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Simple Summary: The collapse of honey bee colonies is an important phenomenon worldwide.
The individual and synergic actions of pathogens are one of the causes of this decline. Monitoring
programs are essential to understand and prevent the epidemiological patterns that are involved.
The present study aimed to investigate the health status of honey bees in the Emilia–Romagna region
(northern Italy) during the year 2021, on workers from 31 apiaries. The prevalence and abundance of
DWV, KBV, ABPV, CBPV, Nosema ceranae, and trypanosomatids (Lotmaria passim, Crithidia mellificae,
Crithidia bombi) were investigated four times in the year using molecular methods. Trypanosomatids
were not found in any of the samples, while DWV, CBPV and N. ceranae were the most prevalent
pathogens. Pathogens had different peaks in abundance over the months, showing seasonal trends
related to the dynamics of both bee colonies and Varroa destructor infestation. The results of this
study suggest that the monitoring program could be useful to understand the dynamics of honey
bee pathogens.

Abstract: The recent decades witnessed the collapse of honey bee colonies at a global level. The
major drivers of this collapse include both individual and synergic pathogen actions, threatening
the colonies’ survival. The need to define the epidemiological pattern of the pathogens that are
involved has led to the establishment of monitoring programs in many countries, Italy included. In
this framework, the health status of managed honey bees in the Emilia–Romagna region (northern
Italy) was assessed, throughout the year 2021, on workers from 31 apiaries to investigate the presence
of major known and emerging honey bee pathogens. The prevalence and abundance of DWV, KBV,
ABPV, CBPV, Nosema ceranae, and trypanosomatids (Lotmaria passim, Crithidia mellificae, Crithidia bombi)
were assessed by molecular methods. The most prevalent pathogen was DWV, followed by CBPV
and N. ceranae. Trypanosomatids were not found in any of the samples. Pathogens had different
peaks in abundance over the months, showing seasonal trends that were related to the dynamics of
both bee colonies and Varroa destructor infestation. For some of the pathogens, a weak but significant
correlation was observed between abundance and geographical longitude. The information obtained
in this study increases our understanding of the epidemiological situation of bee colonies in Emilia–
Romagna and helps us to implement better disease prevention and improved territorial management
of honey bee health.

Keywords: health status; DWV; ABPV; CBPV; KBV; Nosema ceranae; trypanosomatids; diseases;
pathogens; monitoring

1. Introduction

The health status of managed honey bees (Apis mellifera L.) is threatened by several
pests and pathogens [1]. The effects of these infections and their interactions with other
biotic (e.g., bee genetics, queen behaviour) and abiotic (e.g., climate changes, lack of
forage, exposition to agrochemicals, and management practices) factors can lead to colony
losses [2–4]. Although both the symptoms and effects caused by contact with pesticides
have been investigated [3,4], the role of pathogens and their effects in relation to their
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abundance, co-infection and seasonality need to be clarified [5]. Both disease occurrence
and fatal events such colony losses vary widely among countries and climatic regions [1,6,7].
Usually, colony losses occur in the wintertime or the early spring, but they may also
occur in summer and autumn, as the result of incorrect beekeeping management and/or
pathogens [8,9]. Clarity regarding the epidemiological diffusion of bee pathogens could be
helpful to understand and/or prevent any sanitary problems.

Often, honey bee pathogens are globally distributed. They include bacteria, fungi,
microsporidia, viruses, trypanosomatids, and mites [10,11], which may act individually
or synergically [5,12–14]. Under specific conditions, their detrimental effect may induce
Colony Collapse Disorder (CCD) [15,16]. In this context, Nosema ceranae infection and viral
diseases are considered to play a pivotal role [11].

N. ceranae is an obligate intracellular microsporidian, which is causing nosemosis
type C in western honey bees [17–19] due to the infection of the ventricular epithelial
cells [20,21]. This pathogen is spread globally and affects honey bees at both individual and
colony levels, inducing lethargic behaviour in worker bees, reducing lifespan, and leading
to poor honey and pollen harvest [22–25].

