination models, multiple
chains, heating

lemarkup language; HKY,Hasegawa-Kishino-Yano; F84, Felsenstein84nucleotidemodel;
hood estimation; CTMC, continuous time Markov chain; TMRCA, time to the most recent



Table 2
Technical details of investigated tools.

Specific Tool

BATWING BEAST IMa2 LAMARC

Evaluated version V1.0 V1.8.4 V8.27.12 V2.1.10
End of development Yes No No No
Fork R package

rforensicbatwing
BEAST 2 IMa2p MIGRATE-N

Open version control
system

No Git No No

GUI No Yes No (Yes)
TUI No No No Yes
Batch mode No No No Yes
Parallel mode No Yes No No
GPU No (Yes) No No
Programming
language

C Java C++ C++

Compiled binary for
OS

Win, Unix, Mac Java 1.6 Win, Unix, Mac Win, Unix, Mac

Source code
available

Yes Yes Yes Yes

Documentation Manual Manual, website, tutorial, forum,
(book), workshops

Manual, how-to Website, tutorials

License GPLv2 LGPL GPLv2 Apache license, version 2.0
Special features Simulation program

SAMPLE
Supports Tracer Data summary and visualization, live

analysis updates, AC
Supports Tracer, run report in XML, input
data converter

GUI, graphical user interface; TUI, text-based user interface; GPU, graphics processing unit; OS, operating system; Win, Microsoft Windows; Mac, Macintosh; GPLv2, GNU General Public
License Version 2; LGPL, Lesser GNU Public License.2; AC, autocorrelation; XML, extensible markup language.
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for us to find the correct settings for BEAST, perhaps partly due to the
complexity of the implemented population genetic models. Even ded-
icated workshops are being organized for potential BEAST users. The
documentation of IMa2 comprises both an extensive manual and a
short introduction that covers general principles of, and assumptions
underlying, the tool. LAMARC provides HTML documentation with tu-
torials on its website, which can also be downloaded.

BEAST and LAMARC yield output that can be uploaded to the Tracer
tool for data visualization and convergence diagnostics. IMa2 provides
direct options for data summary and visualization, live analysis updates
and the calculation of autocorrelation as part of the tool. A special fea-
ture of BEAST is its recommended supplementation with the external
BEAGLE library for better performance. This library is independent of
BEAST and has to be installed separately. For version management,
BEAST uses a GitHub repository and thereby offers simple access to all
versions and forks as well as support of all other Git features.

All tools evaluated except BEAST are restricted in terms of their pa-
rameterization. BATWING can only handle 255 input parameters
which limits, for example, the number of loci. IMa2 has a range of
Table 3
Parameter estimation from simulated data (8 loci, constant population size).

Sample size Prior Parameter BATWING BEA

100 More inf θ 60 (45–75) 62
μ 0.0031 (0.0025–0.0035) 0.0

Less inf θ 61 (44–77) 62
μ 0.0037 (0.0033–0.0041) 0.0

500 More inf θ 60 (53–69) n.c.
μ 0.0031 (0.0028–0.0033) n.c.

Less inf θ 60 (53–69) n.c.
μ 0.0037 (0.0031–0.0043) n.c.

1000 More inf θ 60 (55–65) n.c.
μ 0.0030 (0.0029–0.0032) n.c.

Less inf θ 60 (54–65) n.c.
μ 0.0037 (0.0031–0.0043) n.c.

θ, scaled mutation rate; μ, mutation rate per generation and microsatellite locus; more inf, se
achieved when stopping the MCMC. For each of the simulated 100 datasets per combination o
μ were obtained. Given are the mean and 0.025 and 0.975 quantiles (in brackets) of these 1
MCMC chain length was reduced by a factor of 100 for LAMARC due to poor runtime behavio
θ was calculated as θ = 2Neμ. IMa2 outputs θ and μ directly whilst for LAMARC only output θ i
hard-coded limits for several parameters. Limits are in effect for the
number of loci (≤400), the number of chains (≤1000), the number of
genes (≤1000), the number of populations (≤10), the number of linked
loci (≤15) and the number of characters per line (≤300). The latter re-
striction limits the number of linked loci even further because these
loci are required to be entered in the same line. Note that unlinked
loci are specified in different lines. LAMARC has hard-coded limits for
starting values e.g. for θ (≤100), for the scaled migration rate M
(≤10,000, where M = m/μ and m denotes the probability for a lineage
to immigrate in a given generation) and for the scaled growth rate A
(≤15,000, where A = α/μ).

