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A B S T R A C T   

Background: ICD-10 has been widely used in statistical analysis of mortality rates and medical 
reimbursement. Automatic ICD-10 coding is desperately needed because manually assigning 
codes is expensive, time-consuming, and labor-intensive. Diagnoses described in medical records 
differ significantly from those used in ICD-10 classification, making it impossible for existing 
automatic coding techniques to perform well enough to support medical billing, resource allo
cation, and research requirements. Meanwhile, most of the current automatic coding approaches 
are oriented toward English ICD-10. This method for automatically assigning ICD-10 codes to 
diagnoses extracted from Chinese discharge records was provided in this paper. 
Method: First, BERT creates word representations of the two texts. Second, the context repre
sentation layer incorporates contextual information into the representation of each time step of 
the word representations using a bidirectional Long Short-Term Memory. Third, the matching 
layer compares each contextual embedding of the uncoded diagnosis record against a weighted 
version of all contextual character embeddings of the manually coded diagnosis record. The 
matching strategy is element-wise subtraction and element-wise multiplication and then through 
a neural network layer. Fourth, the matching vectors are combined using a one-layer convolu
tional neural network. A sigmoid is then used to output matching results. 
Results: To evaluate the proposed method, 1,003,558 manually coded primary diagnoses were 
gathered from the homepage of the discharge medical records. The experimental results showed 
that the proposed method outperformed popular deep semantic matching algorithms, such as 
DSSM, ConvNet, ESIM, and ABCNN, and demonstrated state-of-the-art results in a single text 
matching with an accuracy of 0.986, a precision of 0.979, a recall of 0.983, and an F1-score of 
0.981. 
Conclusion: The automatic ICD-10 coding of Chinese diagnoses is successful when using the 
proposed deep semantic matching approach based on analogical reasoning.   

1. Introduction 

ICD-10 [1] has been widely used in the statistical analysis of mortality rates and medical reimbursement. In China, ICD-10 codes are 
typically assigned to medical records in China by coders working in the hospital’s medical record department [2]. The coders must 
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master the knowledge of coding rules, medical terminologies, and the field of medicine in order to complete the assignment [3]. 
Because of the complexity of the ICD-10 structure and the enormously increasing number of ICD-10 codes, ICD-10 coding work has 
become much more laborious and time-consuming, even if a coder with professional abilities takes approximately 30 min per case on 
average [4]. Considering these constraints, there is an urgent need to develop an accurate and effective automatic ICD-10 coding 
method. 

There have been numerous studies on automatic and semi-automatic ICD coding as a solution to the massive amounts of human 
labor required for manual coding. Early research typically used supervised machine learning approaches. Boytcheva et al. used the 
multiclass support vector machines method for automatic mapping of ICD-10 codes to diagnoses extracted from discharge letters [5]. 
Koopman et al. trained support vector machine classifiers to automatically assign ICD-10 codes to cancer texts from death certificates 
[6]. However, it is difficult for machine learning methods to deal with high-noise and highly redundant electronic medical records 
affected by the diverse expressions of doctors. 

Many recent approaches apply deep learning to automatic ICD coding [7]. Xie et al. built a neural architecture, including a 
tree-of-sequences LSTM, an adversarial learning approach, isotonic constraints, and attentional matching, for automated coding of 
discharge diagnosis in discharge summaries [8]. Baumel et al. presented HA-GRU, a hierarchical approach to tagging a document by 
identifying the sentences relevant for each label, for assigning multiple ICD codes to discharge summaries [9]. Duarte et al. leveraged a 
deep neural network that combines word embeddings, recurrent units, and neural attention for the assignment of ICD-10 codes for 
causes of death by analyzing free-text descriptions in death certificates [10]. The findings showed that the deep learning-based 
methods performed better than other traditional methods. However, most of the automatic coding studies based on deep learning 
are oriented towards English ICD-10, and the approaches for English text cannot be applied directly to Chinese text due to the dif
ferences in the linguistic feature [11]. 