Deformed wing virus (DWV) is a non-enveloped ssRNA (+) virus belonging to the
Iflavirus genus [26]. This virus is the most studied and the most prevalent honey bee
pathogen [27,28]. DWV is often associated with the Varroa destructor infestations, as the
mite may transmit the virus through trophic activity [29,30]. Symptomatic DWV infec-
tions result in adults with anatomical deformities such as crippled wings and shortened
abdomens, although asymptomatic courses are frequent and cause colony dwindling and
collapse [30–32].

Acute bee paralysis virus (ABPV) and Kashmir bee virus (KBV) are two non-enveloped
ssRNA (+) viruses within the Dicistroviridae family belonging, respectively, to the Apavirus
genus and Cripavirus genus [28,33,34]. These viruses are genetically similar and, together
with Israeli acute paralysis virus (IAPV), are considered to form a complex (ABPV-KBV-IAPV
complex) [35,36]. Both viruses could be horizontally transmitted by V. destructor [35,37].
Although ABPV and KBV are highly virulent, their spread in the hive is limited. They
infect brood and adults asymptomatically at both individual and colony levels, although
ABPV-infected workers may rapidly evolve paralysis [35].

Chronic bee paralysis virus (CBPV) is an unclassified enveloped ssRNA (+) virus,
which is unusual as its genome consists of two single- or plus-stranded RNAs [38,39]. The
virus causes a complex disease in the workers, consisting of ataxia, and the inability to fly,
as a result of its neurotropism [38,40]. Symptomatic honey bees are unable to fly and show
a dark, hairless, and trembling abdomen [38,41]. Although the disease was once known to
be highly seasonal and related to the spring development of the colonies, recent reports
indicate its presence throughout the year and, consequently, its increased prevalence [42].

Lotmaria passim, Crithidia mellificae, and C. bombi are three trypanosomatids capable
of infecting the bee’s gastrointestinal tract [43,44]. L. passim and C. mellificae are two
pathogens that are frequently detected in A. mellifera [44–46]. C. bombi, although first
isolated in bumblebees, is also known to infect honey bees [47], which act as vector of
the trypanosomatids [48]. They all spread oro-faecally among colony members [48], and
infection could alter bee behaviour and reduce their lifespan [49–53]. Among the three
species, L. passim is considered to have the largest global distribution and, as such, it has
replaced previously misidentified C. mellificae infections [44].

All the above-reported pathogens are present in Italy; nonetheless, scant information
is available for KBV and trypanosomatids. KBV was found in the years 2013 and 2017 in
one single apiary of the Latium region [54] and Vespa velutina individuals, respectively [55].
L. passim was reported as present in the Veneto region only [56].

This study was conducted to contribute to our understanding of the epidemiolog-
ical situation of honey bee diseases in Italy. Samples from 31 apiaries located in the
Emilia-Romagna region were collected and analyzed in the year 2021, to quantify both the
prevalence and abundance of N. ceranae, DWV, KBV, ABPV, CBPV, L. passim, C. mellificae,
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and C. bombi. These pathogens were selected for the following reasons: (i) they are not
responsible for notifiable diseases in Italy, (ii) molecular methods are available for their
assessment, (iii) frozen workers form suitable samples for their quantification, (iv) they are
of special practical and scientific interest. The last point was specifically true for L. passim,
C. mellificae, and C. bombi, whose distribution in Italy is largely understudied.

2. Materials and Methods
2.1. Sampling

Thirty-one apiaries distributed in all provinces of the Emilia–Romagna region were
investigated (Figure 1). The apiaries were named after the province code, to which a
progressive letter was added (Table 1).
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Figure 1. Geographical localization of the investigated apiaries in the Emilia–Romagna region.

Table 1. Geographical characteristics of the investigated apiaries (a.s.l.= above sea level).

Apiary Code Province Municipality a.s.l.