3.3. Accuracy and Convergence

To compare the parameter estimation accuracy of the four tools, we
simulated100datasetsofeight lociof size100,500and1000each,assum-
ingeithera constantoranexponentiallygrowingpopulationsize.Undera
constant population size model, a sample size of 100 yielded estimates
very close to the parameter values used in the simulations, i.e. θ= 60
and μ = 0.0030, with all tools (Table 3). Increasing the sample size to
ST IMa2 LAMARC

(45–77) 61 (45–77) 60 (47–75)
031 (0.0025–0.0036) 0.0031 (0.0031–0.0032) 0.0030 (0.0024–0.0038)
(44–80) 61 (45–78) 61 (45–76)
036 (0.0032–0.0041) 0.0031 (0.0031–0.0032) 0.0031 (0.0023–0.0038)

60 (53–69) n.c.
0.0030 (0.0030–0.0031) n.c.
60 (54–70) n.c.
0.0030 (0.0030–0.0031) n.c.
62 (57–68) n.c.
0.0030 (0.0030–0.0030) n.c.
62 (57–68) n.c.
0.0030 (0.0030–0.0030) n.c.

t of more informative priors; less inf, set of less informative priors, n.c., no convergence
f sample size and prior distribution set, the means of the posterior distributions of θ and
00 means. The values used for simulation were θ = 60 and μ = 0.0030. Note that the
r. For BATWING and BEAST, the original output was Y-effective population size Ne and μ;
s provided, so that μwas calculated from the correct value Ne = 10,000.



Table 4
Parameter estimation from simulated data (8 loci, exponential population growth).

Sample size Prior Parameter BATWING BEAST LAMARC

100 More inf θ 60 (45–78) 57 (43–74) 67 (50–81)
μ 0.0030 (0.0026–0.0034) 0.0029 (0.0026–0.0033) 0.0034 (0.0025–0.0040)
α 0.0050 (0.0037–0.0065) 0.0050 (0.0038–0.0067) 0.0055 (0.0037–0.0076)

Less inf θ 63 (41–97) 59 (38–88) 69 (49–88)
μ 0.0034 (0.0029–0.0038) 0.0035 (0.0031–0.0040) 0.0034 (0.0025–0.0044)
α 0.0056 (0.0039–0.0080) 0.0062 (0.0040–0.0090) 0.0056 (0.0039–0.0082)

500 More inf θ 60 (52–70) n.c. n.c.
μ 0.0030 (0.0028–0.0032) n.c. n.c.
α 0.0050 (0.0038–0.0066) n.c. n.c.

Less inf θ 60 (51–72) n.c. n.c.
μ 0.0033 (0.0028–0.0038) n.c. n.c.
α 0.0056 (0.0041–0.0072) n.c. n.c.

1000 More inf θ 60 (53–66) n.c. n.c.
μ 0.0030 (0.0028–0.0032) n.c. n.c.
α 0.0050 (0.0039–0.0059) n.c. n.c.

Less inf θ 60 (52–68) n.c. n.c.
μ 0.0033 (0.0029–0.0038) n.c. n.c.
α 0.0056 (0.0042–0.0069) n.c. n.c.

α, growth rate per generation; for further details, see legend to Table 3.

20,000

1,500

100

60

110,000 880,000 4,400,000 22,000,000 220,000,000

lMCMC

θ
BATWING
BEAST
IMa2
LAMARC

Fig. 2. Convergence behavior for θ̂. θ̂, estimated scaled mutation rate; lMCMC, length of the
evaluatedMarkov chain. Ten randomly chosen datasets with a constant population size of
1000were analyzed for a chain length of 220million and the set of less informative priors.
For each analysis, parameter estimates of θ were derived after a different number of
iterations, lMCMC, of the Markov chain, e.g. after lMCMC = 110,000, 220,000, 2.2 million or
220 million iterations of the Markov chain. Since no intermediate parameter values
were provided by IMa2 during chain runs, multiple runs of the Markov chain had to be
carried out for this tool. For LAMARC the maximal chain length was limited by 4.4
million due to poor runtime behavior. For each of the 10 datasets, the means of the
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500, accurate estimateswere still obtainedwith BATWING and IMa2, but
LAMARC and especially BEAST did not converge. A similar behavior was
observed for a sample size of 1000. Again, BATWING and IMa2 gave sur-
prisingly goodestimateswhereas LAMARCandBEASTwere far fromcon-
verging. In theory, accuracy and precision should be higher for more
informative priors but no big difference was noted between the two
types of distribution in our simulations (Table 3). IMa2 could not be stud-
ied under an exponential growthmodel because such a model was not
supported by the software. For the remaining tools, the results were
found to be similar to those obtained with a constant population size
model (Table 4). To investigate the tool performance for larger numbers
of loci, we simulated and analyzed datasets of size 100 for 20 loci. IMa2
was excluded since it could not handle 20 linked loci. The other three
tools yielded similar results to those obtained for the eight loci (Table 5).