There are still some studies based on Chinese ICD-10 published by the Statistical Information Center of the NHFPC of the People’s 
Republic of China [2]. Yu et al. presented a MA-BiRNN model to assign disease codes of Chinese clinical notes [12]. Chen et al. 
presented an improved approach based on the LCS and semantic similarity for automatic Chinese diagnosis, mapping from the Chinese 
disease names given by clinicians to the disease names in ICD-10 [2]. However, the difference between the diagnosis records and the 
ICD-10 names is too large because ICD-10 is not a clinical nomenclature standard rather than a clinical classification standard. For 
example, the diagnosis record “烫伤残余创面5%躯干、左上下肢 (Scald residual wound on 5% trunk, left upper and lower limbs)” 
needs to be coded with “T31.001”, whereas the corresponding ICD-10 name is “少于体表面积10%轻度烧伤(Burns involving less than 
10% of body surface)”. Therefore, the performance of current automatic coding still cannot meet the needs of medical billing, health 
resource allocation, and medical research. 

A large number of manual ICD-10 coding histories have been stored in many hospitals. After a patient’s clinical treatment, ICD-10 
coders manually assign ICD-10 codes to diagnosis records [2]. Analogical reasoning is a pattern shown in Fig. 1 [13]. The matching 
between an uncoded diagnosis record and an ICD-10 name turns into the matching between an uncoded diagnosis record and a 
manually coded diagnosis record, thereby inferring the ICD-10 codes of the uncoded diagnosis record with the help of manual ICD-10 
coding histories. The issue of the significant discrepancy between diagnosis records and ICD-10 names can be easily solved using 
analogical reasoning. 

However, the automatic ICD-10 coding using simple analogical reasoning may have a cold start problem, there may be no similar 
record in the manually coded diagnosis records. Therefore, in order to achieve a comprehensive automatic ICD-10 coding, the flow of 
automatic ICD-10 coding was designed and shown in Fig. 2. First, analogical reasoning was used to find similar manually coded 
diagnosis records. If there is no similar record, the traditional method was used to find a similar ICD-10 standard term. 

In this paper, the idea of analogical reasoning and deep semantic matching was employed in the automatic ICD-10 coding of 
Chinese diagnoses, as shown in the following. 

2. Materials and methods 

Text matching is a hot research direction in the field of natural language processing. To overview the development of text matching, 
the following four methods can be used as the baseline. 

DSSM [14]: The latent semantic model with a deep structure was developed to express the semantic word vectors, and the distance 
between the two semantic vectors is calculated by cosine similarity. 

ConvNet [15]: The convolutional neural network architecture for reranking pairs of short texts was presented that learned the 
optimal representation of text pairs and a similarity function to relate them in a supervised way from the available training data. 

ESIM [16]: The intra-sentence attention mechanism was utilized to realize local inference, and further incorporating syntactic 
parsing information contributes to realizing global inference. 

ABCNN [17]: Three attention schemes were proposed to integrate mutual influence between sentences into CNNs for modeling a 

Fig. 1. The process of automatic ICD-10 coding with analogical reasoning.  
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pair of sentences. The ABCNN-3 was used as the baseline. 
In order to compare an uncoded diagnosis record with previously manually coded diagnosis records, we developed a deep semantic 

matching algorithm shown in Fig. 3. The deep semantic matching algorithm includes input, a word representation layer, a context 
representation layer, a matching layer, an aggregation layer, and an output layer. To train the model, the cross entropy of the training 
set was minimized, and Adaptive Moment Estimation was used for model optimization. The learning rate was set as 0.002. 

2.1. Input 

The model leverages two texts as inputs: an uncoded diagnosis record and a manually coded diagnosis record. 

Fig. 2. The flow of automatic ICD-10 coding.  