BOA Bologna Valsamoggia 60 m
BOB Bologna Valsamoggia 114 m
BOC Bologna Sala Bolognese 13 m
BOD Bologna Dozza 89 m
BOE Bologna Monghidoro 582 m
BOG Bologna Sasso Marconi 155 m
FCB Forlì-Cesena Cesena 9 m
FCC Forlì-Cesena Forlì 8 m
FCD Forlì-Cesena Bagno di Romagna 679 m
FCE Forlì-Cesena Borghi 63 m
FEA Ferrara Ferrara 7 m
FEB Ferrara Ferrara 8 m
FEC Ferrara Argenta 8 m

MOA Modena Formigine 81 m
MOB Modena Campogalliano 26 m
PCA Piacenza Ziano Piacentino 298 m
PCB Piacenza Pontenure 78 m
PCC Piacenza Gragnano Trebbiense 88 m
PCD Piacenza San Giorgio Piacentino 323 m
PRA Parma Parma 50 m
PRB Parma Montechiarugolo 79 m
PRC Parma Langhirano 298 m
RAA Ravenna Casola Valsenio 204 m
RAB Ravenna Ravenna 7 m
RAC Ravenna Ravenna 8 m
RAD Ravenna Lugo 8 m
REA Reggio Emilia Novellara 16 m
REB Reggio Emilia Campagnola Emilia 19 m
REC Reggio Emilia Viano 433 m
RNA Rimini Montescudo 209 m
RNB Rimini Rimini 46 m
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In the study year (2021), the same three colonies were sampled four times for each
investigated apiary, namely in April, June, September, and November. Four apiaries
(BOC, FCD, RNA, and RNB) missed the first sampling, as the respective owners joined the
monitoring plan later.

For each investigated colony, approximately twenty-five worker bees were sampled
from the external combs [57], on which older and, therefore, more likely to be infected
workers tend to congregate [58,59]. All the samples were stored at −80 ◦C until analysis.

2.2. Extraction of Nucleic Acids

Each sample was processed as a pool. Ten bees were placed in a 2mL microtube
with 300 µL of DNA/RNA Shield (Zymo Research, Irvine, CA, USA) and crushed with a
TissueLyser II (Qiagen, Hilden, Germany) for 3 min at 30 Hz, as previously reported [60,61].
The obtained suspension was split into two aliquots, from which DNA and RNA were
separately extracted. The extraction of the nucleic acids was performed with the Quick
DNA Microprep Plus Kit (Zymo Research) and Quick RNA Microprep Plus Kit (Zymo
Research). During the process, the modified manufacturer’s instructions for solid tissue
processing were followed [19,62]. The obtained nucleic acids were eluted in 100 µL of
DNAase-RNase-free water and the extracts were stored at −80 ◦C until the qPCR assays.

2.3. Quantitative Real-Time PCR Assays

The extracted DNA and RNA were used in a Real-Time PCR (qPCR) assay to quantify
the abundance of each pathogen in the samples. The DNA was used to analyse N. ceranae
and trypanosomatids, whereas RNA was used for the viruses. The qPCRs were performed
using the primers reported in Table 2.

Table 2. List of the primers used to analyse the pathogens in this study.