The above analyses were carried out with chain lengths of 22million
for BATWING, BEAST and IMa2. For LAMARC, the chain lengths had to be
reduced to 220,000 because of its poor runtime behavior. To investigate
the convergence of theMCMC implementationsmore generally, we ran-
domly selected 10datasets and re-analysed themunder a constant popu-
lation sizemodel, butwith a 10-fold increased chain length of 220million
(4.4million for LAMARC). The chains were then evaluated at different it-
erationstepsof theMarkovchain.Withadataset sizeof1000(seeSupple-
mentary Tables S2 and S3 for smaller sample sizes), where convergence
wasan issue,BATWINGwas foundtoconverge fastest (Fig. 2) and thecor-
rect value θ=60was reached at a chain length of ~8.8million (for details

seeSupplementaryTableS4). IMa2reached θ̂=62after~22millionsteps.

For LAMARC, θ̂=78at the chain length limitof4.4million, avaluenotably
higher than the former estimates but possibly acceptable for certainprac-
tical applications. Finally, BEAST showed very slow convergence but

reached θ̂=61 after 154million steps.

posterior distribution of θ were obtained after different numbers lMCMC of iterations.
Shown are the means of these 10 means for each tool. The correct value, i.e. the value

used for simulation, was θ = 60 (dashed horizontal line). For BATWING and BEAST, θ̂
was calculated from θ = 2Neμ whereas, for IMa2 and LAMARC, θ̂ was obtained directly.
Note that both axes have logarithmic scale. For exact values of the means and maximal

and minimal values of θ̂ and for estimates for Ne and μ, see Supplementary Table S4.
3.4. Estimates for Incorrect Priors

In the preceding analyses, the prior distributions used by the tools
were centered on the correct parameter values. To investigate the
Table 5
Parameter estimation from simulated data (20 loci, constant population size).

Sample size Prior Parameter BATWING BEAST LAMARC

100 Less inf θ 61 (50–74) 63 (51–75) 61 (50–73)
μ 0.0037 (0.0032–0.0043) 0.0036 (0.0032–0.0040) 0.0031 (0.0025–0.0037)

For details, see legend to Table 3.



Table 6
Parameter estimation from simulated data, using incorrect priors (8 loci, constant population size).

Parameter (correct value) MF BATWING BEAST IMa2 LAMARC

θ (60) 1/2 Prior – – U(0,111) U(0,111)
Estimate 60 (44–76) 62 (44–79) 61 (45–79) 60 (45–75)

1/10 Prior – – U(0,22) U(0,22)
Estimate 59 (43–74) 60 (43–76) 22 (22−22) 22 (22–22)

μ (0.003) 1/2 Prior Γ(1,0.003) Γ(1,0.003) – –
Estimate 0.0049 (0.0043–0.0054) 0.0049 (0.0042–0.0055) – –

1/10 Prior Γ(1,0.003) Γ(1,0.003) – –
Estimate 0.0101 (0.0087–0.0112) 0.0101 (0.0086–0.0113) – –

Ne (10,000) 1/2 Prior Γ(1,5000) Γ(1,5000) – –
Estimate 8213 (7283–9261) 8414 (7281–9312) – –

1/10 Prior Γ(1,1000) Γ(1,1000) – –
Estimate 3356 (2923–3733) 3409 (2955–3801) – –