Fig. 3. The proposed deep semantic matching algorithm architecture.  
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2.2. Word representation layer 

There is no visible morphological marking or word boundary in Chinese text. Chinese characters serve as semantic indicators and 
bring certain levels of semantics [18]. Therefore, the BERT train Chinese character embeddings to represent semantics, using corpora 
from the open-source projects, Chinese-BERT-wwm [19]. Data includes Chinese Wikipedia, other encyclopedias, news, Q&A, and 
other data. The outputs of this layer are two sequences of word vectors, the uncoded diagnosis record is turned into P = (p1, p2,⋯, pM)

and the manually coded diagnosis record is turned into Q = (q1,q2,⋯,qN). M and N denote the length of P and Q. The length of the 
word embeddings is 300-dimensional. For the out-of-vocabulary words, the word embeddings were randomly generated. During 
training, the pre-trained word embeddings were not updated. 

2.3. Context representation layer 

The context representation layer incorporates contextual information into the representation of each time step of P and Q. Every 
character embedding in P is given in both direct and reverse orders to a BiLSTM [20]. For each time-step of P, the concatenation of the 
forward and backward representations from the BiLSTM is employed as a contextual embedding. The hidden size in BiLSTM was set as 
100. 
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2.4. Matching layer 

The matching layer compares each contextual character embedding of the uncoded diagnosis record against a weighted version of 
all contextual character embeddings of the manually coded diagnosis record. A multi-perspective matching is implemented among P 
and Q as shown in Fig. 4, matching each embedding of P against all embeddings of Q, and each embedding of Q against all embeddings 
of P. The outputs of this layer are two matching vectors, where each matching vector corresponds to the matching result of hp

i against 
all hq

j . 
The diagram of the matching calculation is shown in Fig. 3. First, the similarity or relatedness between each forward or backward 

contextual embedding of the uncoded diagnosis record (hp
i

→
or h

←

i
p) and every forward or backward contextual embedding of the 

manually coded diagnosis record (hq
j

→
or h

←

j
q, j = 1, …, N) is calculated using the cosine similarity. 

Fig. 4. The diagram of the matching calculation.  
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A neural network layer that consists of a linear transformation and a non-linear activation function was carried out. The non-linear 
activation function used the ReLU. 
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2.5. Aggregation layer 

A one-layer CNN is utilized to aggregate the matching vectors mnn
i . 

f =CNN
( [

mnn
1 ,mnn

2 ,…,mnn
M

])
(15)  

2.6. Output layer 

Finally, a 2-class classifier is utilized to output mapping results, which consists of multiple fully connected layers and a sigmoid 
layer. 

2.7. Evaluation metrics 

Accuracy, precision, recall, and F1-score are widely used to evaluate the performance of a binary classifier. Accuracy, precision, 
and recall are defined as follows: 

accuracy=
TP + TN

TP + NP + TN + FP
precision =

TP
TP + FP

recall =
TP

TP + FN
(16)   

True Positive (TP) is an outcome where the model correctly predicts the positive class. 
True Negative (TN) is an outcome where the model correctly predicts the negative class. 
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False Positive (FP) is an outcome where the model incorrectly predicts the positive class. 
False Negative (FN) is an outcome where the model incorrectly predicts the negative class. 

The F1-score is the harmonic mean of precision and recall with equal weights according to the following formula: 

F1 − score =
2 ∗ precision ∗ recall

precision + recall
(17)  

3. Results 

3.1. Datasets 

From February 1, 2016, to August 30, 2021, 1,003,558 manually coded primary diagnoses on the homepage of the discharge 
medical records were collected as the data set, from a hospital in Hainan, China. In order to evaluate the validity of the proposed 
model, the raw diagnostic data needs to be de-duplicated. 162,085 raw diagnoses were obtained after the de-duplication. Each 
manually coded primary diagnosis consisted of a diagnostic statement and the corresponding ICD-10 name and code. Fig. 5 showed the 
histogram of the number of ICD-10 codes per chapter, and chapter IX (Diseases of the circulatory system) contains the most codes 
(175,138). There were 57,168 unencodable primary diagnoses, such as diagnostic texts including “post-surgery”, that were the status 
of patients after undergoing surgical procedures. The top three codes were I10 06, I25.101, and K29.502, which appeared 27,015, 
22,381, and 20,059 times and represented essential hypertension grade III, coronary atherosclerotic heart disease, and Chronic 
gastritis. 