Target Primer Name Sequence (3′-5′) Reference

N. ceranae
Hsp70_F GGGATTACAAGTGCTTAGAGTGATT

[63]Hsp70_R TGTCAAGCCCATAAGCAAGTG

C. mellificae Cmel_Cyt_b_F TAAATTCACTACCTCAAATTCAATAACATAATCAT
[64]Cmel_Cyt_b_R ATTTATTGTTGTAATCGGTTTTATTGGATATGT

L. passim Lp_Cyt_b_F CGAGCTCATAAAATAATGTAAGCAAAATAAG
[64]Lp_Cyt_b_R TTTTAGCAATATTTTAGCAACAGTACCAG

C. bombi
Cbom_119Fw CCAACGGTGAGCCGCATTCAGT

[65]Cbom_119Rv CGCGTGTCGCCCAGAACATTGA

KBV
KBV 83F ACCAGGAAGTATTCCCATGGTAAG

[66]KBV 161R TGGAGCTATGGTTCCGTTCAG

DWV
DWV Fw 8450 TGGCATGCCTTGTTCACCGT

[67]DWV Rev 8953 CGTGCAGCTCGATAGGATGCCA

ABPV
APV 95F TCCTATATCGACGACGAAAGACAA

[66]APV 159R GCGCTTTAATTCCATCCAATTGA

CBPV
CPV 304F 79 TCTGGCTCTGTCTTCGCAAA

[66]CPV 371R GATACCGTCGTCACCCTCATG

Legend. KBV: Kashmir bee virus; DWV: deformed wing virus; ABPV: acute bee paralysis virus; CBPV: chronic
bee paralysis virus.

For each target gene, a total reaction volume of 25 µL was prepared as previously
described [57,62] using SYBR™ green assays with forward and reverse primers (2 µM), and
3 µL of nucleic acid extract. For the DNA and the RNA, the SYBR PowerUp™ SYBR™ Green
Master Mix (ThermoFisher, Waltham, MA, USA) and the Power SYBR™ Green Cells-to-
CT™ Kit (ThermoFisher Scientific) were used, respectively. The qPCRs were performed on
QuantStudio™ 3 Real-Time PCR System (ThermoFisher Scientific), following the protocols
for either gene sequence [63–67]. DNA and RNA, previously extracted from positive honey
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bee samples, were used as positive controls. Sterile water was used as a negative control in
all analytical steps. All the analyses were conducted in duplicate.

For each target gene, a standard curve was generated by amplifying serially diluted
recombinant plasmids containing the pathogen-specific DNA fragment from 1 × 101 to
1 × 109 copies in a qPCR assay on QuantStudio™ 3 Real-Time PCR System (ThermoFisher
Scientific), as previously reported [19,55,57,62], following the amplification and quantifica-
tion protocols [63–67].

2.4. Statistical Analysis

The values of pathogens abundance used for statistical analysis referred to the pool
of 10 bees for each investigated colony. For each sample, the pathogen abundance was
determined by averaging the two technical replicates of each PCR assay. For each apiary,
the pathogen abundance was calculated by averaging the data obtained from the three
investigated colonies.

A principal component analysis (PCA) was conducted to explore similarities and
possible clusters of apiaries according to a regional longitudinal gradient, using the mean
number of pathogen copies as a variable. Calculations were carried out over the whole
sampling year. After the PCA, the correlation strength between each pathogen’s abundance
and longitude value was tested with a Pearson correlation test.

Before proceeding with further analysis, the assumption of normal distribution of
errors was checked with Shapiro–Wilk test. As the normality test was failed, a non-
parametric approach was followed.

To test the effect of the month of sampling on each pathogen’s abundance, Kruskal–
Wallis tests were used. When the last was found to be significant, Dunn’s test was applied
as a post-hoc pairwise comparison. The apiary average prevalence of each pathogen was
also calculated per month as a percentage ratio between the positive and total samples. A
Chi-square test pairwise comparison with Yates’ correction was then applied to investigate
the pathogen prevalence among the sampling months.

For all statistical tests, a significance threshold at α = 0.05 was assumed.
Pathogens whose presence was not detected in any of the samples by real-time PCR

were excluded from analyses.
All the statistics were calculated with R studio version 4.1.2. using packages Fac-

toMineR and ggplot2.

3. Results

In total, 360 samples were analyzed. None of the samples were found to be positive
for any of the three trypanosomatid species. The highest prevalence, considering the four
sampling points, was found for DWV (56.0%), followed by CBPV (48.5%), N. ceranae (42.9%)
and ABPV (7.3%). Only three colonies were found to be positive for KBV infection (0.8%)
(Table S1).

Concerning abundance, the highest mean number of pathogen copies was found for
DWV and CBPV (1.36 × 1010 and 7.60 × 1010, respectively). Lower values were detected
for ABPV (1.17 × 106), N. ceranae (2.14 × 105) and KBV (1.34 × 103) (Figure 2 and Table S1).