θ, scaled mutation rate; μ, mutation rate per generation per microsatellite locus; Ne, Y-effective population size; correct value: parameter value used in the underlying simulations; Γ(a,b),
gammadistributionwith shape a and scale b (themean is for a=1 equal to the scale); U(a,b), uniformdistributionwith boundaries a and b;MF,misspecification factor. Simulationswere
performed for a sample size of 100. For each of the simulated 100 datasets per prior distribution, themeans of the posterior distributions of θ, μ and Ne were obtained. Given are themean
and 0.025 and 0.975 quantiles (in brackets) of these 100means. MF values of 1/2 and 1/10 correspond to means of 5000 and 1000, respectively, of the priors for Ne (instead of the correct
value of 10,000) and tomeans of 30 and 6, respectively, of the priors for θ (instead of the correct value of 60). Note that theMCMC chain lengthwas reduced by a factor of 100 for LAMARC
due to poor runtime behavior. For BATWING and BEAST, the original output comprised Ne and μ; θ was calculated as θ = 2Neμ. IMa2 and LAMARC output θ directly.
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possible effects of a misspecification, we performed additional analyses
for a sample size of 100 using ‘incorrect’ prior distributions. The mean
of the priors for θwas reduced to 30 and 6, i.e. 1/2 and 1/10 of the correct
value of 60. Since BEAST and BATWING do not allow the priors for θ to be
specified by the user, we accordingly set themean of the priors for the Y-
effective population size Ne to 5000 and 1000 (the correct value being
10,000). If and when available, the priors for μ were left unchanged.
Formoderatemisspecifications of the priormeans of θ and Ne by a factor
of 1/2, the estimates of θwere still found to approximate the true value of
60 very well for all four tools (Table 6). For BEAST and BATWING, where
Ne is included in the output as well, the reduced prior means for Ne

yielded lower estimates of this parameter. However, this reduction was
compensated by higher estimates of μ, which led to fairly accurate esti-
mates of θ. A similar effect became apparent for BEAST and BATWING
when more drastic misspecification of the priors by a factor of 1/10
10
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BEAST_p
BEAST_s
IMa2
LAMARC

Fig. 3. Runtime under a constant population size model. BEAST_s, sequential version of
BEAST; BEAST_p, parallel version of BEAST. The analyses were performed on a 16-core
computer (2x Xeon(R) E5-2620 v4/2.1 GHz) with 64 GB DRAM running Linux OS. For
LAMARC, the chain length was reduced by a factor of 100 due to poor runtime behavior.
Runtimes obtained for the less and the more informative sets of prior distributions were
merged in the figure because they were barely distinguishable. Box plots are based upon
the results obtained from 200 data sets, except for BEAST_p where only 10 datasets
underlie each box plot. Note that the Y-axis has a logarithmic scale.
was assumed (Table 6). Since IMa2 and LAMARC only allow for uniform
prior distributions, the support of these prior distributions did not con-
tain the correct parameter value under the drastic misspecification sce-
nario. Consequently, the two tools yielded estimates coinciding with
the upper boundary of the uniform distribution in this case.

3.5. Runtime

The runtime varied significantly between tools and sample sizes
(Fig. 3, Supplementary Fig. S1, Supplementary Table S5). BATWING
was fastest in all instances, with runtimes between 15 min (sample
size n = 100) to 1.5 h (n = 1000) for eight loci and a constant popula-
tion size model. IMa2 performed second best, with runtimes between
one hour (n = 100) to 7.5 h (n = 1000). BEAST had a comparatively
long runtimebetween 1.5 h (n=100) and19h (n=1000). Theparallel
version of BEAST achieved no noticeable runtime reduction for n=100,
but did so for n = 1000 (12 h). With runtimes between 3 h (n = 100)
and 22.5 h (n = 1000), LAMARC was slowest even though the chain
length had already been reduced by a factor of 100. BATWING was
slightly slower with an exponentially growing population size than
with a constant size (Supplementary Table S5). In contrast, BEAST and
LAMARCwere faster under the exponential populationmodel, although
still slower than BATWING. For 20 loci, the runtimes of BATWING and
BEAST were a little longer than for eight loci, while the runtime for
LAMARC was roughly doubled.

4. Discussion

In the present study, we compared four software tools for the
coalescent-based analysis of genetic data usingMCMCmethods, namely
BATWING, BEAST, LAMARC and IMa2. The tools were found to differ
markedly in terms of their functionality and runtime behavior which
implies that none of them would qualify as a uniquely optimal choice
for practical application. Whether a given tool is useful or not in a
given scientific project depends critically upon the actual requirements
of the project.

As one of the pilots of MCMC-based evolutionary data analysis,
BATWING not surprisingly provides only limited functionality and has
reached a stage of ‘final version’, without further development. Unfortu-
nately, these realities are somewhat typical and reflect a recurrent phe-
nomenon in academia-driven software production. Scientists who
developed a piece of software often turn towards new challenges once
a project is finished, leaving their tool behind without sustainable sup-
port. On the other hand, the simplicity of BATWING also meant that
selecting the parameters for data analysis was easiest for this tool.
BATWING also reached estimates of given accuracy most rapidly and
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clearly outperformed the other three tools with respect to runtime be-
havior. Consequently, BATWING rightly seems the best choice under
the proviso that the evolutionary model of interest is implemented in
the tool.