The 143,680 manually coded primary diagnoses were used for the training set, 9214 for the development set, and 9191 for the test 
set. An equal number of mismatched negative samples were randomly generated. The data preprocessing included text segmentation, 
data deduplication, error text deletion, irregular text replacement, and symbol processing rules [21]. 

3.2. Evaluation of the proposed method 

To verify the validity of analogical reasoning, the comparative experiments between the matching of Chinese diagnosis and manual 
ICD-10 coding history (Analogical reasoning method) and the matching of Chinese diagnosis and ICD-10 standard names (Traditional 
method) were carried out. Table 1 shows the comparison results, which prove the necessity of analogical reasoning in Automatic ICD- 
10 coding. 

Considering automatic ICD coding as a text-matching problem rather than searching for the possible ICD-10 codes level by level, a 
constructive deep semantic matching algorithm based on analogical reasoning was designed and implemented. Many text matching 
algorithms were used in clinical diagnosis for the task of automatic coding. Table 2 shows a performance comparison of our proposal 
with previous algorithms advanced in the literature, in the average value and the 95% confidence interval. 

Table 2 presents the results obtained by each model. Our model exceeded all baselines with an accuracy of 0.986, a precision of 
0.979, a recall of 0.983, and an F1-score of 0.981. Among the compared text matching models, our proposed method achieves the best 
results in the ICD-10 automatic coding, proving that the text matching method is the most effective to reduce the coding burden 
manually. 

The above confidence interval calculation used random sampling that can investigate the sensitivity of the model parameters on a 
specific dataset. But for some datasets whose distribution is unknown, it cannot show the performance of models. To estimate the 

Fig. 5. Number of diagnosis codes per Chapter.  
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performance of the model on unseen data, an experiment with bootstrap confidence intervals had been also carried out and shown in 
Table 3. 

Table 3 presents the results obtained by each model on bootstrap confidence intervals. The results of BCI and CI are very close, 
which fully proves that the model can effectively handle unseen data. 

3.3. Evaluation of word representation layer 

There are many word representation models that can represent words as feature vectors to reveal semantic dependencies. For 
example, the ‘lung’ and ‘pulmonary’ have similar word vectors but irrelevant glyphs. Table 4 compares a few traditional word rep
resentation models. The word representation layer using BERT outperformed all baselines. This indicates that, by pretraining deep 
bidirectional representations from the unlabeled text by jointly conditioning on both left and right context, our model can better 
capture the semantic relations of words, and learn more accurate word representations [22]. 

3.4. Evaluation of context representation layer 

Many models can capture each time step of text, such as RNN, GRU, LSTM, and BiLSTM [28–30]. Table 5 displays a comparison 
between these models (None is Not using the text representation layer). The result of None is the worst, indicating that the text 
representation layer is necessary for the model. The GRU and LSTM were superior to RNN with the additional “gates” for the purpose of 
memorizing longer sequences of input data. Our model using BiLSTM outperformed GRU and LSTM, enabling additional training by 
traversing the input data twice, left-to-right and right-to-left. 

3.5. Evaluation of matching layer 

Six ablation matching strategies were compared in order to demonstrate the effectiveness of the proposed matching strategy, and 
the results are reported in Table 6. Our model outperformed all ablation matching strategies, and all the calculations were really 
necessary for acquiring better performance. The SUB and MULT methods outperformed the Cosine similarity and Euclidean methods. 
The SUB method is similar to the idea of Euclidean distance, that is the square root of the sum of squared differences between cor
responding elements of the two vectors. The SUB method preserves original information about the different dimensions of the two 
vectors instead of summing them up. The MULT method is similar to the idea of cosine similarity. When combining SUB and MULT 
followed by an NN layer, the performance improves significantly. Therefore, our matching strategy is really effective for automatic 
ICD-10 coding, and eliminating any method would hurt the performance. 

Table 1 
Verification of analogical reasoning.  

Method Accuracy Precision Recall F1-score 

Traditional method 0.697 0.722 0.652 0.685 
Analogical reasoning method 0.986 0.979 0.983 0.981  

Table 2 
The results of deep semantic matching models.  

