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1  |  INTRODUC TION

SIVmac and its derivatives are widely used as models for HIV infec-
tion due to their ability to mimic AIDS- like pathogenesis in rhesus 
macaques.1– 4 Previously, we showed successful infection and se-
rial passaging of SIVmac239 as well as other SIVs in the humanized 

mouse model, which harbors a fully functional human immune sys-
tem.2– 15 Here, we characterized SIVmac239 following four serial 
passages in humanized mice and identified the genetic adaptations 
that arose following in vivo adaptation to the human immune cell en-
vironment. Viral pathogenesis was determined by monitoring plasma 
viral loads weekly using qRT- PCR and CD4+ T cell decline biweekly 
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Abstract
Serial passage of SIVmac239 allows for greater understanding of the genetic changes 
necessary for cross- species transmission of primate lentiviruses into humans. 
Using humanized mice, we show that adaptive mutations continue to accumulate in 
SIVmac239 during four serial passages, with persistent CD4+ T cell decline and in-
creases in plasma viral loads.
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using flow cytometry. The resulting virus was subjected to Illumina- 
based deep sequencing to identify mutations that arose at increas-
ing frequencies within the viral population.

2  |  MATERIAL S AND METHODS

2.1  |  Generation of hu- HSC mice, infection with 
SIVmac239 and serial passaging

All animal studies have been approved and reviewed by the 
Colorado State University Institutional Animal Center and Use 
Committee (Protocol #1202), and animals were maintained 
by the CSU Painter Animal Center. The preparation of hu- HSC 
mice was performed according to the previously described 
procedures.5,10,11,14– 17 A total of 8 mice (3 female; 5 male) were 
used for these experiments.

A human- cell adapted SIVmac239 strain that was serially pas-
saged three times in humanized mice was used to infect hu- HSC 
mice as previously described.5 Briefly, mice displaying high plasma 
viral loads 24- weeks post- inoculation were euthanized and cells 
were collected to propagate and passage the virus for future serial 
passages of hu- mice.5,10,11

2.2  |  Assessment of viral pathogenesis

Pathogenesis of the virus was determined through plasma viral 
load detection and assessment of CD4+ T cell decline as described 
previously.5 Briefly, the E.Z.N.A. Viral RNA kit (Omega bio- tek, 
Norcross, CA) was used to extract viral RNA from plasma isolated 
weekly from peripheral blood. Quantification of viral loads was 
performed using qRT- PCR and SYBR Green with the iScript One- 
Step RT- PCR kit (BioRad, Hercules, CA) based on the manufactur-
er's instructions.5

CD4+ T cell levels were assessed as a fraction of CD45+/CD3+ 
cells following staining of whole blood using mouse anti- human 
antibodies CD45- APC (eBioscience), CD3- FITC (eBioscience), and 
CD4- PE (BD Pharmingen, San Jose, CA) and the BD Accuri C6 cy-
tometer as previously described.5,6 CD4+ T cell decline was assessed 
relative to uninfected controls using a two- tailed Student's t- test in 

GraphPad Prism 8.1.0 (p < .0001). CD4+ T cell decline and plasma 
viral loads were displayed as mean ± SD.

2.3  |  Illumina- based deep sequencing

Overlapping amplicon pools were generated from viral RNA col-
lected from two separate infected mice at 3- , 11- , 19- , and 25- week 
post- inoculation using Primal Scheme designed primers as described 
previously.5,18 Amplicons were prepared for sequencing using the 
TruSeq Nano DNA Library Preparation Kit and run on the MiSeq 
Illumina desktop sequencer (Invitrogen,).

Sequence read processing and variant identification was per-
formed using Geneious Prime v2022.1.1. Paired- end reads were 
merged using BBMerge version 38.84, and read ends were trimmed 
with a 0.05 error probability rate.19 Reads were mapped against our 
previously sequenced SIVmac239 reference consensus sequence 
using Bowtie2 v2.3.0.5,20 SNPs were identified based on a mini-
mum variant frequency of 0.5 and minimum depth of coverage of 
100 reads. R and ggplot2 (ISBN: 0387981403) scripts were used 
to create the genome plot and can be found at https://github.com/
steng lein- lab/viral_varia nt_explorer. Raw sequencing data were 
deposited to the Sequence Read Archive and are publicly available 
(Accession Numbers: SRR17194610; SRR20736401- SRR2073606; 
and SRR20736413- SRR2073614).

3  |  RESULTS

The hu- mouse adapted SIVmac239 fourth passage virus was able 
to cause viremia with a rapid increase in viral loads reaching a 
titer of over 1 × 106 RNA copies/mL within 35 days before peaking 
around 84 days post- inoculation and gradually declining (Figure 1A). 
CD4+ T cell decline was observed within 2 weeks of infection, with 
a significant, but gradual decline continuing throughout the rest 
of the viremic phase relative to the uninfected control (*p < .0001; 
Figure 1B). In addition to mutations identified in previous serial pas-
sages, we found that the frequency of nonsynonymous SNPs produc-
ing M252T, K446R, and A545V in env and L31P in nef had increased 
to >50% of the viral population by the end of the fourth serial pas-
sage (Figure 2).5 Additionally, we determined using Geno2pheno 

F I G U R E  1  SIVmac239 Plasma Viral 
Loads and CD4+ T cell decline after four 
serial passages. (A) SIVmac239 fourth 
passage plasma viral loads. Plasma 
viral loads peaked around 84 days 
post- inoculation. (B) SIVmac239 fourth 
passage CD4+ T cell decline. Both data 
sets are represented as mean ± SD. CD4+ 
depletion was significant by the end of the 
serial passage (two- tailed Student's t- test, 
p < .0001)
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that the adapted virus is still primarily a CCR5- tropic virus and has 
not yet shifted to either an X4 or dual- tropic phenotype by the end 
of the fourth generation of serial passaging.21

4  |  DISCUSSION

The fourth serial passage of SIVmac239 contrasts the earlier pas-
sages in both pathogenesis and genetic changes.5 The first three 
passages showed moderate increases in viral loads, while the fourth 
passage starting viral loads were greater than 1x103 RNA copies/
mL, and continued to rise over 3 logs relatively quickly. This suggests 
that the fourth serial passage virus is more adapted to human cells 
than earlier passages.5 Additionally, while CD4+ T cell decline was 
significant relative to the uninfected controls, there was not as large 
of a difference between the previous passages and the fourth serial 
passage relative to the differences in viral loads.5 This indicates that 
genetic changes that arise in this passage had a greater impact on 
plasma viral loads than on CD4+ T cell decline.

While the majority of the previously identified mutations were 
maintained at high frequencies within the viral population, several 
mutations in env and nef rose above 50% frequency that were not 
previously seen.5 Furthermore, the retention of previously identified 
high- frequency mutations indicates the importance for countering 
increased fitness for viral replication in the human. Future functional 
studies on these mutations are likely to shed more light on their spe-
cific roles in human host adaptation.
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