3.1. Geographical Distribution

In the PCA, two components from the pathogen abundance were chosen at each apiary.
The first one (PC1) was positively correlated with DWV and N. ceranae. The second one
(PC2) was positively correlated with these pathogens, as well as with ABPV and CBPV
(Figure 3 and Table 3).

The principal component analysis showed one cluster along the second principal
component, corresponding to a group of easternmost apiaries (FCD, RNA, RNB, FEC),
whereas the other apiaries were assembled closer to the chart origin. Three apiaries (MOA,
REC and BOA) located in central areas of the region clustered following the second principal
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component. The BOB and PCA apiaries, located in the central and western part of the
region, respectively, occupied the marginal positions in the biplot.

There was a positive correlation for N. ceranae (t = 2.192, p-value = 0.0365, cor = 0.377) and
longitude value. No significant correlation was found for DWV (t = 1.805, p-value = 0.081,
cor = 0.318), ABPV (t = −0.477, p-value = 0.637, cor = −0.088), and CBPV (t = −0.165,
p-value = 0.8715, cor = −0.031). No correlation was performed for KBV, because only three
apiaries were found to be positive in the total sampling year.
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Table 3. Relationship between Principal Components (PC1 and PC2) and pathogen abundance variables.

Pathogen PC1 PC2

DWV 0.152 0.653
KBV −0.181 −0.2716

ABPV −0.676 0.178
CBPV −0.673 0.219

N. ceranae 0.184 0.649
Eigenvalues 1.971 1.178

Variance explained 39.43% 23.55%

3.2. Seasonal Trend

The prevalence of the considered pathogens showed a distinctive seasonal trend
(Figure 4). DWV and N. ceranae were most prevalent in April (48.2% and 72.8%, respec-
tively), while their prevalence decreased in June and rose in September and November. On
the other hand, ABPV decreased over the months. The prevalence of DWV increased over
time, with a peak in November (98.9%). CBPV showed a fluctuating trend, with significant
increases in June (65.9%) and November (62.4%). The prevalence of KBV was very low
throughout the year and did not significantly fluctuate over time (Figure 4).
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Figure 4. Pathogen prevalence over months. Different letters denote significant differences in the
prevalence of individual pathogens.

The results of the Kruskall–Wallis tests conducted on the abundance data of each
pathogen are reported in Table 4. Except for KBV, the sampling month resulted in a
significant predicting variable.

Table 4. Results of Kruskal–Wallis tests of pathogen abundance in the sampling months. Significant
values are shown in bold.

Pathogen Test Value df p-Value

DWV 186.16 3 0.000
KBV 4.2262 3 0.238

ABPV 63.556 3 0.000
CBPV 31.852 3 0.000

N. ceranae 21.312 3 0.000
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Total pathogen abundance was higher in April and November (Figure 5).
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The results of the post-hoc tests (Supplementary Table S3) revealed that the majority
of significance in the comparisons was found between April and June and between April
and November. ABPV and N. ceranae had a higher mean abundance in April, while DWV
and CBPV had higher values in November (Figure 6).
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4. Discussion

The frequent losses in honey bee colonies that occurred in recent years in Europe
and other continents promoted the establishment of monitoring plans in many countries,
to improve our understanding of the underlying factors and adopt the needed counter-
measures. This study is part of BeeNet, an Italian multiannual monitoring plan that is
conducted nationwide. Despite the large scale of the study, we presented results obtained
in apiaries situated in the Emilia Romagna region. We focused on a range of pathogens
that were reputed to be implicated in the colony losses [1] detected in the first year of the
monitoring action (2021). Five out of eight of the considered pathogens were found to
infect the examined apiaries, namely, the viruses DWV, CBPV, ABPV, and KBV, and the
microsporidium N. ceranae.