One of the advantages of BEAST is its ubiquitous applicability on a
variety of platforms and the possibility for users to adapt the tool to
their specific needs by adding plugins. BEAST is under constant develop-
ment, with frequent changes, additions or removals of functionalities,
whichmay render keeping track of themodelling specifications difficult
for users. Nevertheless, means of interaction with users is provided by
an online user forum, and all versions can be accessed through Git.
High computing performance is achieved mainly by the use of external
library BEAGLE, which may not be required for all scenarios but which
provides features such as GPU support. Note that related version
BEAST 2 has an even stronger focus on plugins. Another benefit of
BEAST is its great flexibility of population genetics modelling which
clearly exceeded that of the other three tools, even although migration
cannot yet be taken into account. The cross-platform focus of BEAST
also has one important disadvantage, namely that the programming
language Java chosen for BEAST runs in a virtual machine, which may
partially explain why BEAST is significantly slower than BATWING and
IMa2. In fact, our simulations revealed that BEAST has runtimes that
are one order of magnitude longer than those of BATWING or IMa2 to
achieve similar accuracy. Even parallel mode could not significantly al-
leviate this problem. This may be a serious drawback in practice, espe-
cially when large numbers of samples are involved, and careful review
of the output is necessary to ensure that the algorithm has converged.

IMa2 includes all functionalities necessary for a coalescent-based
analysis of microsatellite data, from parameterization via MCMC to ad-
ditional features such as autocorrelation analysis or summaries and
plots of the results. The runtime behavior of IMa2 is only surpassed by
that of BATWING, and the tool showed good convergence. The possibil-
ity tomodel migration is another asset of IMa2whereas its limitation to
a constant population sizemodel and a uniformprior distribution repre-
sent disadvantages. Recently, a new version, IMa3, has become available
that also offers a parallel mode similar to IMa2p [26], the parallelized
version of IMa2.

With its focus on migration models, LAMARC resembles IMa2 and
provides a large variety of models to such effect. The tool also has the
same disadvantage as IMa2 in that it only supports uniform prior distri-
butions. The most severe problem with LAMARC, however, is its poor
runtime behavior, which was the worst of all four tools. In this regard,
LAMARC appears almost impracticable for applications involving large
datasets. Owing to its poor performance, we even had to reduce the
chain lengths of LAMARC to 220,000 (instead of 22million) in our anal-
yses. Note that LAMARC was written in a C dialect, like BATWING and
IMa2, and does not use a virtual machine so that its performance is
not explicable by programming language. This notwithstanding, the
convergence behavior of LAMARC was still found to be slightly better
than that of BEAST.

Our simulations revealed that practical application to large samples
may be problematic for some of the software. While a sample size of
100 still allowed all four tools to yield fairly accurate results in reason-
able time, this turned out to become increasingly difficult for BEAST
and LAMARC when sample sizes increased to 500 and 1000. Undoubt-
edly, this phenomenon is a direct consequence of the MCMC approach
common to all tools because more samples mean more and larger pos-
sible coalescent trees and, consequently, a less comprehensive search of
the corresponding state space at given chain length. Another important
problem posed by large sample size is the slowdown of convergence.
Therefore, it would be important in practice to ensure that the MCMC
analysis has actually converged for the dataset under study. Multiple di-
agnostic instruments are available for this purpose. The easiest one
would be to perform several runs with different seeds and different
chain lengths, followed by an assessment of whether a consistent
(asymptotic) estimate has been reached. In our study, we observed
that parameter θ, in particular, was liable to overestimation with non-
convergent chains. Other suitable diagnostic procedures include trace
plots, autocorrelation and the Gelman-Rubin and Geweke diagnostics
[35,36]. Many of these approaches are implemented in the Tracer soft-
ware, which is supported by BEAST and LAMARC.