Network Accuracy (CI: 95%) Precision (CI: 95%) Recall (CI: 95%) F1-score (CI: 95%) 

DSSM 0.719 [0.700–0.736] 0.725 [0.711–0.737] 0.836 [0.828–0.845] 0.777 [0.773–0.782] 
ConvNet 0.954 [0.942–0.967] 0.956 [0.945–0.970] 0.956 [0.947–0.966] 0.956 [0.952–0.962] 
ESIM 0.971 [0.964–0.984] 0.966 [0.958–0.975] 0.980 [0.975–0.989] 0.973 [0.968–0.981] 
ABCNN 0.974 [0.963–0.984] 0.977 [0.964–0.988] 0.973 [0.965–0.980] 0.975 [0.970–0.979] 
Our model 0.986 [0.974–0.994] 0.979 [0.969–0.990] 0.983 [0.976–0.992] 0.981 [0.976–0.988]  

Table 3 
The results of deep semantic matching models on bootstrap confidence intervals.  

Network Accuracy (BCI: 95%) Precision (BCI: 95%) Recall (BCI: 95%) F1-score (BCI: 95%) 

DSSM 0.721 [0.708–0.738] 0.727 [0.716–0.741] 0.833 [0.824–0.843] 0.776 [0.771–0.784] 
ConvNet 0.949 [0.940–0.961] 0.954 [0.948–0.965] 0.953 [0.944–0.961] 0.953 [0.948–0.959] 
ESIM 0.978 [0.960–0.989] 0.963 [0.951–0.974] 0.976 [0.962–0.985] 0.971 [0.965–0.980] 
ABCNN 0.975 [0.962–0.984] 0.976 [0.963–0.986] 0.972 [0.964–0.983] 0.974 [0.968–0.981] 
Our model 0.982 [0.973–0.993] 0.981 [0.967–0.992] 0.985 [0.977–0.994] 0.983 [0.977–0.990]  

Y. Chen et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e15570

8

3.6. Evaluation of aggregation layer 

In general, the summation and concatenation are the most commonly used aggregation layers but may lose some information. The 
BiLSTM and CNN are also effective for aggregation. Table 7 compares three different aggregation layers. The CNN merges the feature 
using the convolution kernel with the same weight to preserve more original information, so it outperformed all other aggregation 
layers. 

3.7. Evaluation of model efficiency 

One automatic ICD-10 coding calculation requires multiple text matching calculations, so it is necessary to evaluate the efficiency 
of the model. The comparative experiments of the time spend on performing 1000 text matching with different text matching models 
under the same hardware conditions, and the results are shown in Table 8. 

4. Discussion 

The fast and effective automatic ICD-10 coding of Chinese diagnosis is important because manually assigning codes is expensive 
and time-consuming [33]. With the specific goal of improving coding quality and efficiency, this study developed an automatic ICD-10 
coding methodology of Chinese diagnosis using deep semantic matching based on analogical reasoning. This methodology shows 
success in a single text matching with an accuracy of 0.986, a precision of 0.979, a recall of 0.983, and an F1-score of 0.981. Compared 
with existing classical text matching models, the performance of DSSM received noticeably lower results than other models. The other 
models are interaction-based, while the DSSM is a representation-based text matching model. The interaction-based text matching 
models fully compare two texts that can achieve better performance but have lower operating speeds. While the representation-based 
can calculate and cache the word vectors in advance, so it has higher efficiency. Because the interaction between texts is shallow in the 
representation-based algorithms, it is usually less effective than the interaction-based. 

Although many studies have focused on automatic ICD-10 coding, we want to highlight the following advantages. First, the validity 
of the compare-aggregate framework was verified in the task of automatic ICD-10 coding of Chinese diagnoses. The compare-aggregate 
framework compares vector representations of smaller units such as words and then aggregates these comparison results to make the 
final decision. Although some studies have shown the effectiveness of the compare-aggregate framework for text matching, automatic 

Table 4 
The results of semantic matching with different word representation models.  