In general, DWV was the most prevalent pathogen, following a previous study carried
out in Italy in 2009–2010 where the prevalence value was higher (68%) [2]. A similar
prevalence value of DWV-A was recorded in the Veneto region in 2020 [56]. DWV was
reported as the most prevalent virus in Europe [68] and the other continents [27]. CBPV
was the second most prevalent pathogen, occurring in almost half of the analyzed honey
bee samples. The higher prevalence values of this virus (82.2–98.8%) were recently found
in Veneto [56]. Since, in 2009–2010, the prevalence of CBPV in Italy was only 8% [2], this
study confirms the exponential increase in the incidence of this virus observed over the
last decade, as in other countries, including the UK [42], USA [69], and China [70]. ABPV
and KBV were the least prevalent viruses in Emilia Romagna, especially KBV, which was
only detected in three hives (0.8%). KBV was first identified in Italy in 2013 [54] and has
rarely been found since then [2,56], with a predominant distribution in Asia, the USA and
Australia [71].

Within the non-viral pathogens, the prevalence of N. ceranae in Emilia Romagna
was similar to overall reports for Italy in 2009–2010 [2] but lower than the prevalence
recorded in other European countries, including Belgium (93%), Serbia (79–95%) and
Spain (66%) [72–74]. The three investigated trypanosomatids were not found in any of
the colonies. In the last national survey, trypanosomatids were not searched for; therefore,
the only data available for comparison are from the neighbouring Veneto region, showing
a high prevalence of L. passim (48.8–62.2%) in 2020–2021 [56]. Similar results (62.3%)
were obtained in a nine-year survey for trypanosomatids, conducted in Serbia [75]. The
only other Italian study investigating trypanosomatids was carried out on honey samples
supplied by beekeepers in Northern Italy. A total prevalence of L. passim of 78% was found
in honey, with Friuli-Venezia Giulia, Emilia-Romagna and Trentino-Alto Adige scoring
the highest values [76]. Data on both the presence and distribution of C. mellificae and
C. bombi are even more scattered. C. mellificae was detected in honey bees for the first time
in Italy in 2010, in the Latium region [77]; however, after the discovery of L. passim, the
sequence was attributed to this new trypanosomatid. In 2020, C. mellificae was found in
one single hive in the Veneto region [56]. The presence of trypanosomatids in honey bees
is still poorly monitored both in Italy and elsewhere, although they are recognized as
among the most prevalent bee parasites, contributing to the increased colony mortality in
Europe and the USA [44]. However, our poor understanding of the epidemiologic details
of trypanosomatid infections means that comparisons among the results obtained over
different years and locations are excessively speculative. This is even more true when the
results refer to dissimilar kinds of samples (e.g., worker bees from individual colonies
and bulks of honey produced by different hives). Coinfections between L. passim and
N. ceranae [75,78] were not confirmed by the present study.

Concerning the abundance of detected pathogens, the highest loads were found for
CBPV and DWV (7.60 × 1010 and 1.36 × 1010 copies, respectively). A viral load higher
than 1010 pathogen copies is generally related to the presence of disease symptoms for both
viruses [29,30,79]. Therefore, the analyzed bees belonging to the monitored colonies did not
present any symptoms related to both viral infections. It should be noted that the virulence
and subsequent symptomatology of these viruses can vary depending on the means of
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transmission and the presence of co-infections/infestations [80,81]. ABPV, N. ceranae and
KBV were found to have a lower abundance. Given the higher virulence of ABPV and
KBV [31,80], apiaries with detected viral loads of around 106 should be kept under control.

The geographical distribution of pathogens in the Emilia–Romagna regions high-
lighted a correlation between the DWV and N. ceranae infection in the East part (Romagna)
compared to the west of the regions (Emilia). These differences could be related to the
different health management of apiaries by beekeepers, probably due to different tradi-
tions or customs. N. ceranae and V. destructor (the main vector of DWV) originate from
Asian countries and can replicate in a warm environment [17,82]. The apiary in the east
Emilia–Romagna has a closer proximity to the sea, which contributes to a more suitable
environment for N. ceranae and DWV infections [83–87]. Additionally, in 2021, a higher
average temperature was recorded in Romagna (17 ◦C) than in Emilia (14 ◦C), creating a
more suitable environment for these organisms (https://simc.arpae.it/dext3r/ (accessed
on 13 April 2021)). In the global view of climatic change, this may lead to an increase in
cases of exotic pathogens [10,88,89].