In summary, current runtimes for chain lengths necessary to yield
sufficient accuracy for large sample sizes might be prohibitive, at least
for LAMARC and BEAST. For better comparability between the imple-
mentedMCMC approaches, accuracy and runtime behavior were evalu-
ated using single chains only. It is obvious, however, that single chains
require long runtimes to search a tree space comprehensively, leading
to impractical performance with large datasets. One possible solution
to this problem would be the implementation of multiple chains. A
more advanced version of this approach is Metropolis-coupled MCMC
where several Markov chains are run in parallel, but with different
heating parameters. The overall chain comprises two steps per iteration.
First, all individual chains are updated, using a typical proposal distribu-
tion. Then, state spaces are swapped between chains according to a sec-
ond proposal distribution. Metropolis-coupled MCMC is implemented
in LAMARC and IMa2 whilst BEAST offers so-called ‘MCMC operators’
that allow modification of the proposal distribution of the Markov
chain. Evaluation of advanced MCMC methods as implemented in one
or the other of the four tools was outside the scope of this study, but
would be worthwhile future research. Suchlike studies would reveal
to what extent optimization of MCMC operators or the parameters of
Metropolis-coupled MCMC alleviates the convergence and runtime
problems of LAMARC and BEAST.

The accuracy and convergence behavior of individual tools were
assessed in our study in simulated datasets that were generated with
SAMPLE, software distributed alongside BATWING and employed here
merely for efficiency reasons. This notwithstanding, the use of
SAMPLEmight raise concerns whether our results were biased towards
BATWING. However, coalescent simulation under constant or exponen-
tially growing population models is straightforward and its outcome
should not dependupon the software used to create the data.Moreover,
the MCMC analysis implemented in BATWING employs an approach
different from the simulation with SAMPLE so that said bias is indeed
quite unlikely.

Most of our analyses employed prior distributions that were cen-
tered on the correct values. Since, in reality, the true value of a parame-
ter is typically unknown, we also performed simulations with
misspecified prior means. These additional analyses still resulted in suf-
ficiently accurate estimates of θ for all four tools, which indicates that
the likelihoods dominated the incorrect priors and thus ensured ade-
quate posterior distributions. However, it must be remembered that
our study employed only two simple demographicmodels (i.e. constant
and exponentially growing population size). Hence, it would be an in-
teresting subject of future comparative studies of the four tools to assess
the impact of misspecification under more complex models involving,
for example, population bottlenecks.

We simulated Y-chromosomal microsatellite data and, hence, our
results regarding accuracy and runtime are confined to this type of ge-
neticmarkers. Clearly, an extension of the tool comparison to autosomal
markers, DNA sequences and single-nucleotide polymorphisms (SNPs)
would be warranted. Another possible augmentation would be the re-
placement of the single-step symmetric mutation model, which is
known to be an oversimplification, by more realistic models that have
been proposed in the past [37–39].

The scaled mutation rate θ is the critical parameter of a coalescent
with mutations. It is defined as θ = kNeμ, where usually k = 4 or k =
2. The rationale behind θ is to combine the evolutionary effects of muta-
tion and Y-effective population size in one parameter. In fact, under cer-
tain assumptions, the genetic variation in a population only depends
upon the product of Ne and μ, rather than each parameter individually
[40]. The term ‘scaledmutation rate’ refers to the fact that time is scaled
by Ne in the coalescent approximation. Since θ also equals the expected
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number of mutations separating two genetic profiles, it determines the
genetic distribution at the leaves of the coalescent tree. Parameter θ can
be estimated directly by coalescent-based MCMC methods, whereas Ne

and μ have to be derived (indirectly) from θ using additional informa-
tion included in the priors. Estimates of θ are therefore generally more
accurate than those of Ne and μ, although both parameters may often
be scientifically interesting in their own right. This phenomenon also
became apparent in our analyses with incorrect priors, where Ne was
estimated too low with BEAST and BATWING, but the estimates of θ
were fairly accurate. The same analyses also showed that, adopting uni-
form prior distributions for θ (the sole options for IMa2 and LAMARC),
the boundaries of these distributions are sometimes returned as esti-
mates, indicating that either the model or the priors were inadequate
for thedata analyzed. Notably, LAMARC avoids estimation of Ne and μ al-
together and accounts for θ alone in its MCMC implementation. Conse-
quently, LAMARC provides no opportunity to estimate Y-effective
population sizes or mutation rates directly.

When drawing practical conclusions from our comparison of the
four MCMC-based tools, one has to bear in mind that they were built
for specific purposes.While LAMARC and IMa2 put a focus onmigration,
BATWINGwas developedmainly as a proof of principle, without includ-
ing extensive population genetics models at all. In turn, BEAST concen-
trates on cross-platform applicability and a large variability of
implemented models. Another factor determining the function and for-
mat of each tool is the data types to be analyzed. For example, different
requirements result when studying within-species or between-species
data, data of closely related species or data from populations with geo-
graphic structure. Therefore, the results of our comparative study
should also be gauged in relation to the purpose and provenance of
the respective tool.
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