Word representation models Accuracy Precision Recall F1-score 

FastText [23] 0.728 0.731 0.698 0.714 
Glove [24] 0.749 0.745 0.701 0.722 
word2Vec [25] 0.866 0.872 0.862 0.867 
word2gm [26] 0.890 0.903 0.854 0.878 
prob-fasttext [27] 0.865 0.924 0.929 0.926 
BERT [22] 0.986 0.979 0.983 0.981  

Table 5 
The results of semantic matching with different context representation layers.  

Context representation models Accuracy Precision Recall F1-score 

None 0.533 0.578 0.413 0.481 
RNN [30] 0.557 0.580 0.413 0.482 
GRU [29] 0.702 0.764 0.573 0.655 
LSTM [31] 0.723 0.740 0.626 0.678 
BiLSTM [28] 0.986 0.979 0.983 0.981  

Table 6 
The results of semantic matching with different matching strategies.  

Matching strategies Accuracy Precision Recall F1-score 

Cosine similarity [32] 0.863 0.817 0.827 0.822 
Euclidean 0.820 0.832 0.826 0.829 
COS + EUC 0.844 0.864 0.829 0.846 
Neural Network 0.957 0.966 0.974 0.970 
Subtraction 0.964 0.956 0.952 0.954 
Multiplication 0.931 0.965 0.964 0.964 
SUB + MULT 0.981 0.973 0.979 0.976 
SUB + MULT + NN 0.986 0.979 0.983 0.981  
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coding is not equal to the exact text matching task [34]. In our study, automatic ICD-10 coding using the compare-aggregate 
framework was proved to get excellent results. Second, the proposed method developed an improved compare-aggregate frame
work. Although this model follows more or less the past compare-aggregate framework, some notable differences were made. The 
context representation matches Chinese diagnosis P and manual ICD-10 coding histories Q in two directions (P→Q and P←Q) [35]. 
When comparing how semantically similar the two texts were, the matching strategies (SUB + MULT + NN) were better than the usual 
standard feedforward network [31]. The CNN layer was applied for aggregation instead of normal summation and concatenation. 
Third, the proposed method applies analogical reasoning in automatic ICD-10 coding. ICD-10 is a classification standard, so the match 
between current Chinese diagnosis and manual ICD-10 coding histories outperformed the match between current Chinese diagnosis 
and ICD-10 standard names. In summary, the proposed method has a certain performance improvement over other text matching 
models and outperforms other interaction-based text matching models in terms of running speed, effectively balancing performance 
and efficiency, and laying a good foundation for the practical application of the model. 

There are also shortcomings in our study. First, the proposed method using the compare-aggregate framework was slower than 
traditional text matching. The deep semantic matching method can meet the reliability of automatic ICD-10 coding but lacks time
liness. Some methods for improving efficiency will be used in follow-up research, such as using the simple method to filter the top-k 
possible matches and reduce the number of complicated text matches [36]. Second, the proposed method cannot address the situation 
that draws on more patient information other than the diagnostic text in the process of ICD-10 coding. ICD-10 coding is a very complex 
process, and coders usually refer to all patients’ data, such as discharge summaries, examinations, radiology reports, etc. The follow-up 
research will introduce more clinical information. 

5. Conclusion 

The proposed deep semantic matching approach based on analogical reasoning is well-suited for automatic ICD-10 coding of 
Chinese diagnosis. The experimental results prove the feasibility of the deep text matching method for automatic ICD-10 coding. 
Automatic ICD-10 coding cannot replace manual coding, but the proposed method can effectively recommend the most probable 
coding results to reduce the coding burden and improve coding efficiency. 
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Table 7 
The results of semantic matching with different aggregation layers.  

Aggregation strategies Accuracy Precision Recall F1-score 

Summation 0.951 0.947 0.951 0.949 
BiLSTM 0.976 0.978 0.981 0.979 
CNN 0.986 0.979 0.983 0.981  

Table 8 
The results of time consumption with different 
text matching models.  

Model Time 

DSSM 2571.72 s 
ConvNet 3218.84 s 
ESIM 4755.79 s 
ABCNN 5156.54s 
Our model 3318.50 s  
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NHFPC National Health and Family Planning Commission 
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