In this investigation, the seasonality of pathogen occurrence followed different specific
trends for each pathogen. Usually, the prevalence and the abundance of pathogens are
strictly related to the bee population dynamics, especially to brood cycles [7,10,14,90].

DWV and ABPV transmission is also linked to V. destructor [26,28]. Their rate of preva-
lence, abundance and virulence followed the same trends of mite infestation [69,91–93].
The high infection of ABPV and DWW in April may be linked to a constant infection that
remains active during the winter. This leads honey bees being infected in the new brood
cycle in the spring [94–96]. The slight decrease in terms of prevalence and abundance in
June could be in line with the increase in bee population, diluting the pathogens among
more hosts [97]. The proliferation of both V. destructor and viruses cannot be limited by
acaricide treatments. Although mite infestations can successfully be reduced, the virus
can persist inside the hosts at low prevalence and loads [10]. In this case, the ABPV cycles
decrease over the season, and the summer acaricide treatments seem to be effective at
inhibiting its spread within the bee population, as previously reported [94,96]. On the other
hand, the summer treatments did not affect the persistence and circulation of DWV, since
its infection increased after the summer. Instead, the winter reductions in population and
the winter acaricide treatments seem to be useful to limit the damage caused by higher
rates of DWV infection.

In recent studies, the CBPV was considered to be strictly linked to spring and related
to colony developmentl however, cases of this virus were detected in all beekeeping seasons
and during the winter [38,98]. The analyzed CBPV trends confirmed the importance of the
re-emerging disease [42]. The virus was present in all seasons in the investigated apiary,
as previousy reported [38,41,99]. The higher abundance in April and September reflected
the higher prevalence in June and November. These findings could be related to the first
and classic aetiology of the disease, where a higher number of cases were found in late
spring/early summer [38,39]. The absence of a temporal pattern may be associated with
the oral transmission of CBPV without a vector, or due to the genetic diversity of the
virus [38,98].

Due to the very limited KBV-positive colony detected in this study, its seasonal dynam-
ics cannot be analyzed. This disease is not present in Italy, except for random findings in
some bee colonies in the Latium region and V. velutina sampled in the Liguria region [54,55].

N. ceranae is the most diffused and most frequent microsporidia detected in honey
bee colonies worldwide [1,100]. Previous surveys in Europe highlighted the differences
and fluctuations in N. ceranae prevalence and abundance depending on the year and the
geographical localization of the apiary [101]. In this investigation, its prevalence and
abundance were detected in all samples, confirming the lack of seasonality that was
previously reported [102,103]. The highest incidence was observed during the colony
development in April and in November before the wintering, in line with the life cycles of
the microsporidia [104], as previously reported in other countries [100,105–109].

https://simc.arpae.it/dext3r/
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5. Conclusions

This investigation focused on the health of managed honey bees, confirming the
important role of monitoring surveys on bee diseases. The impact of management practices
on bee colonies leads to an intensification of these surveys, not only because the impact
of the diseases causes direct damage to beekeeping, but also because the circulation of
these pathogens may affect other pollinators [110]. The health of the honey bee is strictly
connected to the health of pollinators, and vice versa. A change in perspective is necessary,
considering a One-Health Approach to honey bee diseases [111–113].

Further studies are needed to better understand the health status of Italian and Euro-
pean honey bee colonies to prevent the diffusion of diseases and to protect the environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vetsci9080437/s1, Table S1. Mean number of copies for inves-
tigated apiary in the Emilia-Romagna region during April, June, September, and November 2021.
Table S2. The mean annual abundance of DWV, KBV, ABPV, CBPV and N. ceranae in the investi-
gated apiary. Table S3. p values resulting from the post-hoc Dunn’s test for pairwise comparisons
(ns = non-significant).
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